ON THE LOCATING-CHROMATIC NUMBERS OF SUBDIVISIONS OF FRIENDSHIP GRAPH

Brilly Maxel Salindeho ${ }^{1}$, Hilda Assiyatun ${ }^{2}$, Edy Tri Baskoro ${ }^{3}$
${ }^{1}$ Department of Mathematics, Mulawarman University, brillyms@gmail.com
${ }^{2,3}$ Department of Mathematics, Bandung Institute of Technology

Abstract

Let c be a k-coloring of a connected graph G and let $\pi=$ $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be the partition of $V(G)$ induced by c. For every vertex v of G, let $c_{\pi}(v)$ be the coordinate of v relative to π, that is $c_{\pi}(v)=$ $\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)$, where $d\left(v, C_{i}\right)=\min \left\{d(v, x) \mid x \in C_{i}\right\}$. If every two vertices of G have different coordinates relative to π, then c is said to be a locating k-coloring of G. The locating-chromatic number of G, denoted by $\chi_{L}(G)$, is the least k such that there exists a locating k-coloring of G. In this paper, we determine the locating-chromatic numbers of some subdivisions of the friendship graph $F r_{t}$, that is the graph obtained by joining t copies of 3 -cycle with a common vertex, and we give lower bounds to the locating-chromatic numbers of few other subdivisions of $F r_{t}$.

Keywords: friendship graph, locating-chromatic number, locating coloring, subdivision

1. INTRODUCTION

The concept of locating-chromatic number was first studied by Chartrand et al. [1] by combining the concept of graph partition dimension and graph coloring. The locating-chromatic numbers of some classes of graphs were studied, especially recently for certain Barbell graphs in [2], Halin graphs in [3], and graphs resulting from certain operations of other graphs, such as join of graphs in [4] and Cartesian product of graphs in [5]. Trees with certain locating-chromatic number were also studied in [6] and [7]. Bounds for locating-chromatic numbers of trees and subdivisions of graph on one edge were also established in [8] and [9], respectively.

Suppose that $G=(V, E)$ is a simple connected graph. Let c be a k-coloring on G and let $\pi=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be the partition of $V=V(G)$ induced by c. For every vertex v of G, let $c_{\pi}(v)=\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)$ be the coordinate

[^0]of v relative to π, where $d\left(v, C_{i}\right)=\min \left\{d(v, x) \mid x \in C_{i}\right\}$ is the shortest distance between v and vertices in C_{i}. If every two vertices of G have different coordinates relative to π, then c is said to be a locating k-coloring of G. The locating-chromatic number of G, denoted by $\chi_{L}(G)$, is the least k such that there exists a locating k-coloring of G. As shown by Chartrand et al. in [1], if u and v are vertices of G such that $d(u, w)=d(v, w)$ for every $w \in V-\{u, v\}$, then $c(u) \neq c(v)$.

In [4], Behtoei and Anbarloei studied the locating chromatic number of friendship graph Fr_{t}, which is the graph obtained by joining the complete graph K_{1} to the t disjoint copies of K_{2}. They showed that $\chi_{L}\left(F r_{t}\right)=1+\min \left\{k \left\lvert\, t \leq\binom{ k}{2}\right.\right\}$. In this paper, we study some subdivisions of $F r_{t}$ and their locating-chromatic numbers. In general, a subdivision of a graph G is a graph obtained by replacing some edges of G, say $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r}$, respectively with paths $P_{1}, P_{2}, \ldots, P_{r}$ of length one or greater, where these paths may differ in length. In particular, when we say a subdivision of a graph on some edges $l \geq 0$ times, we are specifying which or how many edges are replaced and ensuring the paths replacing the edges are all of length $l+1$. Purwasih et al. [9] showed that $\chi_{L}(G) \leq 1+\chi_{L}(H)$ if G is a subdivision of a graph H on one edge. We investigate the case where $H=F r_{t}$ by determining the locating-chromatic number of any subdivision of $F r_{t}$ on one edge and also the locating-chromatic number of any subdivision of $F r_{t}$ once on each of its cycle. We also give a tight upper bound for any subdivision of $F r_{t}$. Throughout this paper, for $t \geq 2$ we denote the center of $F r_{t}$, that is the vertex with the largest degree, by z. For every natural number n, we also denote $[n]=\{1,2, \ldots, n\}$.

2. MAIN RESULTS

In this section, we determine the locating-chromatic number of any subdivision of $F r_{t}$ on one edge. We also determine the locating-chromatic number of any subdivision of $F r_{t}$ once on each of its cycle.
2.1. Subdivision of $F r_{t}$ on one edge. Throughout this subsection, let $t \geq 2$ and $l \geq 1$ be two natural numbers and let G be a subdivision of $F r_{t}$ on one edge l times. For each $n \geq 3$, we define $d_{n}=\binom{n-1}{2}+1$. Observe that if $t \geq 3$, we have $d_{k-1}<t \leq d_{k}$ for some $k \in\{4,5,6, \ldots\}$. We begin with the following lemmas.
Lemma 1. If $3 \leq t=d_{k}$ and $l=2$, then $\chi_{L}(G)=k+1$.
Proof. By definition of G, there are exactly $d_{k}-1$ number of 3 -cycles and a 5 -cycle in G. Consider the collection of 2 -subsets of $[k-1]$, denoted by $[k-1]^{2}$. Since $\left|[k-1]^{2}\right|=\binom{k-1}{2}$, we can denote the elements of $[k-1]^{2}$ by u_{1}, u_{2}, \ldots, and $u_{\binom{k-1}{2}}$.

