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Abstract. Morrey spaces can complement the boundedness properties of operators

that Lebesgue spaces can not handle. Morrey spaces which we have been handling

are called classical Morrey spaces. However, classical Morrey spaces are not totally

enough to describe the boundedness properties. To this end, we need to generalize

parameters p and q, among others p.

Key words and phrases: Morrey spaces, generalized Morrey spaces, boundedness

properties of operators.

Abstrak. Ruang Morrey dapat menggenapi sifat keterbatasan operator yang tidak

dipenuhi di ruang Lebesgue. Ruang Morrey yang telah dikaji adalah ruang Morrey

klasik. Namun, ruang Morrey klasik tidak cukup lengkap untuk mengungkapkan

sifat keterbatasan. Untuk itu, kita perlu memperumum parameter p dan q, terutama

p.

Kata kunci: Ruang Morrey, ruang Morrey diperumum, sifat keterbatasan operator.

1. Introduction

This note studies the function spaces which Guliyev, Mizuhara and Nakai
defined in [28, 69, 73]. Let 0 < q ≤ p < ∞. We define the classical Morrey space
Mp

q(Rn) to be the set of all measurable functions f for which the quantity

‖f‖Mp
q
≡ sup
x∈Rn,r>0

|Q(x, r)|
1
p−

1
q

(∫
Q(x,r)

|f(y)|q dy

) 1
q
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is finite, where Q(x, r) = {y ∈ Rn : |x1 − y1|, |x2 − y2|, . . . , |xn − yn| ≤ r}. To
describe the endpoint case or to describe the intersection space, sometimes it is
useful to generalize the parameter p: let us suppose that p comes from the function
t
n
p . So, we envisage the situation where t

n
p is replaced by a general function ϕ.

More precisely, it is known as the Adams theorem that Iα mapsMp
q(Rn) toMs

t (Rn)
whenever 1 < q ≤ p <∞ and 1 < t ≤ s <∞ satisfy

1

s
=

1

p
− α

n
,

q

p
=
t

s
.

Here Iα is the fractional integral operator given by (12) for a nonnegative measur-
able function f : Rn → [0,∞]. However, it is known that we can not take s = ∞.

In fact, Iα fails to be bounded from Mn/α
q (Rn) to L∞(Rn) for all 1 ≤ q ≤ n

α . To
compensate for this failure, we can use generalized Morrey spaces. We will define
the generalized Morrey norm by

‖f‖Mϕ
q
≡ sup
x∈Rn,r>0

1

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

<∞.

Here ϕ : (0,∞) → [0,∞) is a function which does not vanish at least at some
point. Another advantage of generalized Morrey spaces is that we can cover many
function spaces related to Lebesgue spaces.

Although we do not consider the direct applications of generalized Morrey
spaces to PDEs, generalized Morrey spaces can be applied to PDEs. Applications
to the divergence elliptic differential equations can be found in [59]. Applications
to the nondivergence elliptic differential equations can be found in [35, 114, 123].
Applications to the parabolic differential equations can be found in [112, 128]. See
[30, 42, 113] for the parabolic oblique derivative problem. See [61] for applicatitons
to Schrödinger equations. We refer to [64] for the application to singular integral
equations.

This note is organized as follows: We will collect some preliminary facts in
Section 2 In Section 3, we define generalized Morrey spaces and then discuss the
structure of generalized Morrey spaces. The conditions on ϕ will be important. So
we discuss them quite carefully. Section 4 is a detailed discusssion of the bounded-
ness properties of the operators. Here we handle the Hardy–Littlewood maximal
operators, the Riesz potentails, the Riesz transforms and the fractional maximal
operators as well as their generalizations. Section 5 is a survey of other related
function spaces.

Here we list a series of (somewhat standard) notation we use in this note.

• Let (X, d) be a metric space. We denote by B(x, r) the ball centered at x
of radius r. Namely, we write

B(x, r) ≡ {y ∈ Rn : d(x, y) < r}

when x ∈ Rn and r > 0. Given a ball B, we denote by c(B) its center and
by r(B) its radius. In the Euclidean space Rn, we write B(r) instead of
B(o, r), where o ≡ (0, 0, . . . , 0).
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• A metric measure space is a pair of a metric space (X, d) and a measure µ
such that any open set is measurable.

• By a “cube” we mean a compact cube in Rn whose edges are parallel to
the coordinate axes. The metric closed ball defined by `∞ is called a cube.
If a cube has center x and radius r, we denote it by Q(x, r). Namely, we
write

Q(x, r) ≡
{
y = (y1, y2, . . . , yn) ∈ Rn : max

j=1,2,...,n
|xj − yj | ≤ r

}
when x = (x1, x2, . . . , xn) ∈ Rn and r > 0. From the definition of Q(x, r),
its volume is (2r)n. We write Q(r) instead of Q(o, r). Given a cube Q, we
denote by c(Q) the center of Q and by `(Q) the sidelength of Q: `(Q) =
|Q|1/n, where |Q| denotes the volume of the cube Q.
• Given a cube Q and k > 0, k Q means the cube concentric to Q with

sidelength k `(Q). Given a ball B and k > 0, we denote by k B the ball
concentric to B with radius k r(B).
• Let A,B ≥ 0. Then A . B and B & A mean that there exists a constant
C > 0 such that A ≤ CB, where C depends only on the parameters of
importance. The symbol A ∼ B means that A . B and B . A happen
simultaneously, while A ' B means that there exists a constant C > 0 such
that A = CB.
• When we need to emphasize or keep in mind that the constant C depends

on the parameters α, β, γ etc Instead of A . B, we write A .α,β,γ,... B.

2. Preliminaries

2.1. Lebesgue spaces and integral inequalities. Here we recall Lebesgue spaces
and the integral inequalities.

Definition 2.1 (Lebesgue space). Let (X,B, µ) be a measure space and 0 < p ≤ ∞.

• The Lebesgue norm Lp(µ)-(quasi-)norm of a measurable function f is given
by

‖f‖p ≡ ‖f‖Lp(µ) ≡
(∫

X

|f(x)|p dµ(x)

) 1
p

, p <∞

‖f‖∞ ≡ ‖f‖L∞(µ) ≡ sup{λ > 0 : |f(x)| ≤ λ for µ-a.e. x ∈ X }, p =∞.

• Define

Lp(µ) ≡ {f : X → K : f is measurable and ‖f‖p <∞}/ ∼ .

Here the equivalence relation ∼ is defined by:

f ∼ g ⇐⇒ f = g a.e. (1)

and below omit this equivalence in defining function spaces.

