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Abstract. Let c be a k-coloring of a connected graph G and let π =

{C1, C2, . . . , Ck} be the partition of V (G) induced by c. For every vertex

v of G, let cπ(v) be the coordinate of v relative to π, that is cπ(v) =

(d(v, C1), d(v, C2), . . . , d(v, Ck)), where d(v, Ci) = min{d(v, x)|x ∈ Ci}. If every

two vertices of G have different coordinates relative to π, then c is said to be a

locating k-coloring of G. The locating-chromatic number of G, denoted by χL(G),

is the least k such that there exists a locating k-coloring of G. In this paper, we

determine the locating-chromatic numbers of some subdivisions of the friendship

graph Frt, that is the graph obtained by joining t copies of 3-cycle with a common

vertex, and we give lower bounds to the locating-chromatic numbers of few other

subdivisions of Frt.

Keywords: friendship graph, locating-chromatic number, locating coloring, subdi-

vision

1. INTRODUCTION

The concept of locating-chromatic number was first studied by Chartrand et
al. [1] by combining the concept of graph partition dimension and graph coloring.
The locating-chromatic numbers of some classes of graphs were studied, especially
recently for certain Barbell graphs in [2], Halin graphs in [3], and graphs resulting
from certain operations of other graphs, such as join of graphs in [4] and Carte-
sian product of graphs in [5]. Trees with certain locating-chromatic number were
also studied in [6] and [7]. Bounds for locating-chromatic numbers of trees and
subdivisions of graph on one edge were also established in [8] and [9], respectively.

Suppose that G = (V,E) is a simple connected graph. Let c be a k-coloring
on G and let π = {C1, C2, ..., Ck} be the partition of V = V (G) induced by c. For
every vertex v of G, let cπ(v) = (d(v, C1), d(v, C2), . . . , d(v, Ck)) be the coordinate
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of v relative to π, where d(v, Ci) = min{d(v, x)|x ∈ Ci} is the shortest distance
between v and vertices in Ci. If every two vertices of G have different coordinates
relative to π, then c is said to be a locating k-coloring of G. The locating-chromatic
number of G, denoted by χL(G), is the least k such that there exists a locating
k-coloring of G. As shown by Chartrand et al. in [1], if u and v are vertices of G
such that d(u,w) = d(v, w) for every w ∈ V − {u, v}, then c(u) 6= c(v).

In [4], Behtoei and Anbarloei studied the locating chromatic number of friend-
ship graph Frt, which is the graph obtained by joining the complete graph K1 to
the t disjoint copies of K2. They showed that χL(Frt) = 1 + min{k|t ≤

(
k
2

)
}. In

this paper, we study some subdivisions of Frt and their locating-chromatic num-
bers. In general, a subdivision of a graph G is a graph obtained by replacing some
edges of G, say ε1, ε2, . . ., εr, respectively with paths P1, P2, . . ., Pr of length one
or greater, where these paths may differ in length. In particular, when we say a
subdivision of a graph on some edges l ≥ 0 times, we are specifying which or how
many edges are replaced and ensuring the paths replacing the edges are all of length
l + 1. Purwasih et al. [9] showed that χL(G) ≤ 1 + χL(H) if G is a subdivision of
a graph H on one edge. We investigate the case where H = Frt by determining
the locating-chromatic number of any subdivision of Frt on one edge and also the
locating-chromatic number of any subdivision of Frt once on each of its cycle. We
also give a tight upper bound for any subdivision of Frt. Throughout this paper,
for t ≥ 2 we denote the center of Frt, that is the vertex with the largest degree, by
z. For every natural number n, we also denote [n] = {1, 2, . . . , n}.

2. MAIN RESULTS

In this section, we determine the locating-chromatic number of any subdivi-
sion of Frt on one edge. We also determine the locating-chromatic number of any
subdivision of Frt once on each of its cycle.

2.1. Subdivision of Frt on one edge. Throughout this subsection, let t ≥ 2
and l ≥ 1 be two natural numbers and let G be a subdivision of Frt on one edge l
times. For each n ≥ 3, we define dn =

(
n−1
2

)
+ 1. Observe that if t ≥ 3, we have

dk−1 < t ≤ dk for some k ∈ {4, 5, 6, . . .}. We begin with the following lemmas.

