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Abstract. Let Fq be a finite field and Fq((X−1)) the field of formal power series

with coefficients in Fq . The purpose of this paper is to exhibit a family of transcen-

dental continued fractions of formal power series over a finite field through some

specific irregularities of its partial quotients.
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1. INTRODUCTION

In [5, 1], Maillet and Baker studied the real number x = [a0, a1, . . .] where
(ai)i≥0 is the sequence of partial quotients of x such that an = an+1 = . . . =
an+λ(n)−1, for infinitely many positive integers n where λ(n) is a sequence of in-
tegers verifying some increasing properties. The authors showed that such an x is
transcendental and their proof is based on the theorem of Davenport and Roth [7]
and the consideration of the assumption on (ai)i≥0 that it is bounded.
Later, Adamczewski and Bugeaud [3] suggested a new transcendence criteria for
continued fractions by using the Schmidt subspace Theorem given in [15] where the
author showed that if an irrational number is very well approximated by quadratic
numbers then it is quadratic or transcendental.

Unfortunately, in the field of formal series, we do not have similar theorems
to those of Roth and Schmidt. In 1976, Baum and Sweet [8] proved that the unique
solution in F2((X−1)) of the cubic equation

Xα3 + α+X = 0

has a continued fraction expansion with partial quotients of bounded degree.
They observed that no real algebraic number of degree ≥ 3 has yet been shown to
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have bounded or unbounded partial quotients.

In 1986, Mills and Robbins [14] provided an example of algebraic formal series
over F2(X) whose sequence of partial quotients is unbounded.

In 2004, Mkaouar [12] gave a similar result to the Baker one [1] concerning
the transcendence of formal series over a finite field.

In 2006, Hbaib, Mkaouar and Tounsi [10] proved a result which allows the
construction of a family of transcendental continued fractions over Fq((X−1)) from
an algebraic formal series of degree more than 2.

In 2019, in collaboration with S. Driss [9], we showed that, if the contin-
ued fraction of a formal power series in Fq((X−1)) begins with sufficiently large
geometric blocks, then f is transcendental.

In this work we give a new transcendence criteria which depends only on the
length of specific blocks appearing in the sequence of partial quotients.

This article is organized as follows: In the next section, we set up the problem
and we give some useful definitions and known results in the field of formal power
series and the continued fraction expansions over this field. In section 3, we treat
the objective of this paper and establish a new general result on a transcendence
criterion. Later, we give an example to illustrate the importance of our result.

2. Field of formal series Fq((X−1))

Let Fq be a field with q > 1 elements of characteristic p > 0. We denote by
Fq[X] the ring of polynomials with coefficients in Fq and Fq(X) the field of rational
functions. Let Fq((X−1)) be the field of formal series, i.e., for any f ∈ Fq((X−1)),
f can be written as,

f =
∑
n≥n0

bnX
−n

where bn ∈ Fq and n0 ∈ Z. A formal series f =
∑
n≥n0

bnX
−n has a unique decom-

position as f = [f ] + {f} with the polynomial part [f ] ∈ Fq[X] and the fractional
part verifying |{f}| < 1. Here we define the non-archimedean absolute value as
follows:

|f | =
{
qdeg f if f 6= 0,
0 if f = 0.

(1)
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Thus, |f + g| ≤ max(|f |, |g|) and |f + g| = max(|f |, |g|) if |f | 6= |g|. Let us also
recall that the continued fraction expansion of a formal series f is written as

f = a0 +
1

a1 +
1

a2 +
1

. . .

= [a0, a1, a2, . . .],

where a0 = [f ], and for i ≥ 1, ai = [fi] ∈ Fq[X] with deg(ai) ≥ 1 and fi = 1
{fi−1} .

Here, (ai)i≥0 is called the sequence of partial quotients of f and we denote by
fn = [an, an+1, . . .] the n-th complete quotient of f .

Remark 2.1. [4]

(1) If (deg(ai))i≥0 is bounded then f has a bounded continued fraction expan-
sion.

(2) The expansion is finite if and only if f ∈ Fq(X).

(3) The sequence of partial quotients of f is ultimately periodic if and only if
f is quadratic over Fq(X).

Now, we define two sequences of polynomials (Pn)n≥0 and (Qn)n≥0 by

P0 = a0, Q0 = 1, P1 = a0a1 + 1, Q1 = a1

Pn = anPn−1 + Pn−2, Qn = anQn−1 +Qn−2, for n ≥ 2. (2)

We can check that

PnQn−1 − Pn−1Qn = (−1)n−1, for n ≥ 1,

Pn
Qn

= [a0, a1, . . . , an], for n ≥ 0.

Pn
Qn

is called the nth convergent of f and it satisfies

lim
n→∞

Pn
Qn

= f = [a0, a1, . . . , an, . . .].