As usual if (X,B, µ) is the Lebesgue measure, then we write Lp(Rn) = Lp(µ) and
‖ · ‖WLp = ‖ · ‖WLp(µ).
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Theorem 2.2 (Hölder’s inequality). Let 0 < p, q, r ≤ ∞ satisfy
1

r
=

1

p
+

1

q
. Then

for f ∈ Lp(µ) and g ∈ Lq(µ), ‖fg‖Lr(µ) ≤ ‖f‖Lp(µ)‖g‖Lq(µ). See [1, Theorem 2.4]
for example.

In addition to Lp(µ) with 0 < p ≤ ∞, it is convenient to define L0(µ): The
space L0(µ) denotes the set of all measurable functions considered modulo the
difference on the set of measure zero.

2.2. Integral operators. We will study the Hardy–Littlewood maximal opera-
tors, the Riesz potentails, the Riesz transforms and the fractional maximal op-
erators. So we recall the definition together with the boundedness properties on
Lp(Rn). For Theorems 2.4, 2.5, 2.9, 2.10, 2.11 we refer to [24, 92, 116, 115].

Definition 2.3 (Hardy–Littlewood maximal operator). For f ∈ L0(Rn), define a
function Mf by

Mf(x) ≡ sup
B∈B

χB(x)

|B|

∫
B

|f(y)|dy (x ∈ Rn). (2)

The mapping M : f 7→Mf is called the Hardy–Littlewood maximal operator.

We have the weak-(1, 1) boundedness of M .

Theorem 2.4 (Hardy–Littlewood maximal inequality). For f ∈ L1(Rn), λ > 0,

λ| {Mf > λ} | ≤ 3n‖f‖1.

For 1 < p ≤ ∞ we have the strong-(p, p) boundedness.

Theorem 2.5 (Lp(Rn)-inequality). Let 1 < p <∞. Then

‖Mf‖p ≤
(
p 2p · 3n

p− 1

) 1
p

‖f‖p

for all f ∈ L0(Rn).

We move on to the singular integral operators. Among others we consider
the Calderón–Zygmund operators.

Here we are interested in the following type of the singular integral operators:

Definition 2.6 (Singular integral operator). A singular integral operator is an
L2(Rn)-bounded linear operator T that comes with a function K ∈ C1(Rn \ {0})
satisfying the following conditions:

• (Size condition) For all x ∈ Rn,

|K(x)| . |x|−n. (3)

• (Gradient condition) For all x ∈ Rn,

|∇K(x)| . |x|−n−1. (4)
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• Let f be an L2(Rn)-function. For almost all x /∈ supp(f),

Tf(x) =

∫
Rn
K(x− y)f(y)dy. (5)

The function K is called the integral kernel of T .

More generally we consider the following type of singular integral operators:

Definition 2.7. A (generalized) Calderón-Zygmund operator is an L2(Rn)-bounded
linear operator T , if it satisfies the following conditions:

• There exists a measurable function K such that for all L∞(Rn)-functions
f with compact support we have

Tf(x) =

∫
Rn
K(x, y)f(y) dy for all x /∈ suppf. (6)

• The kernel function K satisfies the following estimates.

|K(x, y)| . |x− y|−n, (7)

if x 6= y and

|K(x, z)−K(y, z)|+ |K(z, x)−K(z, y)| . |x− y|
|x− z|n+1

, (8)

if 0 < 2|x− y| < |z − x|.

As a typical example we consider the Riesz transform:

Example 2.8. Let j = 1, 2, . . . , n. The singular integral operators, which are
represented by the j-th Riesz transform given by,

Rjf(x) ≡ lim
ε↓0

∫
Rn\B(x,ε)

xj − yj
|x− y|n+1

f(y)dy, (9)

are integral operators with singularity.

We have the weak-(1, 1) boundedness as before.

Theorem 2.9. Suppose that T is a CZ-operator. Then T is weak-(1, 1) bounded,
that is

|{ |Tf | > λ}| . 1

λ

∫
Rn
|f(x)| dx (λ > 0) (10)

for all f ∈ L1(Rn) ∩ L2(Rn).

We have the strong boundedness for 1 < p <∞.

Theorem 2.10. Let 1 < p <∞ and T be a generalized singular integral operator,
which is initially defined on L2(Rn). Then T can be extended to Lp(Rn) for all
1 < p <∞ so that

‖Tf‖p .p ‖f‖p (11)

for all f ∈ Lp(Rn).
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As a different type of singular integral operators, we consider the fractional
integral operators. Let 0 < α < n. Let Iα be the fractional maximal operator given
by

Iαf(x) ≡
∫
Rn

f(y)

|x− y|n−α
dy (x ∈ Rn) (12)

for a nonnegative measurable function f : Rn → [0,∞].

The following theorem is known as the Hardy–Littlewood–Sobolev theorem.
Generalized Morrey spaces can be used to refine this theorem.

Theorem 2.11 (Hardy–Littlewood–Sobolev). [54, 55, 111] Let 0 < α < n.

• We have

λ
n

n−α |{x ∈ Rn : |Iαf(x)| > λ}| . ‖f‖1 (13)

for all f ∈ L1(Rn) and λ > 0.

• Assume that the parameters 1 < p <
n

α
and

1

q
=

1

p
− α

n
. Then we have

‖Iαf‖q . ‖f‖p for all f ∈ Lp(Rn).

Let 0 ≤ α < n. The fractional maximal operator Mα of order α is defined by

Mαf(x) ≡ sup
Q∈Q

`(Q)α−nχQ(x)

∫
Q

|f(y)| dy

for a measurable function f . Note that Mα mapsMn/α
1 (Rn) boundedly to L∞(Rn).

As an opposite endpoint case, we have the following boundedness:

Theorem 2.12. Let 0 < α < n. Then

λ
n

n−α |{x ∈ Rn : Mαf(x) > λ}| . ‖f‖1 (14)

for all f ∈ L1(Rn).

Using the boundedness of M , we can prove the boundedness of Mα. Here for
the sake of convenience for readers we supply the proof.

Theorem 2.13. Let 1 < p < q < ∞ and 0 < α < n satisfy 1
q = 1

p −
α
n . Then

‖Mαf‖Lq . ‖f‖Lp for all f ∈ Lp(Rn).

Proof. By the monotone convergence theorem we may assume that f ∈ L∞c (Rn).
For λ > 0 we let Ωλ ≡ {Mαf > λ}. We observe that

(‖Mαf‖Lq )q = q

∫ ∞
0

λq−1|Ωλ| dλ ≤ q
∫ ∞

0

λq−1− n
n−α (‖fχΩλ‖L1)

n
n−α dλ.