Lemma 1. If 3 ≤ t = dk and l = 2, then χL(G) = k + 1.

Proof. By definition of G, there are exactly dk−1 number of 3-cycles and a 5-cycle
in G. Consider the collection of 2-subsets of [k − 1], denoted by [k − 1]2. Since

|[k− 1]2| =
(
k−1
2

)
, we can denote the elements of [k− 1]2 by u1, u2, . . . , and u(k−1

2 ).

Now, we start by assigning colors to the vertices of G. We immediately assign
the color k+1 to the vertex z. To assign colors to other vertices, observe that since
there are dk − 1 =

(
k−1
2

)
number of 3-cycles, there are 2

(
k−1
2

)
vertices other than

z that lie on a 3-cycle. We denote these vertices by v1, v2, . . . , and v2(k−1
2 ) , where

v2i−1 and v2i are on the same 3-cycle for each i = 1, 2, . . . ,
(
k−1
2

)
. If we write
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ui = {ai, bi} where ai < bi, assign the color ai and bi respectively to v2i−1 and v2i.
To finish the color assignment, let the 5-cycle in G be zw1w2w3w4z. Assign the
colors 1, k + 1, k, and 1 respectively to w1, w2, w3, and w4. Let c be the obtained
coloring. Clearly, c is a well-defined graph coloring since no two adjacent vertices
are assigned the same color.

We show that c is a locating coloring. Let x and y be two vertices with
the same color. If x and y are in the same cycle, then the only possibilities are,
without loss of generality, either (x, y) = (z, w2) or (x, y) = (w1, w4). However, in
both of these cases, the k-th component of the coordinate of x and y differ since
2 = d(x,w3) 6= d(y, w3) = 1 and w3 is the only vertex colored k.

Let us now assume that x and y are in different cycles. If both are in different
3-cycles, clearly their coordinates differ since their neighbors other than z have
different colors by definition of u1, u2, . . ., and u(k−1

2 ). If, without loss of generality,

x is in a 5-cycle and y is in a 3-cycle, then either x = w1 or x = w4 since the colors
k and k + 1 are not assigned to y. In both cases, however, their neighbors other
than z also have different colors. Hence, their coordinates differ. Thus, we have
shown that c is a locating (k + 1)-coloring and that χL(G) ≤ k + 1.

We now show that χL(G) > k by contradiction. Suppose that there exists
a locating k-coloring c′ for G. Suppose that c′(z) = k. Hence, without loss of
generality, the pair of vertices {v2i−1, v2i} has to be assigned by the pair of colors

ui = {ai, bi} for each i = 1, 2, . . . ,
(
k−1
2

)
. Moreover, without loss of generality, let

c′(w1) = 1. If c′(w2) 6= k, then we let c′(w2) = m ∈ {2, 3, ..., k − 1}. However,
there are two vertices vp and vp+1 such that (c′(vp), c

′(vp+1)) = (1,m). Observe
that d(w1, w) = d(vp, w) for any vertex w that is assigned by any color other than
1. Hence, w1 and vp have the same coordinate, contradicting the definition of a
locating coloring. Thus, we must have c′(w2) = k. However, by the same argument,
we must also have c′(w3) = k, which contradicts the definition of coloring. Thus,
we have shown that χL(G) > k and we conclude that χL(G) = k + 1. �

Lemma 2. If 3 ≤ t = dk and l 6= 2, then χL(G) = k.

Proof. Since t = dk and l 6= 2, there are exactly dk − 1 number of 3-cycles and an
(l + 3)-cycle in G. We start by coloring G. Assign the color k to the vertex z and
assign colors to the vertices lying in 3-cycles other than z by using the same way
used in the proof of the previous lemma. Consider these cases.

