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Abstract. Our question is what ring R which all modules over R are determined,

up to isomorphism, by their endomorphism rings? Examples of this ring are division

ring and simple Artinian ring. Any semi simple ring does not satisfy this property.

We construct a semi simple ring R but R is not a simple Artinian ring which all

modules over R are determined, up to isomorphism, by their endomorphism rings.
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1. Introduction

Let M,N be modules over a ring R and set of all R-homomorphisms from
M to N is written HomR(M,N). Then HomR(M,N) is Abelian group over ad-
dition of mapping. Moreover, EndR(M) = HomR(M,M) is a ring over addition
and composition of mapping, and called endomorphism ring of M . In general if
two modules are isomorphic then their endomorphism rings are isomorphic. The
converse is not true. The Baer-Kaplansky theorem states that two Abelian torsion
groups are isomorphic if and only if their endomorphism rings are isomorphic (see
[2] and [4]). Ivanov got same result with the Baer-Kaplansky theorem. Let R be
the upper triangular ring over a division ring and F be the category of R-modules
which have a summand isomorphic to R. Then modules in F are determined, up
isomorphism, by their endomorphism rings (see [3]). Our question is what ring
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which modules in R-MOD are determined, up to isomorphism, by their endomor-
phism rings? Examples of this ring are division ring and simple Artinian ring. Any
semi simple ring does not satisfy this property. We construct a semi simple ring R
but R is not a simple Artinian ring which modules in R-MOD are determined, up
to isomorphism, by their endomorphism rings.

In this paper a ring will be a ring with unity and all modules will be nonzero
unital right module except if in special case. Definition of ring, module, and others
which are used in this paper refer to [1].

2. IP-isomorphism

In Baer-Kaplansky theorem and Ivanov result, isomorphism between endo-
morphism rings of two modules always ”preserve indecomposable direct summand”,
which called an IP-isomorphism. For a class of modules which have a decomposi-
tion M = ⊕i∈IMi with property that every indecomposable direct summand of M
is contained in the sum of finite number of the Mi (we say that M has the finite
embedding property), an IP-isomorphism between endomorphism rings of modules
give an isomorphism between the modules.

An element e in a ring R is called idempotent if e2 = e. Two idempotents
e1 and e2 in R are called orthogonal if e1e2 = 0 = e2e1. An idempotent e 6= 0 in
R is called primitive idempotent if e can not be a sum of two nonzero orthogonal
idempotent.

Let M be a module over a ring R and e an idempotent in EndR(M). Then
1 − e is also idempotent in EndR(M). Moreover, e and 1 − e orthogonal and
M has decomposition M = eM ⊕ (1 − e)M . Then the direct summand eM is
indecomposable if and only if e is a primitive idempotent in EndR(M) ([1], Lemma
5.11).

Let given M and N be modules over a ring R, and ϕ : M −→ N any R-
isomorphism. The mapping α which defined

α : EndR(M) −→ EndR(N), α(ψ) = ϕψϕ−1

is a ring isomorphism. Furthermore, for any idempotent e in EndR(M) satisfies

α(e)N = ϕeϕ−1N = (ϕe)(ϕ−1N) = (ϕe)M = ϕ(eM).

Therefore

ϕ|eM : eM −→ α(e)N

is a R-isomorphism. So eM ∼= α(e)N , for all e idempotent in EndR(M).

In general, if β : EndR(M) −→ EndR(N) is any ring isomorphism and e is
any primitive idempotent in EndR(M) then β(e) is also a primitive idempotent in
EndR(N) but it must not eM ∼= β(e)N .

Let M and N be modules over a ring R. A ring isomorphism

φ : EndR(M) −→ EndR(N)
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is called IP-isomorphism if φ(e)N ∼= eM , for all primitive idempotents e in EndR(M).
The following proposition gives property that an IP-isomorphism between endomor-
phism rings will give module isomorphism.

Proposition 2.1. Let M and N be modules over a ring R where M has the fi-
nite imbedding property with respect to a decomposition into indecomposable direct
summands and N be generated by indecomposable direct summands. Then M and
N are isomorphic if and only if there is an IP-isomorphism between EndR(M) and
EndR(N).

Proof. See [3] Proposition 1.

3. Main Results

Let Zp and Zq be fields of integer number modulo p and q, respectively, where
p and q are different prime numbers. Let

R =

 Zp 0 0
0 Zq Zq

0 Zq Zq

 =


 a 0 0

0 b c
0 d e

 ∣∣∣∣∣∣ a ∈ Zp, b, c, d, e ∈ Zq

 (1)

Then R is a semi simple ring R but R is not a simple Artinian ring. As a left
modul over itself, R has decomposition over simples modules as follows.

R ∼=

 Zp

0
0

⊕
 0
Zq

Zq

⊕
 0
Zq

Zq

 =

 Zp

0
0

⊕
 0
Zq

Zq

(2)

. (2)

Proposition 3.1. Let M and N be modules over the ring R in (1). Then every
ring isomorphism between EndR(M) and EndR(N) is an IP-isomorphism.

Proof. Let φ : EndR(M) → EndR(N) be any ring isomorphism and e be any
primitive idempotent in EndR(M). We will be shown that eM ∼= φ(e)N . Because
e primitive idempotent in EndR(M) then

eM ∼=

 Zp

0
0

 or eM ∼=

 0
Zq

Zq



and φ(e) is idempotent primitive in EndR(N). Suppose that eM ∼=

 Zp

0
0

 then

Zp
∼= EndR(eM) ∼= eEndR(M)e ∼= φ(e)EndR(N)φ(e) ∼= EndR(φ(e)N).
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Suppose that φ(e)N 6∼=

 Zp

0
0

 then φ(e)N ∼=

 0
Zq

Zq

. So that EndR(φ(e)N) ∼=

Zq 6∼= Zp. So φ(e)N ∼=

 Zp

0
0

 ∼= eM . In the case of eM ∼=

 0
Zq

Zq

, with proof as

before, we have the same results. So φ is IP-isomorphism.

Corollary 3.2. Let M and N be modules over the ring R in (1). Then M ∼= N if
and only if EndR(M) ∼= EndR(N).

Proof. Because ring isomorphism between EndR(M) and EndR(N) always in
the form of IP-isomorphism and decomposition of semi simple modules fulfills the
insertion properties so that according to the Proposition 2.1 obtained M ∼= N .

As a generalization of the results above, the following propositions are ob-
tained.

Proposition 3.3. Let R be a semi simple ring and has decomposition

R ∼= I
(n1)
1 ⊕ · · · ⊕ I(ns)

s (3)

where Ik is a simple ideal, Ik ∼= Il if and only if k = l, and

R ∼= Mn1
(D1)⊕ · · · ⊕Mns

(Ds) (4)

where Dk is a division ring. Then the following properties are equivalent.

(a) Every ring isomorphism φ : EndR(M) −→ EndR(N), where M and N are
modules over R, is a IP-isomorphism.

(b) EndR(Ik) � EndR(Il), k 6= l.
(c) Dk � Dl, k 6= l.

Corollary 3.4. Let R be a semi simple ring which has decomposition (3) and
EndR(Ik) � EndR(Il), k 6= l. Then for M and N modules over R, we have M ∼= N
if and only if EndR(M) ∼= EndR(N).
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