We choose u > 0 so that n(1− u) = pα. Then we have

‖fχΩλ‖L1 ≤
(
‖fχΩλ‖L nu

n−α

)u
(‖f‖Lp)1−u.
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Thus, we have

(‖Mαf‖Lq )q .
∫ ∞

0

λq−1− n
n−α

(
‖fχΩλ‖L nu

n−α

) nu
n−α

(‖f‖Lp)
n(1−u)
n−α dλ

' (‖f‖Lp)
n(1−u)
n−α

∫
Rn
|f(x)|

nu
n−αMαf(x)q−

n
n−α dx.

Observe that (
q − n

n− α

)
×
(

(n− α)p

nu

)′
=
q(p− 1)n

(p− 1)n
.

By the Hölder inequality, we obtain∫
Rn
|f(x)|

nu
n−αMαf(x)q−

n
n−α dµ(x) ≤ (‖f‖Lp)

nu
n−α (‖Mαf‖Lq )q−

n
n−α .

As a result,

(‖Mαf‖Lq )q . (‖f‖Lp)
n

n−α (‖Mαf‖Lq )q−
n

n−α .

If we arrange this inequality, we obtain

‖Mαf‖Lq . ‖f‖Lp .
�

In addition to the linear operators above we sometimes consider the commu-
tator generated by BMO and these operators. Here we recall the BMO (bounded
mean oscillation) as follows:

Definition 2.14 (BMO(Rn) (space)). Define

‖f‖BMO ≡ sup
Q∈Q

1

|Q|

∫
Q

|f(y)−mQ(f)|dy = sup
Q∈Q

mQ(|f −mQ(f)|)

for f ∈ L1
loc(Rn). The “norm” ‖ · ‖BMO is called the BMO(Rn) norm. The space

BMO(Rn) collects all f ∈ L1
loc(Rn) such that ‖f‖BMO is finite. Usually BMO(Rn)

is considered modulo the constant functions.

As the following theorem shows, the BMO functions have high local integra-
bility.

Theorem 2.15 (John–Nirenberg inequality). For any λ > 0, a cube Q and a
nonconstant BMO(Rn)-function b,

|{x ∈ Q : |b(x)−mQ(b)| > λ}‖ .n exp

(
− Dλ

‖b‖BMO

)
,

where D depends only on the dimension.

We will consider the commutators generated by BMO and these operators.
For the properties of these commutators we refer to [25]. Let a ∈ BMO(Rn). Then
the we can consider the operators

f ∈ L∞c (Rn) 7→ [a, T ]f = a · Tf − T [a · f ], [a, Iα]f = a · Iαf − Iα[a · f ]

despite the ambiguity which the definition of BMO(Rn) causes.
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Thanks to the following theorem, we can extend our results of generalized
Morrey spaces by mimicking the proof of the boundedness for the similar opera-
tors. However, due to the similarity we do not consider the boundedness and the
definition of these operators. Instead, we give some references when needed.

Theorem 2.16. Let 0 < α < n, a ∈ BMO(Rn) and T be a generalized Calderón–
Zygmund operator.

• Let 1 < p <∞. We have ‖[a, T ]f‖Lp . ‖a‖BMO‖f‖Lp for all f ∈ L∞c (Rn).
• Let 1 < p < q < ∞ satisfy 1

q = 1
p −

α
n . Then we have ‖[a, Iα]f‖Lq .

‖a‖BMO‖f‖Lp for all f ∈ L∞c (Rn).

For the proof of Theorem 2.16 we refer to [25].

3. Generalized Morrey spaces

Likewise we can replace q by a function Φ.

3.1. Definition of generalized Morrey spaces. From the observation above,
we are led to the following definition:

Definition 3.1. Let 0 < q <∞ and ϕ : (0,∞)→ [0,∞) be a function which does
not satisfy ϕ ≡ 0.

• [73] Define the generalized Morrey space Mϕ
q (Rn) to be the set of all mea-

surable functions f such that

‖f‖Mϕ
q
≡ sup
x∈Rn,r>0

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

<∞. (15)

• [28] Define the weak generalized Morrey space wMϕ
q (Rn) to be the set of

all measurable functions f such that

‖f‖wMϕ
q
≡ sup

λ>0
‖λχ(λ,∞)(|f |)‖Mϕ

q
<∞.

Although we torelate the case where ϕ(t) = 0 for some t > 0, it turns out
that there is no need to consider such possibility.

Before we go into more details, clarifying remarks may be in order.

Remark 3.2. In [73] Nakai defined the generalized Morrey space Mϕ
q (Rn) to be

the set of all measurable functions f such that

‖f‖Mϕ
q
≡ sup
x∈Rn,r>0

1

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

<∞, (16)

or more generally

‖f‖Mϕ
q
≡ sup
x∈Rn,r>0

1

ϕ(x, r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

<∞.
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See also [19, 29, 33, 60, 76, 120, 123]. Here we follow the notation by Sawano,
Sugano and Tanaka [100, 101, 102], for example. See also [71]. See [3, 12, 86, 88,
89, 109] for another notation of generalized Morrey spaces, for example. Despite
the difference of the notation, the idea of defining the predual space depends on
[60, 109].

Remark 3.3. Some prefer to call ϕ the weight (see [26] for example), while some
prefer to call ‖ · ×w‖Mϕ

q
the weighted generalized Morrey norm (see [41] for exam-

ple).

We can recover the Lebesgue space Lq(Rn) by letting ϕ(t) ≡ t
n
q for t > 0 as

we have mentioned. To compare Morrey spaces with generalized Morrey spaces, we
sometimes call Morrey spaces classical Morrey spaces. In addition to the function
ϕ(t) = t

n
p , we consider the following typical functions:

Example 3.4.

• The function ϕ ≡ 1 generates L∞(Rn) thanks to the Lebesgue convergence
theorem.

• Let 0 < q < ∞ and a ∈ R. Define ϕ(t) = t
n
q (log(e + t))a for t > 0. We

remark that Mϕ
q (Rn) 6= {0} if and only if a ≤ 0. In fact, we have

‖f‖Mϕ
q

= sup
x∈Rn,r>0

(log(e+ r))a‖f‖Lq(Q(x,r)).

Thus, if f is a measurable function such that ‖f‖Mϕ
q
< ∞ and if a > 0,

then we have ‖f‖Lq(Q(x,r)) = 0 for any cube Q(x, r). Thus, f = 0 a.e..
Convesely if a ≤ 0, then Lq(Rn) ⊂Mϕ

q (Rn).