a. Suppose that the (l+3)-cycle is zs1s2 . . . s4q−1z for some q. Assign the color
k to s2, s4, . . . , s4q−2. Assign the color 1 to s1, s3, . . . , s2q−1. Assign the
color 2 to s2q+1, s2q+3, . . . , s4q−1. Let c be the resulting coloring. Clearly,
c is a well-defined coloring. We show that c is a locating coloring. Let x
and y be two vertices with the same color. If x and y are in the same cycle,
then both have to be in the (l + 3)-cycle. If both are colored k and their
neighbors are only vertices of color 1, then their coordinates differ by their
distances to a vertex colored 3 since t = 3, or other colors other than 1 and
2. It is also the case when their neighbors are only vertices of color 2. If
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their neighbors are vertices of color 1 and 2, one of them is z and the other
one is s2q. In this case, their coordinates also differ by their distances to
a vertex colored other than 1 and 2. The same argument also applies if
the color of x and y are 1 or 2. Moreover, if x is in the (l + 3)-cycle and
y is in a 3-cycle without loss of generality, then x and y are not colored k.
However, the neighbors of x are only vertices colored k, while some of the
neighbors of y are not colored k. Hence, their coordinates differ. Thus, c
is a locating k-coloring.

b. Suppose that the (l+3)-cycle is zs1s2 . . . s4q−3z for some q. Assign the color
k to s2, s4, . . . , s4q−4. Assign the color 1 to s1, s3, . . . , s2q−1. Assign the
color 2 to s2q+1, s2q+3, . . . , s4q−3. Let c be the resulting coloring. Clearly,
c is a well-defined coloring. We show that c is a locating coloring. Let x
and y be two vertices with the same color. By using the same argument as
in part a, we see that c is indeed a locating k-coloring.

c. Suppose that the (l + 3)-cycle is a (2q − 1)-cycle zs1 s2 . . . s2q−2z. Assign
the color k to s2, s4, . . ., s2q−6 and s2q−3. Assign the color 1 to s1, s3,
. . ., s2q−5. Assign the color 2 to s2q−2 and s2q−4. Let c be the resulting
coloring. Clearly, c is well-defined. The argument to show that c is indeed a
locating k-coloring is similar to part a or part b with minor difference, that
is if x and y are two vertices of color k other than z, then their neighbors
are either only vertices of color 1 or only vertices of color 2.

Thus, we have χL(G) ≤ k. We now show that χL(G) > k−1 by contradiction.
Suppose that there exists a (k − 1)-coloring c′ for G. Let c′(z) = k − 1. Since z
is adjacent to all vertices in the 3-cycles, the colors of those vertices have to be in
[k − 2]. However, there are more than

(
k−2
2

)
number of 3-cycles in G, while the

cardinality of [k− 2]2 is
(
k−2
2

)
. Hence, by the pigeon-hole principle, there exist two

pairs of vertices lying in 3-cycle, say {a1, b1} and {a2, b2}, where their elements are
different, such that {c′(a1), c′(b1)} = {c′(a2), c′(b2)}. Let a1 and b1 are colored the
same as a2 and b2, respectively. However, the distances of a1 and a2 to a vertex
colored other than c′(a1) = c′(a2) is equal. This means their coordinates are equal,
contradicting the definition of locating coloring. Thus, we have χL(G) > k − 1 so
that χL(G) = k. �

Lemma 3. If 3 ≤ t < dk, then χL(G) = k.

Proof. We start by coloring the graph G. Assign the color k to z. Assign colors to
vertices lying in 3-cycles other than z by using the same way used in the proof of
the first lemma, that is by taking different elements in the set [k − 1]2 as pairs of

colors for pairs of vertices in each 3-cycle. Since t < dk, there are less than
(
k−1
2

)
number of 3-cycles, so that there exist elements in [k − 1]2 that are not used as a
pair of color in any 3-cycle. Denote this element by (g1, g2).

Suppose that the (l + 3)-cycle in G is zs1s2 . . . sl+2z. If l + 3 is odd, use the
colors g1, g2, g1, g2, . . . , g1, g2 respectively to color s1, s2, s3, s4, . . . , sl+2. Otherwise,
assign the color k to the vertex s l+3

2
and use the colors g1, g2, g1, g2, . . . respectively
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to color s1, s2, s3, s4, . . . , sj , where j = l+3
2 − 1, and use the colors g2, g1, g2, g1, ...

respectively to color sl+2, sl+1, sl, sl−1, . . . , sj+2.