Now, we start by assigning colors to the vertices of G. We immediately assign the color $k+1$ to the vertex z. To assign colors to other vertices, observe that since there are $d_{k}-1=\binom{k-1}{2}$ number of 3 -cycles, there are $2\binom{k-1}{2}$ vertices other than z that lie on a 3 -cycle. We denote these vertices by v_{1}, v_{2}, \ldots, and $v_{2\binom{k-1}{2}}$, where $v_{2 i-1}$ and $v_{2 i}$ are on the same 3 -cycle for each $i=1,2, \ldots,\binom{k-1}{2}$. If we write
$u_{i}=\left\{a_{i}, b_{i}\right\}$ where $a_{i}<b_{i}$, assign the color a_{i} and b_{i} respectively to $v_{2 i-1}$ and $v_{2 i}$. To finish the color assignment, let the 5 -cycle in G be $z w_{1} w_{2} w_{3} w_{4} z$. Assign the colors $1, k+1, k$, and 1 respectively to w_{1}, w_{2}, w_{3}, and w_{4}. Let c be the obtained coloring. Clearly, c is a well-defined graph coloring since no two adjacent vertices are assigned the same color.

We show that c is a locating coloring. Let x and y be two vertices with the same color. If x and y are in the same cycle, then the only possibilities are, without loss of generality, either $(x, y)=\left(z, w_{2}\right)$ or $(x, y)=\left(w_{1}, w_{4}\right)$. However, in both of these cases, the k-th component of the coordinate of x and y differ since $2=d\left(x, w_{3}\right) \neq d\left(y, w_{3}\right)=1$ and w_{3} is the only vertex colored k.

Let us now assume that x and y are in different cycles. If both are in different 3 -cycles, clearly their coordinates differ since their neighbors other than z have different colors by definition of u_{1}, u_{2}, \ldots, and $u_{\binom{k-1}{2}}$. If, without loss of generality, x is in a 5 -cycle and y is in a 3 -cycle, then either $x=w_{1}$ or $x=w_{4}$ since the colors k and $k+1$ are not assigned to y. In both cases, however, their neighbors other than z also have different colors. Hence, their coordinates differ. Thus, we have shown that c is a locating $(k+1)$-coloring and that $\chi_{L}(G) \leq k+1$.

We now show that $\chi_{L}(G)>k$ by contradiction. Suppose that there exists a locating k-coloring c^{\prime} for G. Suppose that $c^{\prime}(z)=k$. Hence, without loss of generality, the pair of vertices $\left\{v_{2 i-1}, v_{2 i}\right\}$ has to be assigned by the pair of colors $u_{i}=\left\{a_{i}, b_{i}\right\}$ for each $i=1,2, \ldots,\binom{k-1}{2}$. Moreover, without loss of generality, let $c^{\prime}\left(w_{1}\right)=1$. If $c^{\prime}\left(w_{2}\right) \neq k$, then we let $c^{\prime}\left(w_{2}\right)=m \in\{2,3, \ldots, k-1\}$. However, there are two vertices v_{p} and v_{p+1} such that $\left(c^{\prime}\left(v_{p}\right), c^{\prime}\left(v_{p+1}\right)\right)=(1, m)$. Observe that $d\left(w_{1}, w\right)=d\left(v_{p}, w\right)$ for any vertex w that is assigned by any color other than 1. Hence, w_{1} and v_{p} have the same coordinate, contradicting the definition of a locating coloring. Thus, we must have $c^{\prime}\left(w_{2}\right)=k$. However, by the same argument, we must also have $c^{\prime}\left(w_{3}\right)=k$, which contradicts the definition of coloring. Thus, we have shown that $\chi_{L}(G)>k$ and we conclude that $\chi_{L}(G)=k+1$.