According to the properties of on-archimedean absolute value, we find the
following important equality

|f − Pn
Qn
| = | Pn+1

Qn+1
− Pn
Qn
| = |QnQn+1|−1 = |an+1|−1|Qn|−2.

Let f be an algebraic formal series of minimal polynomial P (Y ) = AmY
m +

Am−1Y
m−1 + . . . + A0 where Ai ∈ Fq[X]. We let H(f) = max0≤i≤m |Ai| and

σ(f) = Am.
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3. Results

Before giving the main result, we need to introduce some notation.
If K = uα0

uα1
. . . uαn is a finite block formed by n+ 1 polynomials, we denote by

|K| the length of this block and by ϕ(K) the maximal degree which appears in the
terms of K, which means that ϕ(K) = max

0≤i≤n
(deg(uαi)).

If Un, Vn are two finite blocks of polynomials, we write UnVn for the block resulting
by concatenation of these two blocks.

Definition 3.1. We say that U is geometric of order s if there exists Ki such that

U = KiK
q
iK

q2

i · · ·K
qs−1

i with Ki = H
(i)
1 . . . H

(i)
n for each i ≥ 0 being a block of

polynomials.

Now, we present the most important result, interesting in its own right, of
our paper which severs to provide a criterion for a given formal power series being
transcendental.

Theorem 3.2. Let f ∈ Fq((X−1)) such that f = [U0V0, U1V1, . . . , UnVn, . . .] where
(Un)n≥0 and (Vn)n≥0 are two sequences of finite blocks of polynomials such that

(1) Ui is geometric of order λi.
(2) (λi)i≥1 is an increasing sequence of positive integers.

(3) The sequences (
|Vn|
|Un|

)n≥0 and (
|Un|
λn

)n≥0 are bounded.

(4) sup |H(j)
i | < M ∀i ∀j

(5) ϕ(Vn) ≤ ϕ(Un), for all n ≥ 0.

If f satisfies

lim sup
n→+∞

qλn − 1

nλn−1qλn−1
= +∞,

then f is transcendental.

To prove Theorem 3.2 we will need the following lemmas.

Lemma 3.3. [10] Assume that f is an algebraic formal series of degree d such
that f = [a1, a2, . . . , at, h] where for any 1 ≤ i ≤ t, ai ∈ Fq[X], h ∈ Fq((X−1)). If
|f | ≥ 1 and |h| > 1 then h is algebraic of degree d and

H(h) ≤ H(f)|
t∏
i=1

ai|d−2.

Lemma 3.4. [?, Lemma 2.2] Let P (Y ) = AmY
m + Am−1Y

m−1 + . . . + A0 be a
reduced polynomial in Fq[X][Y ] with Ai ∈ Fq[X], Am 6= 0 and |Am−1| > |Ai| for

all i 6= m − 1 . Then P admits a unique root f with |f | > 1 and [f ] = [−Am−1

Am
].

Moreover, P is irreducible.
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Lemma 3.5. [13] Let f = [a0, a1, . . .] and g = [b0, b1, . . .] be two formal series
having the same first n+ 1 terms of partial quotients. Then

|f − g| ≤ 1

|Qn|2
,

where (Qn)n≥0 is a sequence of polynomials which is defined in (2).

Lemma 3.6. [10] Let f and g be two algebraic formal series of degree d and m
respectively. If g is reduced and f 6= g, then

|f − g| ≥ 1

H(f)m|g|d−2|σ(g)|max(m−1,m(d−m+2)−1) .

Proof. of Theorem 3.2 Assume that f is algebraic of degree d > 2 and Ui =

KiK
q
iK

q2

i · · ·K
qλi−1

i , for any i ≥ 0, with Ki = H
(i)
1 · · ·H

(i)
βi
∈ Fq[X] of degree ≥ 1.

Let us use the notation: Kn = H
(n)
1 . . . H

(n)
βn
∈ Fq[X],|Kn| = βn, |Vn| = sn,

|Un| = λnβn for all n ≥ 0 and αn =
n−1∑
i=0

(λiβi + si).

Let gn denote the continued fraction [Un, U
q
n, U

q2

n , . . . , U
qs

n , . . .]. An easy calculation
ensures that gn verifies the following equation

qβng
q+1
n − pβngqn + qβn−1gn − pβn−1 = 0, (3)

where (pnqn )n≥1 is the sequence of reduit of gn. Hence Lemma 3.4 guarantees

that gn is algebraic of degree q + 1 such that H(gn) = |pβn | =
βn∏
i=1

|H(n)
i | and

|σ(gn)| = |qβn | =
βn∏
i=2

|H(n)
i |.