It is easy to see, by using the same argument as in the proof of previous
lemma, that all vertices colored the same have different coordinates. In this case,
vertices colored g1 and g2 create the differences. Hence, χL(G) ≤ k. The proof
showing that χL(G) > k− 1 is similar to the last paragraph of the proof of the last
lemma. Thus, we have χL(G) = k. �

From previous three lemmas, we have the following theorem.

Theorem 1. Let t ≥ 3 and l ≥ 1 be two natural numbers. Let G be a subdivision
of Frt on one edge l times. For each n ≥ 3, let dn =

(
n−1
2

)
+ 1 and dk−1 < t ≤ dk

for some k. Hence, we have χL(G) = k + 1 if t = dk and l = 2, and χL(G) = k
otherwise.

We treat the case t = 2 separately in the next proposition.

Proposition 1. Let l ≥ 1 be a natural number. If G is a subdivision of Fr2 on
one edge l times, then χL(G) = 4.

Proof. We start by coloring G. Assign the color 4 to the vertex z. Assign the color
1 and 2 to the two vertices lying in the only existing 3-cycle. Now, denote the
(l + 3)-cycle in G by zu1u2 . . . ul+2z.

Assume first that l is even. Assign the colors 1, 3, 1, 3, . . . , 1, 3 respectively
to the vertices u1, u2, u3, u4, . . . , ul+2. By doing this, the vertices colored 3 have
their coordinates differed by their distances to the vertex colored 4, and the vertices
colored 1 have their coordinates differed by their distances to the vertex colored 2.
Thus, we obtain a locating 4-coloring.

Assume now that l is odd. Assign the color 4 to the vertex u l+3
2

. Assign the

color 1 to each vertex of the form u1, u3, . . . , ul1 , where l1 <
l+3
2 , and vertex of

the form ul2 , . . . , ul−1, ul+1, where l2 >
l+3
2 . Assign the color 3 to other remaining

vertices. By doing this, the vertices colored 3 have their coordinates differ by their
distances to the vertex colored 2, and so do the vertices colored 1. Thus, we obtain
a locating 4-coloring.

We have shown that χL(G) ≤ 4. We now show that χL(G) > 3. Suppose
that there exists a locating 3-coloring on G. Without loss of generality, assume
that the 3-cycle in G is colored by 1, 2, and 3, where z is assigned the color 3.
Suppose that there exists a vertex colored by 2 in the (l + 3)-cycle in G. Let
j be the least index such that uj is colored by 2. If j is odd, then the vertices
u1, u3, . . . , uj−2 have to be colored by 1 since the color of z is 3, and we must also
have the vertices u2, u4, . . . , uj−1 colored by 3. However, the coordinate of uj−1 is
equal to the coordinate of z, contradicting the definition of locating coloring. If
j is even instead, then the vertices u1, u3, . . . , uj−1 have to be colored 1 since the
color of z is 3, and we must also have the vertices u2, u4, . . . , uj−2 colored by 3.
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However, the coordinate of uj−1 is equal to the coordinate of the vertex colored
by 1 on the 3-cycle, contradicting again the definition of locating coloring. Hence,
there must not be any vertex colored by 2 on the (l + 3)-cycle. This means that,
since z is colored by 3, u1, u3, . . . , ul+2 have to be colored by 1 and u2, u4, . . . , ul+1

have to be colored by 3. However, the vertices u1 and ul+2 have the same color and
the same coordinate, contradicting the definition of the locating coloring. Thus, we
have χL(G) = 4. �

2.2. Subdivision of Frt once on one edge of each cycle. We now determine
the locating-chromatic number of the subdivision of Frt once on one edge of each
cycle. This means that each cycle of the graph is a 4-cycle. Let G be such graph,
where t ≥ 2.

Theorem 2. For each n ≥ 3, let en =
⌊
n−1
2

⌋
+ (n − 1)

⌊
n−2
2

⌋
and ek−1 < t ≤ ek

for some k. Hence, we have χL(G) = k.

Proof. We define a locating χL(G)-coloring c : V → [k] on G. We first set c(z) := k.
Assume that C(1), C(2), . . . , C(t) are all of the 4-cycles in G and denote C(i) by
zui,1ui,2ui,3z for each i. Clearly, k ≥ 4 since 2 ≤ t ≤ ek.