Lemma 2. If $3 \leq t=d_{k}$ and $l \neq 2$, then $\chi_{L}(G)=k$.
Proof. Since $t=d_{k}$ and $l \neq 2$, there are exactly $d_{k}-1$ number of 3 -cycles and an $(l+3)$-cycle in G. We start by coloring G. Assign the color k to the vertex z and assign colors to the vertices lying in 3-cycles other than z by using the same way used in the proof of the previous lemma. Consider these cases.
a. Suppose that the $(l+3)$-cycle is $z s_{1} s_{2} \ldots s_{4 q-1}$ z for some q. Assign the color k to $s_{2}, s_{4}, \ldots, s_{4 q-2}$. Assign the color 1 to $s_{1}, s_{3}, \ldots, s_{2 q-1}$. Assign the color 2 to $s_{2 q+1}, s_{2 q+3}, \ldots, s_{4 q-1}$. Let c be the resulting coloring. Clearly, c is a well-defined coloring. We show that c is a locating coloring. Let x and y be two vertices with the same color. If x and y are in the same cycle, then both have to be in the $(l+3)$-cycle. If both are colored k and their neighbors are only vertices of color 1 , then their coordinates differ by their distances to a vertex colored 3 since $t=3$, or other colors other than 1 and 2 . It is also the case when their neighbors are only vertices of color 2 . If
their neighbors are vertices of color 1 and 2 , one of them is z and the other one is $s_{2 q}$. In this case, their coordinates also differ by their distances to a vertex colored other than 1 and 2 . The same argument also applies if the color of x and y are 1 or 2 . Moreover, if x is in the $(l+3)$-cycle and y is in a 3 -cycle without loss of generality, then x and y are not colored k. However, the neighbors of x are only vertices colored k, while some of the neighbors of y are not colored k. Hence, their coordinates differ. Thus, c is a locating k -coloring.
b. Suppose that the $(l+3)$-cycle is $z s_{1} s_{2} \ldots s_{4 q-3} z$ for some q. Assign the color k to $s_{2}, s_{4}, \ldots, s_{4 q-4}$. Assign the color 1 to $s_{1}, s_{3}, \ldots, s_{2 q-1}$. Assign the color 2 to $s_{2 q+1}, s_{2 q+3}, \ldots, s_{4 q-3}$. Let c be the resulting coloring. Clearly, c is a well-defined coloring. We show that c is a locating coloring. Let x and y be two vertices with the same color. By using the same argument as in part a, we see that c is indeed a locating k-coloring.
c. Suppose that the $(l+3)$-cycle is a $(2 q-1)$-cycle $z s_{1} s_{2} \ldots s_{2 q-2} z$. Assign the color k to $s_{2}, s_{4}, \ldots, s_{2 q-6}$ and $s_{2 q-3}$. Assign the color 1 to s_{1}, s_{3}, $\ldots, s_{2 q-5}$. Assign the color 2 to $s_{2 q-2}$ and $s_{2 q-4}$. Let c be the resulting coloring. Clearly, c is well-defined. The argument to show that c is indeed a locating k-coloring is similar to part a or part b with minor difference, that is if x and y are two vertices of color k other than z, then their neighbors are either only vertices of color 1 or only vertices of color 2 .

Thus, we have $\chi_{L}(G) \leq k$. We now show that $\chi_{L}(G)>k-1$ by contradiction. Suppose that there exists a $(k-1)$-coloring c^{\prime} for G. Let $c^{\prime}(z)=k-1$. Since z is adjacent to all vertices in the 3-cycles, the colors of those vertices have to be in $[k-2]$. However, there are more than $\binom{k-2}{2}$ number of 3 -cycles in G, while the cardinality of $[k-2]^{2}$ is $\binom{k-2}{2}$. Hence, by the pigeon-hole principle, there exist two pairs of vertices lying in 3 -cycle, say $\left\{a_{1}, b_{1}\right\}$ and $\left\{a_{2}, b_{2}\right\}$, where their elements are different, such that $\left\{c^{\prime}\left(a_{1}\right), c^{\prime}\left(b_{1}\right)\right\}=\left\{c^{\prime}\left(a_{2}\right), c^{\prime}\left(b_{2}\right)\right\}$. Let a_{1} and b_{1} are colored the same as a_{2} and b_{2}, respectively. However, the distances of a_{1} and a_{2} to a vertex colored other than $c^{\prime}\left(a_{1}\right)=c^{\prime}\left(a_{2}\right)$ is equal. This means their coordinates are equal, contradicting the definition of locating coloring. Thus, we have $\chi_{L}(G)>k-1$ so that $\chi_{L}(G)=k$.

Lemma 3. If $3 \leq t<d_{k}$, then $\chi_{L}(G)=k$.
Proof. We start by coloring the graph G. Assign the color k to z. Assign colors to vertices lying in 3 -cycles other than z by using the same way used in the proof of the first lemma, that is by taking different elements in the set $[k-1]^{2}$ as pairs of colors for pairs of vertices in each 3 -cycle. Since $t<d_{k}$, there are less than $\binom{k-1}{2}$ number of 3-cycles, so that there exist elements in $[k-1]^{2}$ that are not used as a pair of color in any 3 -cycle. Denote this element by $\left(g_{1}, g_{2}\right)$.

Suppose that the $(l+3)$-cycle in G is $z s_{1} s_{2} \ldots s_{l+2} z$. If $l+3$ is odd, use the colors $g_{1}, g_{2}, g_{1}, g_{2}, \ldots, g_{1}, g_{2}$ respectively to color $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{l+2}$. Otherwise, assign the color k to the vertex $s_{\frac{l+3}{2}}$ and use the colors $g_{1}, g_{2}, g_{1}, g_{2}, \ldots$ respectively
to color $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{j}$, where $j=\frac{l+3}{2}-1$, and use the colors $g_{2}, g_{1}, g_{2}, g_{1}, \ldots$ respectively to color $s_{l+2}, s_{l+1}, s_{l}, s_{l-1}, \ldots, s_{j+2}$.

It is easy to see, by using the same argument as in the proof of previous lemma, that all vertices colored the same have different coordinates. In this case, vertices colored g_{1} and g_{2} create the differences. Hence, $\chi_{L}(G) \leq k$. The proof showing that $\chi_{L}(G)>k-1$ is similar to the last paragraph of the proof of the last lemma. Thus, we have $\chi_{L}(G)=k$.

From previous three lemmas, we have the following theorem.
Theorem 1. Let $t \geq 3$ and $l \geq 1$ be two natural numbers. Let G be a subdivision of $F r_{t}$ on one edge l times. For each $n \geq 3$, let $d_{n}=\binom{n-1}{2}+1$ and $d_{k-1}<t \leq d_{k}$ for some k. Hence, we have $\chi_{L}(G)=k+1$ if $t=d_{k}$ and $l=2$, and $\chi_{L}(G)=k$ otherwise.