• Let 0 < q ≤ p1 < p2 < ∞. Then ϕ(t) = t
n
p1 + t

n
p2 , t > 0 can be used to

express the intersection ofMp1
q (Rn)∩Mp2

q (Rn). In general, for 0 < q <∞
and ϕ1, ϕ2 : (0,∞) → [0,∞) satisfying ϕ1(t1) 6= 0 and ϕ(t2) 6= 0 for some
t1, t2 > 0 Mϕ1

q (Rn)∩Mϕ2
q (Rn) =Mϕ1+ϕ2

q (Rn) with equivalence of norms.

• Let 0 < q ≤ p1 < p2 < ∞. Let ϕ(t) = χQ∩(0,∞)(t)t
n
p1 + χ(0,∞)\Q(t)t

n
p2

for t > 0. Then we have Mϕ
q (Rn) = Mp1

q (Rn) ∩ Mp2
q (Rn) and for any

f ∈ L0(Rn)

‖f‖Mϕ
q

= max{‖f‖Mp1
q
, ‖f‖Mp2

q
}.

• We can consider the norm

sup
x∈Rn,r∈(0,1)

|Q(x, r)|
1
p

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

for 0 < q < p <∞. In fact, we take ϕ(t) = t
n
p χ[0,1](t) for t > 0.

• Likewise we can consider the norm

sup
x∈Rn,r∈[1,∞)

|Q(x, r)|
1
p

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

for 0 < q < p <∞. In fact, we take ϕ(t) = t
n
p χ[1,∞)(t) for t > 0.
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• Let 0 < q < ∞ The uniformly locally Lq-integrable space Lquloc(Rn) is the
set of all measurable functions f for which

sup
x∈Rn,r∈(0,1)

(∫
Q(x,r)

|f(y)|q dy

) 1
q

= sup
x∈Rn

(∫
Q(x,1)

|f(y)|q dy

) 1
q

is finite. As before, if we let ϕ(t) = t
n
q χ(0,1](t) for t > 0, then we ob-

tain Lquloc(Rn) = Mϕ
q (Rn). We can define the weak uniformly locally Lq-

integrable space wLquloc(Rn) similarly. For f ∈ L0(Rn), the norm is given
by

‖f‖wLquloc
≡ sup

λ>0
λ‖χ(λ,∞](|f |)‖Lquloc

.

The fifth example deserves a name. We define the small Morrey space as
follows:

Definition 3.5. Let 0 < q < p < ∞. The small Morrey space mp
q(Rn) is the set

of all measurable functions f for which the quantity

‖f‖mpq ≡ sup
x∈Rn,r∈(0,1)

|Q(x, r)|
1
p

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

is finite. The weak small Morrey space wmp
q(Rn) is defined similarly. For f ∈

L0(Rn), the norm is given by

‖f‖wmpq ≡ sup
λ>0

λ‖χ(λ,∞](|f |)‖mpq .

Example 3.6. [14, Proposition A] Let x ∈ Rn and r > 0. Then

‖χQ(x,r)‖Mϕ
q

= sup
t>0

ϕ(t) min(t−
n
q , r−

n
q ).

In fact, simply observe that

‖χQ(x,r)‖Mϕ
q
≡ sup
R>0

ϕ(R)

(
|Q(x,R) ∩Q(x, r)|

|Q(x,R)|

) 1
q

= sup
t>0

ϕ(t) min(t−
n
q , r−

n
q ).

The following min(1, q)-triangle inequality holds:

Lemma 3.7. Let 0 < q <∞ and ϕ : (0,∞)→ (0,∞) be a function. Then

‖f + g‖Mϕ
q

min(1,q) ≤ ‖f‖Mϕ
q

min(1,q) + ‖g‖Mϕ
q

min(1,q)

for all f, g ∈Mϕ
q (Rn).

Proof. This is similar to classical Morrey spaces: Use the min(1, q)-triangle inequal-
ity for the Lebesgue space Lq(Rn). �

Proposition 3.8. Let 0 < q < ∞, and let ϕ : (0,∞) → [0,∞) be a function
satisfying ϕ(t0) 6= 0 for some t0 > 0. Then Mϕ

q (Rn) is a quasi-Banach space and
if q ≥ 1, then Mϕ

q (Rn) is a Banach space.
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Proof. The norm inequality follows from Lemma 3.7. The proof of the completeness
is a routine, which we omit. �

Proposition 3.8 guarantees that the (quasi-)norm of Mϕ
q (Rn) is complete.

However, it may happen that Mϕ
q (Rn) = {0} as is seen from Example 3.10. We

check that this extraordinary thing never happens if ϕ satisfies a mild condition.

Proposition 3.9. [80, Lemma 2.2(2)] Let 0 < q < ∞, and let ϕ : (0,∞) →
[0,∞) be a function satisfying ϕ(t0) 6= 0 for some t0 > 0. Then the following are
equivalent:

(a) L∞c (Rn) ⊂Mϕ
q (Rn).

(b) Mϕ
q (Rn) 6= {0}.

(c) sup
t>0

ϕ(t) min(t−
n
q , 1) <∞.

Proof. It is clear that (a) implies (b).

Assume (b). Then there exists f ∈ Mϕ
q (Rn) \ {0}. We may assume that

f(0) 6= 0 and that x = 0 is the Lebesgue point of |f |q. Then since f ∈ Lqloc(Rn), by
the Lebesgue differential theorem,

1

|Q(r)|

∫
Q(r)

|f(y)|q dy ∼ 1

for all 0 < r < 1. Here the implicit constants depend on f . Thus,

sup
0<t≤1

ϕ(t) ∼ sup
0<t≤1

ϕ(t)

(
1

|Q(t)|

∫
Q(t)

|f(y)|q dy

) 1
q

≤ ‖f‖Mϕ
q
<∞.

Here the implicit constants depend on f again. Meanwhile

sup
t≥1

t−
n
q ϕ(t) . sup

t≥1
ϕ(t)

(
1

|Q((t+ 1, 0, 0, . . . , 0), t)|

∫
Q((t+1,0,0,...,0),t)

|f(y)|q dy

) 1
q

≤ ‖f‖Mϕ
q
<∞.

Thus we conclude (c).

Finally, if (c) holds, then χQ(x,1) ∈Mϕ
q (Rn) for any x ∈ Rn. SinceMϕ

q (Rn) is
a linear space, χQ(x,m) ∈Mϕ

q (Rn) for any x ∈ Rn. Since any function g ∈ L∞c (Rn)
admits the estimate of the form |g| ≤ NχQ(x,m) for some m,N ∈ N, we conclude
(a). �

Here we consider the case where Mϕ
q (Rn) is close to Mp

q(Rn) in a certain
sense.