Define a 3-tuple W ′i := (w′i,1, w
′
i,2, w

′
i,3) with w′i,1 := 2i−1,w′i,2 := k,w′i,3 := 2i

for i = 1, 2, . . . ,
⌊
k−1
2

⌋
. Next, for j = 1, 2, . . . , (n − 1)

⌊
k−2
2

⌋
, define a 3-tuple

W ′′j := (w′′i,1, w
′′
i,2, w

′′
i,3) with

(w′′i,1, w
′′
i+1,1, . . . , w

′′
i+b k−2

2 c−1,1
) := (i+ 1, i+ 3, . . . , i+ 2

⌊
k−2
2

⌋
− 1),

(w′′i,2, w
′′
i+1,2, . . . , w

′′
i+b k−2

2 c−1,2
) := (i, i, . . . , i),

(w′′i,3, w
′′
i+1,3, . . . , w

′′
i+b k−2

2 c−1,3
) := (i+ 2, i+ 4, . . . , i+ 2

⌊
k−2
2

⌋
)

for i = 1, 2, . . . , k − 1, by noting that the components are calculated under
modulo k − 1. Observe that in W ′′j , there is no entry that is equal to k. Observe
also that W ′i and W ′′j never equal to each other since their second entries differ for
any i and j. By definition, we also see that W ′i1 and W ′i2 differ for any different
i1 and i2, and that W ′′j1 and W ′′j2 differ for any different j1 and j2. Hence, if we

write W := {W ′i |i = 1, 2, . . . ,
⌊
k−1
2

⌋
} ∪ {W ′′j |j = 1, 2, . . . , (k − 1)

⌊
k−2
2

⌋
}, we have

|W | = ek. We can then write W = {W1,W2, . . . ,Wek}. Now, for each i ∈ [t], define
the coloring c[C(i)] := (c(ui,1), c(ui,2), c(ui,3)) := Wi.

From the definition of W , clearly c is a k-coloring. We now show that c is
a locating coloring. Let x and y be two different vertices with the same color in
G. If x = z, then y = ui,2 for some i such that c(ui,2) = k, if it exists. However,
since t ≥ 2 and by definition of c, the vertex x is adjacent to vertices with colors
other than c(ui,1) and c(ui,3), while y is only adjacent to vertices with these colors.
Hence, the coordinates of x and y differ, so we assume that x and y are not z.

Now, let our x and y be in the 4-cycles C(i1) and C(i2), respectively, where
i1 and i2 are two different elements of [t].
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Let c[C(i1)] and c[C(i2)] both be in {W ′i |i = 1, 2, . . . ,
⌊
k−1
2

⌋
}. Hence, we must

have x = ui1,2 and y = ui2,2, or vice-versa. However, the colors of the neighbors of
x clearly differ from the colors of the neighbors of y. Thus, their coordinates differ.

Let c[C(i1)] and c[C(i2)] both be in {W ′′j |j = 1, 2, . . . , (k − 1)
⌊
k−2
2

⌋
}. There

are some cases to consider. For the first case, if x = ui1,2 and y = ui2,2, then clearly
they have different coordinates by looking at the colors of their neighbors. For the
next case, if x = ui1,2 and y = ui2,1 (or y = ui2,3 without loss of generality), then
y is adjacent to z, which is a vertex colored k, but x is not adjacent to any vertex
colored k, so we know that their coordinates differ. For the last case, if x = ui1,1
and y = ui2,1 (without loss of generality), then, by definition of c, the colors of ui1,2
and ui2,2 differ, so that the colors of the neighbors of x and y also differ, and hence
x and y have different coordinates.

Let c[C(i1)] ∈ {W ′′j |j = 1, 2, . . . , (k − 1)
⌊
k−2
2

⌋
} and c[C(i2)] ∈ {W ′′j |j =

1, 2, . . . , (k − 1)
⌊
k−2
2

⌋
} (without loss of generality). Thus, we have, say x = ui1,1,

and y = ui2,2 or y = ui2,1. However, both neighbors of x are colored k, but only
one of the neighbors of k is colored k. Hence, their coordinates differ.

Thus, we have shown that c is a locating k-coloring, so that χL(G) ≤ k.