We treat the case $t=2$ separately in the next proposition.
Proposition 1. Let $l \geq 1$ be a natural number. If G is a subdivision of $F r_{2}$ on one edge l times, then $\chi_{L}(G)=4$.

Proof. We start by coloring G. Assign the color 4 to the vertex z. Assign the color 1 and 2 to the two vertices lying in the only existing 3 -cycle. Now, denote the $(l+3)$-cycle in G by $z u_{1} u_{2} \ldots u_{l+2} z$.

Assume first that l is even. Assign the colors $1,3,1,3, \ldots, 1,3$ respectively to the vertices $u_{1}, u_{2}, u_{3}, u_{4}, \ldots, u_{l+2}$. By doing this, the vertices colored 3 have their coordinates differed by their distances to the vertex colored 4 , and the vertices colored 1 have their coordinates differed by their distances to the vertex colored 2 . Thus, we obtain a locating 4-coloring.

Assume now that l is odd. Assign the color 4 to the vertex $u_{\frac{l+3}{2}}$. Assign the color 1 to each vertex of the form $u_{1}, u_{3}, \ldots, u_{l_{1}}$, where $l_{1}<\frac{l+3}{2}$, and vertex of the form $u_{l_{2}}, \ldots, u_{l-1}, u_{l+1}$, where $l_{2}>\frac{l+3}{2}$. Assign the color 3 to other remaining vertices. By doing this, the vertices colored 3 have their coordinates differ by their distances to the vertex colored 2 , and so do the vertices colored 1 . Thus, we obtain a locating 4-coloring.

We have shown that $\chi_{L}(G) \leq 4$. We now show that $\chi_{L}(G)>3$. Suppose that there exists a locating 3 -coloring on G. Without loss of generality, assume that the 3 -cycle in G is colored by 1,2 , and 3 , where z is assigned the color 3 . Suppose that there exists a vertex colored by 2 in the $(l+3)$-cycle in G. Let j be the least index such that u_{j} is colored by 2 . If j is odd, then the vertices $u_{1}, u_{3}, \ldots, u_{j-2}$ have to be colored by 1 since the color of z is 3 , and we must also have the vertices $u_{2}, u_{4}, \ldots, u_{j-1}$ colored by 3 . However, the coordinate of u_{j-1} is equal to the coordinate of z, contradicting the definition of locating coloring. If j is even instead, then the vertices $u_{1}, u_{3}, \ldots, u_{j-1}$ have to be colored 1 since the color of z is 3 , and we must also have the vertices $u_{2}, u_{4}, \ldots, u_{j-2}$ colored by 3 .

However, the coordinate of u_{j-1} is equal to the coordinate of the vertex colored by 1 on the 3 -cycle, contradicting again the definition of locating coloring. Hence, there must not be any vertex colored by 2 on the $(l+3)$-cycle. This means that, since z is colored by $3, u_{1}, u_{3}, \ldots, u_{l+2}$ have to be colored by 1 and $u_{2}, u_{4}, \ldots, u_{l+1}$ have to be colored by 3 . However, the vertices u_{1} and u_{l+2} have the same color and the same coordinate, contradicting the definition of the locating coloring. Thus, we have $\chi_{L}(G)=4$.
2.2. Subdivision of $F r_{t}$ once on one edge of each cycle. We now determine the locating-chromatic number of the subdivision of $F r_{t}$ once on one edge of each cycle. This means that each cycle of the graph is a 4 -cycle. Let G be such graph, where $t \geq 2$.

Theorem 2. For each $n \geq 3$, let $e_{n}=\left\lfloor\frac{n-1}{2}\right\rfloor+(n-1)\left\lfloor\frac{n-2}{2}\right\rfloor$ and $e_{k-1}<t \leq e_{k}$ for some k. Hence, we have $\chi_{L}(G)=k$.

Proof. We define a locating $\chi_{L}(G)$-coloring $c: V \rightarrow[k]$ on G. We first set $c(z):=k$. Assume that $C(1), C(2), \ldots, C(t)$ are all of the 4 -cycles in G and denote $C(i)$ by $z u_{i, 1} u_{i, 2} u_{i, 3} z$ for each i. Clearly, $k \geq 4$ since $2 \leq t \leq e_{k}$.