Let fαn = [UnVn, Un+1Vn+1, . . .] denote the αthn complete quotient of f . Since

sup |H(j)
i | < M, ∀i ∀j, then for sufficiently large n, gn 6= fαn . On the other

hand, it follows from Lemma 3.3 that fαn is algebraic of degree d > 2. Therefore,
according to Lemma 3.6, we can check, for sufficiently large n that:

|fαn − gn| ≥
1

H(fαn)q+1|gn|d−2|σ(gn)|d(q+1)−q2 . (4)

So

|fαn − gn| ≥
1

H(fαn)q+1|gn|d−2|
βn∏
i=2

H
(n)
i |d(q+1)−q2

. (5)

Moreover, by using Lemma 3.3, we can check that H(fαn) ≤ H(f)|
αn∏
i=1

ai|d−2, where

(ai)i≥0 is the sequence of partial quotients of f .
So

|fαn − gn| ≥
1

H(f)q+1|
αn∏
i=1

ai|(d−2)(q+1)|H(n)
1 |d−2|

βn∏
i=2

H
(n)
i |d(q+1)−q2

. (6)
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Furthermore, fαn and gn have the same first λn partial quotients, hence
Lemma 3.5 implies that

|fαn − gn| ≤
1

|H(n)
1 . . . H

(n)
βn
|2(

qλn−1
q−1 )

. (7)

Combining (6) and (7), we get

H(f)q+1|
αn∏
i=1

ai|(d−2)(q+1)|H(n)
1 |d−2|

βn∏
i=2

H
(n)
i |

d(q+1)−q2 ≥ |H(n)
1 . . . H

(n)
βn
|2(

qλn−1
q−1 ).

Let M = sup
i≥0
|(H(i)

j )| for all 1 ≤ j ≤ n. Using the fact that ϕ(Vi) ≤ ϕ(Ui) for

all i ≥ 0, we get deg(ai) ≤Mqλn−1−1

, for all 0 ≤ i ≤ αn. Then

|
αn∏
i=1

ai| =
αn∏
i=1

qdeg ai ≤
αn∏
i=1

Mqλn−1−1

= M (qλn−1−1)αn

So

H(f)q+1M (qλn−1−1)αn(d−2)(q+1)M (d−2)M (βn−1)(d(q+1)−q2) ≥ q
2βn(qλn−1)

q−1 .

From this we get

H(f)q+1M [(qλn−1−1)αn(d−2)(q+1)+(d−2)+(βn−1)(d(q+1)−q2)] ≥ q
2βn(qλn−1)

q−1 .

So

(q+1) log(H(f))+[(qλn−1−1)αn(d−2)(q+1)+(d−2)+(βn−1)(d(q+1)−q2)] log(M)

≥ 2βn(qλn − 1)

q − 1
log(q).

Using the fact that |Kn| = βn is bounded and tend n to ∞,

(qλn−1−1)αn(d− 2)(q + 1) log(M) ≥ 2βn(qλn − 1)

q − 1
log(q).

Therefore

lim sup
n→+∞

qλn − 1

αnq(λn−1−1)
≤ (d− 2)(q2 − 1) log(M)

2 log(q)βn
≤ C,

with C =
(d− 2)(q2 − 1) log(M)

2 log(q)
.

Since the sequence (
|Vi|
|Ui|

)i≥0 is bounded, there exists c > 0 such that si < cλi

for all i ≥ 0. Also, since (
|Un|
λn

)n≥0 is bounded, then there is a real k > 0 such that
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|Un|
λn

= βn ≤ k, for all n ≥ 0.
Thus

αn < (c+ 1)λn−1nβn ≤ k(c+ 1)λn−1n = hλn−1n

with h = (c+ 1)k. Hence, we conclude that

lim sup
n→+∞

qλn − 1

nλn−1qλn−1
<∞,

which contradicts our hypothesis.

We close this paper with the following application.

Example 3.7. Let f ∈ Fq((X−1)) for q = pa (p a prime, a ≥ 1 an integer) such
that f = [U0V0, U1V1, · · · , UnVn, · · · ]
where Ui = [Hi, H

2
i , H

4
i , · · · , H2λi−1

i ], with Hi = [P
(1)
i , P

(2)
i , · · · , P (s)

i ] such that

P
(j)
i = Xj + i and Vi = [X,X2, X,X2, · · · , X,X2] of length λi = (i + 1)2, for all
i ≥ 0. Then f is transcendental because

lim sup
n→+∞

q(n+1)2 − 1

n3 · qn2 = +∞.
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[14] W.H. Mills and D.P. Robbins, ”Continued fractions for certain algebraic power series”, J.

Number Theory, 23 (1986), 388–404.
[15] W.M. Schmidt., ”Diophantine approximation”, Lecture Notes in Mathematics, vol. 785.

Springer, Berlin (1980).