Example 3.10. Let 0 < q ≤ p <∞ and B = (β1, β2) ∈ R2. We write

`B(r) = `(β1,β2)(r) ≡

{
(1 + | log r|)β1 (0 < r ≤ 1),

(1 + | log r|)β2 (1 < r <∞).

Set −B = (−β1,−β2).
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• We set ϕ(t) ≡ t
n
q `−B(t), t > 0. Note thatMϕ

q (Rn) 6= {0} if and only if β2 ≥
0. Indeed, according to Proposition 3.9 the case β2 < 0 must be excluded in
order that Mϕ

q (Rn) 6= {0}. Convesely if β2 ≥ 0, then L∞c (Rn) ⊂Mϕ
q (Rn).

• Let 0 < q < p < ∞. We set ϕ(t) ≡ t
n
p `−B(t), t > 0. Then L∞c (Rn) ⊂

Mϕ
q (Rn).

• We set ϕ(t) ≡ `−B(t), t > 0. For a ∈ R, we set f(x) ≡ (1 + |x|)−a, x ∈ Rn.
Let us see that Mϕ

q (Rn) is close to L∞(Rn) if β1 ≥ 0.
– By the Lebesgue differentiation theorem, ‖f‖∞ ≤ 0 if β1 < 0, so that
f = 0 a.e.. So, if β1 < 0, then Mϕ

q (Rn) = {0}.
– Let β1 ≥ 0 > β2. Then f ∈Mϕ

q (Rn) if and only if a < 0.
– Let β1, β2 ≥ 0. Then f ∈Mϕ

q (Rn) if and only if a ≤ 0.

We have the following scaling law:

Lemma 3.11. [80, Lemma 2.5] Let 0 < η, q < ∞ and ϕ : (0,∞) → (0,∞) be a

function. Then f ∈ Mϕ
q (Rn) if and only if |f |η ∈ Mϕη

q/η(Rn). Furthemore in this

case ‖|f |η‖Mϕη

q/η

= ‖f‖Mϕ
q

η.

Proof. We content ourselves with showing the equality ‖|f |η‖Mϕη

q/η

= ‖f‖Mϕ
q

η. We

calculate

‖|f |η‖Mϕη

q/η

= sup
Q=Q(a,r)

ϕ(r)η‖f‖Lq(Q)
η

|Q|
η
q

= ‖f‖Mϕ
q

η

by using ‖|f |η‖ q
η

= ‖f‖qη. �

The nesting property holds like classical Morrey spaces.

Lemma 3.12. Let 0 < q1 ≤ q2 <∞ and ϕ : (0,∞)→ (0,∞) be a function. Then
Mϕ

q2(Rn) ⊂Mϕ
q1(Rn).

Proof. The proof of Lemma 3.12 hinges on the Hölder inequality. Let f ∈ L0(Rn).
We write out the norms fully:

‖f‖Mp
q1
≡ sup
x∈Rn, r>0

ϕ(r)

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q1 dy

) 1
q1

(17)

‖f‖Mp
q0

= sup
x∈Rn, r>0

ϕ(r)

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q0 dy

) 1
q0

(18)

By the Hölder inequality (for probability measures), we have(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q1 dy

) 1
q1

≤

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q0 dy

) 1
q0

. (19)

Thus inserting inequality (19) into (17) and (18), we obtainMϕ
q2(Rn) ⊂Mϕ

q1(Rn).
�
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3.2. The class Gq. It will turn out demanding to consider all possible functions
ϕ. We will single out good functions. We answer the question of what functions
are good.

Definition 3.13. An increasing function ϕ : (0,∞) → (0,∞) is said to belong to

the class Gq if t−
n
q ϕ(t) ≥ s−

n
q ϕ(s) for all 0 < t ≤ s <∞.

Remark that Gq1 ⊂ Gq2 if 0 < q2 < q1 <∞.

Here we list a series of the functions in Gq.

Example 3.14. Let 0 < q <∞.

• Let u ∈ R, and let ϕ(t) = tu for t > 0. Then ϕ belongs to Gq if and only if
0 ≤ u ≤ n

q .

• Let 0 < u ≤ n
q , L� 1 and let ϕ(t) =

tu

log(L+ t)
for t > 0. Then ϕ belongs

to Gq.
• If ϕ1, ϕ2 ∈ Gq, then ϕ1 + ϕ2,max(ϕ1, ϕ2),min(ϕ1, ϕ2) ∈ Gq.

• Let 0 ≤ u� 1, and let ϕ(t) =
tu

log(e+ t)
for t ≥ 0. Then ϕ /∈ Gq because ϕ

is not increasing.

We start with a simple observation that any function in Gq enjoys the doubling
property:

Proposition 3.15. If ϕ ∈ Gq with 0 < q < ∞, then ϕ(r) ≤ ϕ(2r) ≤ 2
n
q ϕ(r) for

all r > 0.

Proof. The left inequality is a consequence of the fact that ϕ is increasing, while
the right inequality follows from the fact that t 7→ t−

n
q ϕ(t) is decreasing. �

The next proposition justifies that we can naturally use the class Gq.

Proposition 3.16. [74, p. 446] Let 0 < q < ∞ be fixed. Then for any function

ϕ : (0,∞)→ [0,∞) satisfying 0 < sup
t>0

ϕ(t) min(t−
n
q , 1) <∞, there exists a function

ϕ∗ : (0,∞) → (0,∞) ∈ Gq such that Mϕ
q (Rn) = Mϕ∗

q (Rn) with equivalence of
norms.

Proof. Let f be a measurable function.

We claim that

1

|Q|

∫
Q

|f(x)|q dx ≤ 2n sup
Q′∈Q:Q′⊂Q,`(Q′)=t′

1

|Q′|

∫
Q′
|f(x)|q dx (20)

for any cube Q ∈ Q and any positive number t′ ≤ `(Q). In fact, let

N =

[
1 +

`(Q)

t′

]
∈ [1,∞).
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We write Q =

n∏
j=1

[aj , aj + `(Q)], so that (a1, a2, . . . , an) is the “bottom” corner of

Q. Define

δmj ≡

{
0 (mj < N),

Nt′ − `(Q) (mj = N)

for mj ∈ {1, 2, . . . , N} and

Qm ≡
n∏
j=1

[
aj + (mj − 1)t′ − δmj , aj +mjt

′ − δmj
]

for m = (m1,m2, . . . ,mn) ∈ {1, 2, . . . , N}n. Then

1 ≤
∑

m∈{1,2,...,N}n
χQm ≤ 2n

almost everywhere. As a consequence,

1

|Q|

∫
Q

|f(x)|q dx ≤
∑

m∈{1,2,...,N}n

1

|Q|

∫
Qm

|f(x)|q dx

≤
∑

m∈{1,2,...,N}n

t′n

|Q|
1

|Qm|

∫
Qm

|f(x)|q dx.