Define a 3 -tuple $W_{i}^{\prime}:=\left(w_{i, 1}^{\prime}, w_{i, 2}^{\prime}, w_{i, 3}^{\prime}\right)$ with $w_{i, 1}^{\prime}:=2 i-1, w_{i, 2}^{\prime}:=k, w_{i, 3}^{\prime}:=2 i$ for $i=1,2, \ldots,\left\lfloor\frac{k-1}{2}\right\rfloor$. Next, for $j=1,2, \ldots,(n-1)\left\lfloor\frac{k-2}{2}\right\rfloor$, define a 3 -tuple $W_{j}^{\prime \prime}:=\left(w_{i, 1}^{\prime \prime}, w_{i, 2}^{\prime \prime}, w_{i, 3}^{\prime \prime}\right)$ with
$\left(w_{i, 1}^{\prime \prime}, w_{i+1,1}^{\prime \prime}, \ldots, w_{i+\left\lfloor\frac{k-2}{2}\right\rfloor-1,1}^{\prime \prime}\right):=\left(i+1, i+3, \ldots, i+2\left\lfloor\frac{k-2}{2}\right\rfloor-1\right)$,
$\left(w_{i, 2}^{\prime \prime}, w_{i+1,2}^{\prime \prime}, \ldots, w_{i+\left\lfloor\frac{k-2}{2}\right\rfloor-1,2}^{\prime \prime}\right):=(i, i, \ldots, i)$,
$\left(w_{i, 3}^{\prime \prime}, w_{i+1,3}^{\prime \prime}, \ldots, w_{i+\left\lfloor\frac{k-2}{2}\right\rfloor-1,3}^{\prime \prime}\right):=\left(i+2, i+4, \ldots, i+2\left\lfloor\frac{k-2}{2}\right\rfloor\right)$
for $i=1,2, \ldots, k-1$, by noting that the components are calculated under modulo $k-1$. Observe that in $W_{j}^{\prime \prime}$, there is no entry that is equal to k. Observe also that W_{i}^{\prime} and $W_{j}^{\prime \prime}$ never equal to each other since their second entries differ for any i and j. By definition, we also see that $W_{i_{1}}^{\prime}$ and $W_{i_{2}}^{\prime}$ differ for any different i_{1} and i_{2}, and that $W_{j_{1}}^{\prime \prime}$ and $W_{j_{2}}^{\prime \prime}$ differ for any different j_{1} and j_{2}. Hence, if we write $W:=\left\{W_{i}^{\prime} \mid i=1,2, \ldots,\left\lfloor\frac{k-1}{2}\right\rfloor\right\} \cup\left\{W_{j}^{\prime \prime} \mid j=1,2, \ldots,(k-1)\left\lfloor\frac{k-2}{2}\right\rfloor\right\}$, we have $|W|=e_{k}$. We can then write $W=\left\{W_{1}, W_{2}, \ldots, W_{e_{k}}\right\}$. Now, for each $i \in[t]$, define the coloring $c[C(i)]:=\left(c\left(u_{i, 1}\right), c\left(u_{i, 2}\right), c\left(u_{i, 3}\right)\right):=W_{i}$.

From the definition of W, clearly c is a k-coloring. We now show that c is a locating coloring. Let x and y be two different vertices with the same color in G. If $x=z$, then $y=u_{i, 2}$ for some i such that $c\left(u_{i, 2}\right)=k$, if it exists. However, since $t \geq 2$ and by definition of c, the vertex x is adjacent to vertices with colors other than $c\left(u_{i, 1}\right)$ and $c\left(u_{i, 3}\right)$, while y is only adjacent to vertices with these colors. Hence, the coordinates of x and y differ, so we assume that x and y are not z.

Now, let our x and y be in the 4 -cycles $C\left(i_{1}\right)$ and $C\left(i_{2}\right)$, respectively, where i_{1} and i_{2} are two different elements of $[t]$.

Let $c\left[C\left(i_{1}\right)\right]$ and $c\left[C\left(i_{2}\right)\right]$ both be in $\left\{W_{i}^{\prime} \mid i=1,2, \ldots,\left\lfloor\frac{k-1}{2}\right\rfloor\right\}$. Hence, we must have $x=u_{i_{1}, 2}$ and $y=u_{i_{2}, 2}$, or vice-versa. However, the colors of the neighbors of x clearly differ from the colors of the neighbors of y. Thus, their coordinates differ.

Let $c\left[C\left(i_{1}\right)\right]$ and $c\left[C\left(i_{2}\right)\right]$ both be in $\left\{W_{j}^{\prime \prime} \mid j=1,2, \ldots,(k-1)\left\lfloor\frac{k-2}{2}\right\rfloor\right\}$. There are some cases to consider. For the first case, if $x=u_{i_{1}, 2}$ and $y=u_{i_{2}, 2}$, then clearly they have different coordinates by looking at the colors of their neighbors. For the next case, if $x=u_{i_{1}, 2}$ and $y=u_{i_{2}, 1}$ (or $y=u_{i_{2}, 3}$ without loss of generality), then y is adjacent to z, which is a vertex colored k, but x is not adjacent to any vertex colored k, so we know that their coordinates differ. For the last case, if $x=u_{i_{1}, 1}$ and $y=u_{i_{2}, 1}$ (without loss of generality), then, by definition of c, the colors of $u_{i_{1}, 2}$ and $u_{i_{2}, 2}$ differ, so that the colors of the neighbors of x and y also differ, and hence x and y have different coordinates.

Let $c\left[C\left(i_{1}\right)\right] \in\left\{W_{j}^{\prime \prime} \mid j=1,2, \ldots,(k-1)\left\lfloor\frac{k-2}{2}\right\rfloor\right\}$ and $c\left[C\left(i_{2}\right)\right] \in\left\{W_{j}^{\prime \prime} \mid j=\right.$ $\left.1,2, \ldots,(k-1)\left\lfloor\frac{k-2}{2}\right\rfloor\right\}$ (without loss of generality). Thus, we have, say $x=u_{i_{1}, 1}$, and $y=u_{i_{2}, 2}$ or $y=u_{i_{2}, 1}$. However, both neighbors of x are colored k, but only one of the neighbors of k is colored k. Hence, their coordinates differ.