We now show that χL(G) > k−1. Suppose that there exists a locating (k−1)-
coloring on G, which we denote by c′. Assume that c′(z) = k − 1. We divide all of
the 4-cycles into k − 1 types. Type a consists of all 4-cycles C(i) = zui,1ui,2ui,3z
with c′(ui,2) = a. Observe that if there exist two 4-cycles of type k−1, say C(i) and
C(j), where c′(ui,1) = c′(uj,1) without loss of generality, then the coordinates of ui,1
and uj,1 must be the same since both are adjacent only to two vertices colored k−1
and d(ui,1, ui,3) = d(ui,1, z) + d(z, ui,3) = d(uj,1, z) + d(uj,1, ui,3) = 2. Moreover,
2 = d(uj,1, uj,3) = d(ui,1, uj,3) and d(ui,1, x) = d(ui,1, z) + d(z, x) = d(uj,1, z) +
d(z, x) = d(uj,1, x) for each vertex x that is not ui,1, ui,2, ui,3, uj,1, uj,2, uj,3. Hence,

since ui,1 and uj,1 must not be colored k − 1, there are at most
⌊
k−2
2

⌋
number of

4-cycles of type k − 1 by the pigeon-hole principle.

Let C(i) be a 4-cycle of type b where c′(ui,2) = b ∈ [k − 2]. By the similar

observation to the previous paragraph, there are at most
⌊
k−3
2

⌋
number of 4-cycles

of type b. Hence, there are at most (k − 2)
⌊
k−3
2

⌋
number of 4-cycles of type other

than k − 1. Thus, by combining with the previous paragraph, there are at most
ek−1 number of 4-cycles in G. This contradicts the assumption on t. We conclude
that χL(G) > k − 1, so that χL(G) = k. �

2.3. Upper bound for arbitrary subdivision of Frt. We now study the upper
bound for arbitrary subdivision of Frt. It is known that χL(G) ≤ 1+χL(H) if G is
a subdivision of a graph H on one edge. For H = Frt, this bound is strengthened.

Theorem 3. If G is a subdivision of Frt where t ≥ 2, then we have χL(G) ≤
χL(Frt). Precisely, if

(
k−2
2

)
< t ≤

(
k−1
2

)
, we have χL(G) ≤ k.
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Proof. Clearly, k ≥ 4. We construct a locating k-coloring c : V (G)→ [k] on G. We
start by setting c(z) := k. Let C(1), C(2), . . . , C(t) denote all the cycles in G. We

start with the first case where t =
(
k−1
2

)
.

Suppose that there is no 4-cycle in G. Write C(i) = wi,1wi,2 . . . wi,s(i)wi,1
where s(i) 6= 4 and wi,1 = z for each i. Assume that [k − 1]2 = {u1, u2, . . . , ut}.
If s(i) is odd, then set c(wi,2) := c(wi,4) := . . . := c(wi,s(i)−1) := ai and c(wi,3) :=
c(wi,5) := . . . := c(wi,s(i)) := bi, where {ai, bi} := ui. If s(i) is even, then
set c(wi,2) := c(wi,4) := . . . := c(wi,s1(i)) := ai, c(wi,s(i)−1) := c(wi,s(i)−3) :=
. . . := c(wi,s2(i)) := ai, c(wi,3) := c(wi,5) := . . . := c(wi,s3(i)) := bi, c(wi,s(i)) :=
c(wi,s(i)−2) := . . . := c(wi,s4(i)) := bi, and c(w

i,
s(i)
2 +1

) := k, where {ai, bi} :=

ui, s1(i) < s(i)
2 + 1, s2(i) > s(i)

2 + 1, s3(i) < s(i)
2 + 1, and s4(i) > s(i)

2 + 1. Observe
that two adjacent vertices in G lie in a C(i). By definition of c, those two vertices
have different colors. Thus, c is a k-coloring.