Since

t′N

`(Q)
=

t′

`(Q)

[
1 +

`(Q)

t′

]
≤ t′

`(Q)

(
1 +

`(Q)

t′

)
≤ t′

`(Q)
+ 1 ≤ 2,

it follows that

1

|Q|

∫
Q

|f(x)|q dx ≤ 2n max
m∈{1,2,...,N}n

1

|Qm|

∫
Qm

|f(x)|q dx.

Thus, (20) follows.

If we let

ϕ1(t′) ≡ inf
t≥t′

ϕ(t)
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then it is easy to see that ϕ1(t) ≤ ϕ(t) for all t > 0 and hence ‖f‖Mϕ1
q
≤ ‖f‖Mϕ

q
.

Furthermore,

sup
Q∈Q

ϕ(`(Q))

(
1

|Q|

∫
Q

|f(x)|q dx
) 1
q

≤ 2
n
q sup
Q∈Q

inf
t′∈(0,`(Q)]

sup
Q′∈Q:Q′⊂Q,`(Q′)=t′

ϕ(`(Q))

(
1

|Q′|

∫
Q′
|f(x)|q dx

) 1
q

≤ 2
n
q sup
Q∈Q

inf
t′∈(0,`(Q)]

sup
Q′∈Q: `(Q′)=t′

ϕ(`(Q))

(
1

|Q′|

∫
Q′
|f(x)|q dx

) 1
q

= 2
n
q sup
Q∈Q

inf
t′∈(0,`(Q)]

sup
Q′∈Q: `(Q′)=t′

ϕ1(t′)

(
1

|Q′|

∫
Q′
|f(x)|q dx

) 1
q

= 2
n
q sup
Q∈Q

inf
t′∈(0,`(Q)]

sup
Q′∈Q: `(Q′)=t′

ϕ1(`(Q′))

(
1

|Q′|

∫
Q′
|f(x)|q dx

) 1
q

≤ 2
n
q ‖f‖Mϕ1

q
.

Thus it follows that

‖f‖Mϕ1
q
≤ ‖f‖Mϕ

q
≤ 2

n
q ‖f‖Mϕ1

q
.

Next, if we let

ϕ∗(t) ≡ t
n
q sup
t′≥t

ϕ1(t′)t′−
n
q = sup

s≥1
ϕ1(st)s−

n
q (t > 0),

then ‖f‖Mϕ1
q

= ‖f‖Mϕ∗
q

. In fact, since ϕ1 is increasing, ϕ∗ is increasing. From the

definition of ϕ∗, ϕ∗(t) ≥ ϕ1(t) for all t > 0 and thus ‖f‖Mϕ1
q
≤ ‖f‖Mϕ∗

q
. On the

other hand, for any r > 0 and ε > 0, we can find r′ ≥ r such that

ϕ∗(r) ≤ (1 + ε)r
n
q ϕ1(r′)r′−

n
q .

Thus for any cube Q(x, r),

ϕ∗(r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

≤ (1 + ε)ϕ1(r′)

(
1

|Q(x, r′)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

≤ (1 + ε)ϕ1(r′)

(
1

|Q(x, r′)|

∫
Q(x,r′)

|f(y)|q dy

) 1
q

≤ (1 + ε)‖f‖Mϕ1
q
.

Taking the supremum over x and r, we have ‖f‖Mϕ∗
q
≤ (1+ε)‖f‖Mϕ1

q
. Since ε > 0

is arbitrary, we conclude ‖f‖Mϕ∗
q
≤ ‖f‖Mϕ1

q
. �

In view of Proposition 3.16, it follows that we can always suppose that ϕ ∈ Gq.
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Remark 3.17. Some authors suppose that there exists δ > 0 such that

ϕ(r) ≤ δ−1 (0 < r ≤ 1) (21)

and that

r
n
q ϕ(r) > δ (1 < r <∞). (22)

As the next proposition shows, Gq is a good class in addition to the nice
property that it naturally arises in generalized Morrey spaces.

Proposition 3.18. Let ϕ ∈ Gq with 0 < q < ∞. Then we can find a continuous
function ϕ∗ ∈ Gq such that ϕ∗ is strictly increasing and that ϕ ∼ ϕ∗.

Proof. We look for ϕ∗ in a couple of steps.

• Consider

ϕ0(t) ≡ t
n
q

∫ 2t

t

ϕ(s)
ds

s
n
q +1

=

∫ 2

1

ϕ(ts)
ds

s
n
q +1

(t > 0).

Since ϕ is increasing, the function ϕ0 is increasing. Also, by the fact that
ϕ is doubling, we see that ϕ0 and ϕ are equivalent. Thus, we may assume
that ϕ is continuous.

• We define

ψ(t) ≡ ϕ(t)χ(0,1](t) +

(
1− e−t

1− e−1

)n
q

ϕ(1)χ(1,∞)(t) (t > 0),

Since we can check that t ∈ (0, 1] 7→ t−
n
q ψ(t) and t ∈ [1,∞) 7→ t−

n
q ψ(t)

is both decreasing, t ∈ (0,∞) 7→ t−
n
q ψ(t) is decreasing. Likewise we can

check that ψ is increasing. Thus, ψ ∈ Gq. Since ψ + ϕ ' ϕ, we can assume
that ϕ is strictly increasing in (1,∞) and that ϕ is continuous.

• Finally, we consider

ϕ∗(t) ≡
∞∑
k=0

ϕ(2kt)

2kN
(t > 0),

where N ≡ n

q
+ 1. Then it is easy to check that ϕ∗ is equivalent to ϕ

since each term is dominated by 2−kϕ. Likewise since ϕ ∈ Gq, ϕ∗ ∈ Gq.
Finally since ϕ is strictly increasing in (1,∞), the function ϕ(2kt) is strictly
increasing on (2−k,∞) for any k ∈ N. Since k ∈ N is arbitrary, ϕ∗ is strictly
increasing.

�

Thus, we are led to the following definition:

Definition 3.19. The class W stands for the set of all continuous functions ϕ :
(0,∞)→ (0,∞). That is, W = C((0,∞), (0,∞)).

We apply what we have obtained to small Morrey spaces.
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Example 3.20. Let 0 < q <∞. Let us see how we modify ψ inMψ
q (Rn) to obtain

the equivalent space Mϕ
q (Rn) with ϕ ∈ Gq.