Thus, we have shown that c is a locating k-coloring, so that $\chi_{L}(G) \leq k$.
We now show that $\chi_{L}(G)>k-1$. Suppose that there exists a locating $(k-1)$ coloring on G, which we denote by c^{\prime}. Assume that $c^{\prime}(z)=k-1$. We divide all of the 4 -cycles into $k-1$ types. Type a consists of all 4 -cycles $C(i)=z u_{i, 1} u_{i, 2} u_{i, 3} z$ with $c^{\prime}\left(u_{i, 2}\right)=a$. Observe that if there exist two 4-cycles of type $k-1$, say $C(i)$ and $C(j)$, where $c^{\prime}\left(u_{i, 1}\right)=c^{\prime}\left(u_{j, 1}\right)$ without loss of generality, then the coordinates of $u_{i, 1}$ and $u_{j, 1}$ must be the same since both are adjacent only to two vertices colored $k-1$ and $d\left(u_{i, 1}, u_{i, 3}\right)=d\left(u_{i, 1}, z\right)+d\left(z, u_{i, 3}\right)=d\left(u_{j, 1}, z\right)+d\left(u_{j, 1}, u_{i, 3}\right)=2$. Moreover, $2=d\left(u_{j, 1}, u_{j, 3}\right)=d\left(u_{i, 1}, u_{j, 3}\right)$ and $d\left(u_{i, 1}, x\right)=d\left(u_{i, 1}, z\right)+d(z, x)=d\left(u_{j, 1}, z\right)+$ $d(z, x)=d\left(u_{j, 1}, x\right)$ for each vertex x that is not $u_{i, 1}, u_{i, 2}, u_{i, 3}, u_{j, 1}, u_{j, 2}, u_{j, 3}$. Hence, since $u_{i, 1}$ and $u_{j, 1}$ must not be colored $k-1$, there are at most $\left\lfloor\frac{k-2}{2}\right\rfloor$ number of 4 -cycles of type $k-1$ by the pigeon-hole principle.

Let $C(i)$ be a 4 -cycle of type b where $c^{\prime}\left(u_{i, 2}\right)=b \in[k-2]$. By the similar observation to the previous paragraph, there are at most $\left\lfloor\frac{k-3}{2}\right\rfloor$ number of 4 -cycles of type b. Hence, there are at most $(k-2)\left\lfloor\frac{k-3}{2}\right\rfloor$ number of 4 -cycles of type other than $k-1$. Thus, by combining with the previous paragraph, there are at most e_{k-1} number of 4-cycles in G. This contradicts the assumption on t. We conclude that $\chi_{L}(G)>k-1$, so that $\chi_{L}(G)=k$.
2.3. Upper bound for arbitrary subdivision of $F r_{t}$. We now study the upper bound for arbitrary subdivision of $F r_{t}$. It is known that $\chi_{L}(G) \leq 1+\chi_{L}(H)$ if G is a subdivision of a graph H on one edge. For $H=F r_{t}$, this bound is strengthened.

Theorem 3. If G is a subdivision of $F r_{t}$ where $t \geq 2$, then we have $\chi_{L}(G) \leq$ $\chi_{L}\left(F r_{t}\right)$. Precisely, if $\binom{k-2}{2}<t \leq\binom{ k-1}{2}$, we have $\chi_{L}(G) \leq k$.

Proof. Clearly, $k \geq 4$. We construct a locating k-coloring $c: V(G) \rightarrow[k]$ on G. We start by setting $c(z):=k$. Let $C(1), C(2), \ldots, C(t)$ denote all the cycles in G. We start with the first case where $t=\binom{k-1}{2}$.

Suppose that there is no 4 -cycle in G. Write $C(i)=w_{i, 1} w_{i, 2} \ldots w_{i, s(i)} w_{i, 1}$ where $s(i) \neq 4$ and $w_{i, 1}=z$ for each i. Assume that $[k-1]^{2}=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. If $s(i)$ is odd, then set $c\left(w_{i, 2}\right):=c\left(w_{i, 4}\right):=\ldots:=c\left(w_{i, s(i)-1}\right):=a_{i}$ and $c\left(w_{i, 3}\right):=$ $c\left(w_{i, 5}\right):=\ldots:=c\left(w_{i, s(i)}\right):=b_{i}$, where $\left\{a_{i}, b_{i}\right\}:=u_{i}$. If $s(i)$ is even, then set $c\left(w_{i, 2}\right):=c\left(w_{i, 4}\right):=\ldots:=c\left(w_{i, s_{1}(i)}\right):=a_{i}, c\left(w_{i, s(i)-1}\right):=c\left(w_{i, s(i)-3}\right):=$ $\ldots:=c\left(w_{i, s_{2}(i)}\right):=a_{i}, c\left(w_{i, 3}\right):=c\left(w_{i, 5}\right):=\ldots:=c\left(w_{i, s_{3}(i)}\right):=b_{i}, c\left(w_{i, s(i)}\right):=$ $c\left(w_{i, s(i)-2}\right):=\ldots:=c\left(w_{i, s_{4}(i)}\right):=b_{i}$, and $c\left(w_{i, \frac{s(i)}{2}+1}\right):=k$, where $\left\{a_{i}, b_{i}\right\}:=$ $u_{i}, s_{1}(i)<\frac{s(i)}{2}+1, s_{2}(i)>\frac{s(i)}{2}+1, s_{3}(i)<\frac{s(i)}{2}+1$, and $s_{4}(i)>\frac{s(i)}{2}+1$. Observe that two adjacent vertices in G lie in a $C(i)$. By definition of c, those two vertices have different colors. Thus, c is a k-coloring.