Next, to show that c is locating coloring, let z1 and z2 be two different vertices
having the same color in G, that is c(z1) = c(z2) = a0. If one of z1 or z2 is z, say
z1, then we know that, by definition of c and the fact that t ≥ 2, z1 is adjacent
to at least 4 vertices which are two vertices in the cycle where z2 belongs and two
other vertices in another cycle, and that three of these four vertices have different
colors. However, z2 is only adjacent to at most two vertices with different colors.
Hence, the coordinates of z1 and z2 differ. Now, let z1 and z2 be vertices other
than z. Assume that both are in different cycles, say C(i1) and C(i2), respectively.
If a0 = k, then C(i1) and C(i2) are cycles of even length by definition of c. Again,
by definition of c, z1 and z2 are vertices that have their distances to z the greatest
in the cycles containing them, so that z1 is adjacent to two vertices colored ai1 and
bi1 , and z2 is adjacent to two vertices colored ai2 and bi2 , but ui1 6= ui2 . Thus, the
coordinates of z1 and z2 are different. If a0 6= k, then, since no cycle is a 4-cycle
and each of z1 and z2 has a neighbor z′1 and z′2, respectively, that c(z′1) 6= c(z′2) by
definition, the coordinates of z1 and z2 are different.

Now, let z1 and z2 be in the same cycle C(i), and both are not z. By definition
of c, we have a0 6= k. Again by definition of c and the fact that t ≥ 2, there exists
a vertex z′ colored a′0 outside of C(i) and no vertex in C(i) is colored a′0. By the
numbering of C(i), we have d(z1, z

′) = d(z1, z) + d(z, z′) 6= d(z2, z) + d(z, z′) =
d(z2, z

′). Hence, the coordinates of z1 and z2 differ. Thus, we have shown that c is
a locating coloring and that χL(G) ≤ k.

For the next case, suppose that there are q number of 4-cycles in G. We
show that χL(G) ≤ k. Write q = (k − 1)m+ r where r and m are unique integers
satisfying 0 ≤ r < k − 1 and m ≥ 0 by the division algorithm. Let the 4-cycles be
denoted by Q1, Q2, . . . , Qq. Consider the complete graph H on the set [k − 1].

Assume that k is odd. We must have m ≤ k−1
2 − 1, otherwise we would

have q >
(
k−1
2

)
, which is a contradiction. Since k − 1 is even, by decompos-

ing H to obtain its Hamiltonian cycles and its 1-factors, there exist subgraphs
H1, H2, . . . ,H k−1

2 −1
, E1, E2, . . . , E k−1

2
of H. We continue by noting that Hi is
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a Hamiltonian cycle and Hi and Hj are edge-disjoint subgraphs for each differ-
ent i and j, and that Ei is a complete graph on two vertices and Ei and Ej are
edge-disjoint subgraphs for each different i and j.

For each p ∈ [m], consider the k − 1 number of 4-cycles Q(k−1)(p−1)+1,
Q(k−1)(p−1)+2, . . . , Q(k−1)p. We define the coloring c on these cycles that is associ-
ated with the subgraph Hp. Let us write Hp = hp,1, hp,2, . . . , hp,k−1, hp,1. There ex-
ist three vertices vp,j,1, vp,j,2, vp,j,3 that are not z on Q(k−1)(p−1)+j where j ∈ [k−1].
Set c(vp,j,1) := hp,j , c(vp,j,2) := hp,j+1, c(vp,j,3) := hp,j+2, where j, j + 1, and j + 2
are calculated under modulo k − 1. By this definition, adjacent vertices on these
cycles have different colors.

For the case r > k−1
2 +1, we have m < k−1

2 −1, so that there exist a Hamilton-
ian cycle Hm+1 that have not yet been associated with the 4-cycles on the previous
paragraph. We define the coloring c on the 4-cycles Q(k−1)m+1, Q(k−1)m+2, . . .,
Q(k−1)m+r associated with the subgraph Hm+1. Similar to the previous para-
graph, by changing the role of p with m + 1 and j ∈ [r], and when j = r, we set
c(vm+1,j,2) := k, we see that adjacent vertices on these cycles have different colors.

For the case r ≤ k−1
2 , consider the r number of 4-cyclesQ(k−1)m+1, Q(k−1)m+2,

. . ., Q(k−1)m+r. We define a coloring c on the cycle Q(k−1)m+p for each p ∈ [r]
associated with the subgraph Ep. Assume that Ep = ep,1ep,2. There are three
vertices xp,1, xp,2, xp,3 that are not z on Q(k−1)m+p. Set c(xp,1) := ep,1, c(xp,2) :=
k, c(xp,3) := ep,2. Hence, adjacent vertices on these cycles have different colors.