• Let ϕ(t) ≡ max(t
n
p , 1) and ψ(t) ≡ t

n
p χ(0,1](t) for t > 0. Then with the

equivalence of norms mp
q(Rn) =Mψ

q (Rn) =Mϕ
q (Rn).

• Let ϕ(t) ≡ max(ta, 1) with a ≥ n
q and ψ(t) ≡ t

n
q χ(0,1](t) for t > 0. Then

with the equivalence of norms Lquloc(Rn) =Mψ
q (Rn) =Mϕ

q (Rn).

Note that ϕ ∈ Gq ∩W but that ψ ∈ Gq \W in both cases.

So far we have shown that we may assume that ϕ ∈ Gq. As a result, we
may assume that ϕ is doubling. This observation makes the definition of the norm
‖ · ‖Mϕ

q
more flexible.

Remark 3.21. In (15), cubes can be replaced with balls; an equivalent norms will
be obtained. Precisely use the norm given by

‖f‖Mϕ
q
≡ sup
x∈Rn,r>0

ϕ(r)

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q dy

) 1
q

to go through the same argument given for the norm defined by means of cubes.

Related to this definition, we give some definitions related to the class Gq.
Although we show that it is sufficient to limit ourselves to Gq, we still feel that
this class is too narrow as the function of ϕ(t) = t log(e + t−1) shows. So, it is
convenient to relax the condition on ϕ. The following definition will serve to this
purpose.

Definition 3.22. Let ` > 0.

• A function ϕ : (0, `]→ (0,∞) is said to be almost decreasing if ϕ(s) . ϕ(t)
for all 0 ≤ t < s ≤ `.

• A function ϕ : (0, `]→ (0,∞) is said to be almost increasing if ϕ(s) & ϕ(t)
for all 0 ≤ t < s ≤ `.

• A function ϕ : (0,∞)→ (0,∞) is said to be almost decreasing if ϕ(s) . ϕ(t)
for all 0 ≤ t < s <∞.

• A function ϕ : (0,∞)→ (0,∞) is said to be almost increasing if ϕ(s) & ϕ(t)
for all 0 ≤ t < s <∞.

The implicit constants in these inequality are called the almost decreasing/increasing
constants.

Example 3.23.

• Let a, b be real parameters with b 6= 0. Let ϕa,b(t) = ta(log(e + t))b for
t > 0. Then ϕa,b is almost increasing for any a > 0. If a < 0, then ϕa,b is
almost decreasing.

• The function ϕ(t) = t+sin 2t, t > 0 is almost increasing but not increasing.
• The function ϕ(t) = 1+et(1− cos t), t > 0 is not almost increasing because
ϕ(2πm) = 1 and ϕ(2πm+ π) = 1 + 2e2πm+π for all m ∈ N.
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• Let 0 < p, q <∞ and β1, β2 ∈ R. We write

`B(r) ≡

{
(1 + | log r|)β1 (0 < r ≤ 1),

(1 + | log r|)β2 (1 < r <∞).

We set

ϕ(t) = t
n
p `−B(t) (t > 0)

as we did in Example 3.10. We observe that ϕ is almost increasing for all
p > 0 and β1, β2 ∈ R. We also note that t 7→ ϕ(t)t−

n
q is almost decreasing

if and only if p = q and β1 ≤ 0 ≤ β2 or p > q. Note that ϕ is an equivalent
to a function ψ ∈ Gq if and only if either p = q, β1 ≤ 0 ≤ β2 or p > q since
we can neglect the effect of ”log”.

• Let E ⊂ (0,∞) be a non-Lebegsgue measurable set. Then ϕ = 1 + χE is
almost increasing and almost decreasing. Note that ϕ is not measurable.

• A simple but still standard example is as follows: Let m ∈ N and define

ϕ(t) ≡ t
n
q

lm(t)
(t > 0),

where lm(t) is given inductively by:

l0(t) ≡ t, lm(t) ≡ log(3 + lm−1(t)) (m = 1, 2, . . .)

for t > 0. The for all 0 < q <∞ and m ∈ N, ϕ ∈ Gq.

As the following lemma shows, we can always replace an almost increasing
function with an increasing function.

Lemma 3.24. If a function ϕ : (0,∞) → (0,∞) is almost increasing with the
almost increasing constant C0 > 0, then there exists an increasing function ψ :
(0,∞)→ (0,∞) such that ϕ(t) ≤ ψ(t) ≤ C0ϕ(t) for all t > 0.

Proof. Simply set ψ(t) = sup0<s≤t ϕ(s), t > 0. �

Having set down the condition of ϕ, we move on to the norm estimate of the
function. The lemma below gives an estimate for the norm of χB(R) in Mϕ

q (Rn).

Lemma 3.25. [60, Lemma 4.1] Let 0 < q <∞ and ϕ ∈ Gq. Then ‖χQ(x,R)‖Mϕ
q

=

ϕ(R) for all R > 0.

Proof. One method is to reexamine Example 3.6. Here we give a direct proof. It is
easy to see that ‖χQ(x,R)‖Mϕ

q
≥ ϕ(R). To prove the opposite inequality we consider

ϕ(r)
1

|Q(y, r)|
1
q

‖χQ(y,r)∩Q(x,R)‖q

for any cube Q = Q(y, r). When R ≤ r, then

ϕ(r)
‖χQ(y,r)∩Q(x,R)‖q
|Q(y, r)|

1
q

≤ ϕ(r)
‖χQ(x,R)‖q
|Q(y, r)|

1
q

≤ ϕ(R)
‖χQ(x,R)‖q
|Q(y,R)|

1
q

= ϕ(R).
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since ϕ ∈ Gq. When R > r, then

ϕ(r)
‖χQ(y,r)∩Q(x,R)‖q
|Q(y, r)|

1
q

≤ ϕ(r)
‖χQ(y,r)‖q
|Q(y, r)|

1
q

= ϕ(r) ≤ ϕ(R)

again by virtue of the fact that ϕ ∈ Gq. �

A direct consequence of the above quantitative information is:

Corollary 3.26. [80, Corollary 2.3] Let 0 < q < ∞ and ϕ : (0,∞) → (0,∞) be a
function in the class Gq. If N0 > n/q, then (1 + | · |)−N0 ∈Mϕ

q (Rn).

Proof. Since ϕ ∈ Gq, we have ϕ(t)t−
n
q ≤ ϕ(1) for all t ≥ 1. we have

‖(1 + | · |)−N0‖Mϕ
q
.
∞∑
j=1

‖χQ(j)‖Mϕ
q

max(1, j − 1)N0
≤
∞∑
j=1

ϕ(j)

max(1, j − 1)N0
<∞.