Next, to show that c is locating coloring, let z_{1} and z_{2} be two different vertices having the same color in G, that is $c\left(z_{1}\right)=c\left(z_{2}\right)=a_{0}$. If one of z_{1} or z_{2} is z, say z_{1}, then we know that, by definition of c and the fact that $t \geq 2, z_{1}$ is adjacent to at least 4 vertices which are two vertices in the cycle where z_{2} belongs and two other vertices in another cycle, and that three of these four vertices have different colors. However, z_{2} is only adjacent to at most two vertices with different colors. Hence, the coordinates of z_{1} and z_{2} differ. Now, let z_{1} and z_{2} be vertices other than z. Assume that both are in different cycles, say $C\left(i_{1}\right)$ and $C\left(i_{2}\right)$, respectively. If $a_{0}=k$, then $C\left(i_{1}\right)$ and $C\left(i_{2}\right)$ are cycles of even length by definition of c. Again, by definition of c, z_{1} and z_{2} are vertices that have their distances to z the greatest in the cycles containing them, so that z_{1} is adjacent to two vertices colored $a_{i_{1}}$ and $b_{i_{1}}$, and z_{2} is adjacent to two vertices colored $a_{i_{2}}$ and $b_{i_{2}}$, but $u_{i_{1}} \neq u_{i_{2}}$. Thus, the coordinates of z_{1} and z_{2} are different. If $a_{0} \neq k$, then, since no cycle is a 4 -cycle and each of z_{1} and z_{2} has a neighbor z_{1}^{\prime} and z_{2}^{\prime}, respectively, that $c\left(z_{1}^{\prime}\right) \neq c\left(z_{2}^{\prime}\right)$ by definition, the coordinates of z_{1} and z_{2} are different.

Now, let z_{1} and z_{2} be in the same cycle $C(i)$, and both are not z. By definition of c, we have $a_{0} \neq k$. Again by definition of c and the fact that $t \geq 2$, there exists a vertex z^{\prime} colored a_{0}^{\prime} outside of $C(i)$ and no vertex in $C(i)$ is colored a_{0}^{\prime}. By the numbering of $C(i)$, we have $d\left(z_{1}, z^{\prime}\right)=d\left(z_{1}, z\right)+d\left(z, z^{\prime}\right) \neq d\left(z_{2}, z\right)+d\left(z, z^{\prime}\right)=$ $d\left(z_{2}, z^{\prime}\right)$. Hence, the coordinates of z_{1} and z_{2} differ. Thus, we have shown that c is a locating coloring and that $\chi_{L}(G) \leq k$.

For the next case, suppose that there are q number of 4 -cycles in G. We show that $\chi_{L}(G) \leq k$. Write $q=(k-1) m+r$ where r and m are unique integers satisfying $0 \leq r<k-1$ and $m \geq 0$ by the division algorithm. Let the 4 -cycles be denoted by $Q_{1}, Q_{2}, \ldots, Q_{q}$. Consider the complete graph H on the set $[k-1]$.

Assume that k is odd. We must have $m \leq \frac{k-1}{2}-1$, otherwise we would have $q>\binom{k-1}{2}$, which is a contradiction. Since $k-1$ is even, by decomposing H to obtain its Hamiltonian cycles and its 1-factors, there exist subgraphs $H_{1}, H_{2}, \ldots, H_{\frac{k-1}{2}-1}, E_{1}, E_{2}, \ldots, E_{\frac{k-1}{2}}$ of H. We continue by noting that H_{i} is
a Hamiltonian cycle and H_{i} and H_{j} are edge-disjoint subgraphs for each different i and j, and that E_{i} is a complete graph on two vertices and E_{i} and E_{j} are edge-disjoint subgraphs for each different i and j.

For each $p \in[m]$, consider the $k-1$ number of 4 -cycles $Q_{(k-1)(p-1)+1}$, $Q_{(k-1)(p-1)+2}, \ldots, Q_{(k-1) p}$. We define the coloring c on these cycles that is associated with the subgraph H_{p}. Let us write $H_{p}=h_{p, 1}, h_{p, 2}, \ldots, h_{p, k-1}, h_{p, 1}$. There exist three vertices $v_{p, j, 1}, v_{p, j, 2}, v_{p, j, 3}$ that are not z on $Q_{(k-1)(p-1)+j}$ where $j \in[k-1]$. Set $c\left(v_{p, j, 1}\right):=h_{p, j}, c\left(v_{p, j, 2}\right):=h_{p, j+1}, c\left(v_{p, j, 3}\right):=h_{p, j+2}$, where $j, j+1$, and $j+2$ are calculated under modulo $k-1$. By this definition, adjacent vertices on these cycles have different colors.

For the case $r>\frac{k-1}{2}+1$, we have $m<\frac{k-1}{2}-1$, so that there exist a Hamiltonian cycle H_{m+1} that have not yet been associated with the 4 -cycles on the previous paragraph. We define the coloring c on the 4 -cycles $Q_{(k-1) m+1}, Q_{(k-1) m+2}, \ldots$, $Q_{(k-1) m+r}$ associated with the subgraph H_{m+1}. Similar to the previous paragraph, by changing the role of p with $m+1$ and $j \in[r]$, and when $j=r$, we set $c\left(v_{m+1, j, 2}\right):=k$, we see that adjacent vertices on these cycles have different colors.