Note that for the case that k is even, we obtain Hamilton cycles H1, H2, . . .,
H k−2

2
of H. Again, this time we must have m ≤ k−2

2 . The coloring is done by

using the similar way to the case that k is odd, except that the case r > k−1
2 + 1

is replaced with the case r 6= 0, and the case r ≤ k−1
2 is not needed. Next, color

the remaining t− q cycles by using the similar coloring used to color cycles before
there was any 4-cycle, by noting that the pair {ai, bi} that is used is the label of
two adjacent vertices that have not been used to color the 4-cycles on the above
decomposition. Observe that there are exactly t− q pairs of such labels. Thus, we
have shown that c is a k-coloring.

We show that c is indeed a locating coloring. Let x and y be two different
vertices in G with c(x) = c(y). The cases for x and y that must be considered are:

(1) One of them is z
(2) Both are not z and are in the same 4-cycle
(3) Both are not z and are in the same cycle that is not a 4-cycle
(4) Both are not z, x is in a 4-cycle, and y is in a cycle that is not a 4-cycle
(5) Both are not z and are in different 4-cycles
(6) Both are not z and are in different cycles, but these cycles are not 4-cycles.

The first four cases are easily verified. For the fifth case, if both x and y are
colored k, then, since both are not z, their neighbors have to be only two vertices
that have the color pair from some labels Ei and Ej , respectively, that are edge-
disjoint subgraphs. Hence, the colors of the neighbors of x and y differ. If both are
not colored k, then the colors of the neighbors of x and y also differ since each two
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4-cycles have their vertices colored based on the labels of the subgraphs of H that
are edge-disjoint subgraphs and since x and y are different vertices. In fact, if the
colors of the neighbors of x and y are only k, then, since they belong to different
4-cycles, the colors in both of these cycles must be based on Ei and Ej that are
edge-disjoint subgraphs. This is impossible if x and y are different vertices.

For the sixth case, the same argument also applies by observing the possibil-
ities of the position of x and y and the labels used. Thus, we have shown that c is
a locating k-coloring so that χL(G) ≤ k.

Lastly, for the case t <
(
k−1
2

)
, the (t + 1)-th, (t + 2)-th, . . ., and so on that

have been colored from the coloring on the case t =
(
k−1
2

)
before is removed so that

there are t <
(
k−1
2

)
cycles remaining, and the above cases can be verified again the

similar way. Thus, the theorem is proved. �

REFERENCES

[1] Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., and Zhang, P., The locating-
chromatic number of a graph, Bull. Inst. Combin. Appl., 36 (2002), 89-101.

[2] Asmiati, Yana, I. K. S. G., and Yulianti, L., On the locating chromatic num-

ber of certain barbell graphs, Int. J. Math. Math. Sci., 2018 (2018), retrieved from
https://doi.org/10.1155/2018/5327504.

[3] Purwasih, I. A., Baskoro, E. T., Assiyatun, H., Suprijanto, D., and Baca, M., The locating-

chromatic number for Halin graphs, Commun. Comb. Optim., 2(1) (2017), 1-9.
[4] Behtoei, A. and Anbarloei, M., The locating chromatic number of the join of graphs, Bull.

Iranian Math. Soc., 40(6) (2014), 1491-1504.

[5] Behtoei, A. and Omoomi, B., On the locating chromatic number of the Cartesian product of
graphs, Ars Combin., 126 (2016), 221-235.

[6] Syofyan, D. K., Baskoro, E. T., and Assiyatun, H., Trees with certain locating-chromatic

number, J. Math. Fund. Sci., 48(1) (2016), 39-47.
[7] Baskoro, E. T. and Asmiati, Characterizing all trees with locating-chromatic number 3,

Electronic Journal of Graph Theory and Applications, 1(2) (2013), 109-117.
[8] Behtoei, A. and Anbarloei, M., A bound for the locating chromatic number of trees, Trans-

actions on Combinatorics, 4(1) (2015), 31-41.

[9] Purwasih, I. A., Baskoro, E. T., Assiyatun, H., and Suprijanto, D., The bounds on the
locating-chromatic number for a subdivision of a graph on one edge, Procedia Computer

Science, 74 (2015), 84-88.