For the case $r \leq \frac{k-1}{2}$, consider the r number of 4-cycles $Q_{(k-1) m+1}, Q_{(k-1) m+2}$, $\ldots, Q_{(k-1) m+r}$. We define a coloring c on the cycle $Q_{(k-1) m+p}$ for each $p \in[r]$ associated with the subgraph E_{p}. Assume that $E_{p}=e_{p, 1} e_{p, 2}$. There are three vertices $x_{p, 1}, x_{p, 2}, x_{p, 3}$ that are not z on $Q_{(k-1) m+p}$. Set $c\left(x_{p, 1}\right):=e_{p, 1}, c\left(x_{p, 2}\right):=$ $k, c\left(x_{p, 3}\right):=e_{p, 2}$. Hence, adjacent vertices on these cycles have different colors.

Note that for the case that k is even, we obtain Hamilton cycles H_{1}, H_{2}, \ldots, $H_{\frac{k-2}{2}}$ of H. Again, this time we must have $m \leq \frac{k-2}{2}$. The coloring is done by using the similar way to the case that k is odd, except that the case $r>\frac{k-1}{2}+1$ is replaced with the case $r \neq 0$, and the case $r \leq \frac{k-1}{2}$ is not needed. Next, color the remaining $t-q$ cycles by using the similar coloring used to color cycles before there was any 4 -cycle, by noting that the pair $\left\{a_{i}, b_{i}\right\}$ that is used is the label of two adjacent vertices that have not been used to color the 4 -cycles on the above decomposition. Observe that there are exactly $t-q$ pairs of such labels. Thus, we have shown that c is a k-coloring.

We show that c is indeed a locating coloring. Let x and y be two different vertices in G with $c(x)=c(y)$. The cases for x and y that must be considered are:
(1) One of them is z
(2) Both are not z and are in the same 4-cycle
(3) Both are not z and are in the same cycle that is not a 4 -cycle
(4) Both are not z, x is in a 4 -cycle, and y is in a cycle that is not a 4-cycle
(5) Both are not z and are in different 4-cycles
(6) Both are not z and are in different cycles, but these cycles are not 4-cycles.

The first four cases are easily verified. For the fifth case, if both x and y are colored k, then, since both are not z, their neighbors have to be only two vertices that have the color pair from some labels E_{i} and E_{j}, respectively, that are edgedisjoint subgraphs. Hence, the colors of the neighbors of x and y differ. If both are not colored k, then the colors of the neighbors of x and y also differ since each two

4-cycles have their vertices colored based on the labels of the subgraphs of H that are edge-disjoint subgraphs and since x and y are different vertices. In fact, if the colors of the neighbors of x and y are only k, then, since they belong to different 4 -cycles, the colors in both of these cycles must be based on E_{i} and E_{j} that are edge-disjoint subgraphs. This is impossible if x and y are different vertices.

For the sixth case, the same argument also applies by observing the possibilities of the position of x and y and the labels used. Thus, we have shown that c is a locating k-coloring so that $\chi_{L}(G) \leq k$.

Lastly, for the case $t<\binom{k-1}{2}$, the $(t+1)$-th, $(t+2)$-th, \ldots, and so on that have been colored from the coloring on the case $t=\binom{k-1}{2}$ before is removed so that there are $t<\binom{k-1}{2}$ cycles remaining, and the above cases can be verified again the similar way. Thus, the theorem is proved.

REFERENCES

[1] Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., and Zhang, P., The locatingchromatic number of a graph, Bull. Inst. Combin. Appl., 36 (2002), 89-101.
[2] Asmiati, Yana, I. K. S. G., and Yulianti, L., On the locating chromatic number of certain barbell graphs, Int. J. Math. Math. Sci., 2018 (2018), retrieved from https://doi.org/10.1155/2018/5327504.
[3] Purwasih, I. A., Baskoro, E. T., Assiyatun, H., Suprijanto, D., and Baca, M., The locatingchromatic number for Halin graphs, Commun. Comb. Optim., 2(1) (2017), 1-9.
[4] Behtoei, A. and Anbarloei, M., The locating chromatic number of the join of graphs, Bull. Iranian Math. Soc., 40(6) (2014), 1491-1504.
[5] Behtoei, A. and Omoomi, B., On the locating chromatic number of the Cartesian product of graphs, Ars Combin., 126 (2016), 221-235.
[6] Syofyan, D. K., Baskoro, E. T., and Assiyatun, H., Trees with certain locating-chromatic number, J. Math. Fund. Sci., 48(1) (2016), 39-47.
[7] Baskoro, E. T. and Asmiati, Characterizing all trees with locating-chromatic number 3, Electronic Journal of Graph Theory and Applications, 1(2) (2013), 109-117.
[8] Behtoei, A. and Anbarloei, M., A bound for the locating chromatic number of trees, Transactions on Combinatorics, 4(1) (2015), 31-41.
[9] Purwasih, I. A., Baskoro, E. T., Assiyatun, H., and Suprijanto, D., The bounds on the locating-chromatic number for a subdivision of a graph on one edge, Procedia Computer Science, 74 (2015), 84-88.

[^0]: 2020 Mathematics Subject Classification: 05C15, 05C70.
 Received: 01-11-2018, accepted: 01-04-2019.