Here for the second inequality we invoked Lemma 3.25. �

Now we consider the role of ϕ. We did not tolerate the case where p = ∞
when we define Mp

q(Rn). If we define M∞q (Rn) similar to Mp
q(Rn), then we have

M∞q (Rn) = L∞(Rn) by the Lebesgue differentiation theorem. The next theorem
concerns a situation close to this.

Theorem 3.27. [75, Proposition 3.3] Let 0 < q < ∞ and ϕ ∈ Gq. Then, the
following are equivalent:

• inf
t>0

ϕ(t) > 0,

• Mϕ
q (Rn) ⊂ L∞(Rn).

If these conditions are satisfied, then Mϕ
q (Rn) = L∞(Rn) ∩M

ϕ− inf
t>0

ϕ(t)

q (Rn) with
equivalence of norms.

Proof. If inf
t>0

ϕ(t) > 0, then by the Lebesgue differentiation theorem we get

|f(x)|q = lim
r↓0

1

|B(x, r)|

∫
B(x,r)

|f(y)|q dy

≤ 1

inf
t>0

ϕ(t)q
lim
r↓0

ϕ(r)q

|B(x, r)|

∫
B(x,r)

|f(y)| dy

≤ 1

inf
t>0

ϕ(t)q
‖f‖Mϕ

q

q

for all f ∈Mϕ
q (Rn) and all Lebesgue points x of |f |q. Therefore, f ∈ L∞.

Assume that Mϕ
q (Rn) ⊂ L∞(Rn). Then by the closed graph theorem,

‖f‖∞ . ‖f‖Mϕ
q

for all f ∈ Mϕ
q (Rn). If we choose f = χB(a,r), then we have

1 . ϕ(r). This shows that inf
t>0

ϕ(t) > 0.
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Finally, by taking ϕ1 ≡ inf
t>0

ϕ(t) and ϕ2 ≡ ϕ − ϕ1, we obtain Mϕ
q (Rn) =

L∞(Rn) ∩ M
ϕ− inf

t>0
ϕ(t)

q (Rn) with equivalence of norms from the general formula
Mϕ1+ϕ2

q (Rn) =Mϕ1
q (Rn) ∩Mϕ2

q (Rn) with equivalence of norms. �

We also investigate the reverse inclusion to Theorem 3.27.

Theorem 3.28. [75, Proposition 3.3] Let 0 < q < ∞ and ϕ ∈ Gq. Then, the
following are equivalent:

• sup
t>0

ϕ(t) <∞,

• Mϕ
q (Rn) ⊃ L∞(Rn).

Proof. If sup
t>0

ϕ(t) <∞, then by letting ψ(t) ≡ sups>0 ϕ(s), t > 0 we have L∞(Rn) =

Mψ
q (Rn) with equivalence of norms. Since ϕ ≤ ψ, we have Mψ

q (Rn) ⊂ Mϕ
q (Rn).

Thus L∞(Rn) ⊂Mϕ
q (Rn).

Conversely, if L∞(Rn) ⊂ Mϕ
q (Rn), then by the closed graph theorem the

embedding norm is finite and hence ϕ(r) = ‖χQ(r)‖Mϕ
q
. ‖χQ(r)‖L∞ = 1 for all

r > 0. Then supϕ <∞. �

By combining these two theorems, we obtain the following result.

Corollary 3.29. [75, Proposition 3.3] Let 0 < q < ∞ and ϕ ∈ Gq. Then, the
following are equivalent:

• logϕ ∈ L∞(0,∞), i.e., 0 < inf
t>0

ϕ(t) ≤ sup
t>0

ϕ(t) <∞,

• L∞(Rn) =Mϕ
q (Rn).

So, if logϕ grows or decays slowly we can say that Mϕ
q (Rn) is close to

L∞(Rn).

The next example shows that when the support of the functions are torn
apart, the norm does not increase even in the case of generalized Morrey spaces.

Example 3.30. Let 0 < q <∞ and ϕ ∈ Gq. Suppose that we have a collection of
cubes {Qj}∞j=1 = {Q(aj , rj)}∞j=1 such that {3Qj}∞j=1 = {Q(aj , 3rj)}∞j=1 is disjoint
and is contained in Q = Q(a0, r0). Let {fj}∞j=1 be a collection of functions in
Mϕ

q (Rn) satisfying

‖fj‖q ≤ ϕ(r0)−1rj
n
q , supp(fj) ⊂ Qj , (23)

‖fj‖Mϕ
q
≤ 1 (24)

for each j ∈ N. Then f ≡
∞∑
j=1

fj ∈ Mϕ
q (Rn). Since f is supported in Q, we have

only to consider cubes contained in 3Q; if a cube Q′ intersects both Q and Rn \ 3Q,
then its triple 3Q′ engulfs Q and the radius of Q is smaller than that of Q′. Thus
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we have

‖f‖Mϕ
q
. sup
x∈Rn,r>0, Q(x,r)⊂3Q

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

.

We fix a cube Q(x, r) and estimate

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

.

We let

J1 ≡ {j ∈ N : Q(x, r) ∩Q(aj , rj) 6= ∅, rj ≤ r},
J2 ≡ {j ∈ N : Q(x, r) ∩Q(aj , rj) 6= ∅, rj > r}.

Accordingly we set

Ii ≡ ϕ(r)

 1

|Q(x, r)|

∫
Q(x,r)

∣∣∣∣∣∣
∑
j∈Ji

fj(y)

∣∣∣∣∣∣
q

dy


1
q

for i = 1, 2.

As for I1, we use (23) and the fact that {Q(aj , rj)}∞j=1 is disjoint:

I1 ≤ ϕ(r)

 1

|Q(x, r)|
∑
j∈J1

ϕ(r0)−qrj
n

 1
q

≤

 1

|Q(x, r)|
∑
j∈J1

rj
n

 1
q

. 1.

As for I2, we have only to consider only one summand, since Q(aj , 3rj)
engulfs Q(x, r) if j ∈ H2: we can deduce I2 ≤ 1 using (24).

As an application of Example 3.30, we present another example. Denote by [t]
the integer part of t ∈ R. For positive sequences {Ak}∞k=1 and {Bk}∞k=1 “Ak ∼ Bk
as k →∞” means that {log(Ak/Bk)}∞k=1 is a bounded sequence.

Example 3.31. [75, Lemma 4.1] Let ϕ ∈ Gq with 0 < q <∞. We fix a ∈ Rn. Let
{sk}∞k=1 ⊂ (0, 1] be a sequence which decreases to 0.

Keeping in mind

inf
0<t≤1

ϕ(t)q/nt−1 = ϕ(1)q/n, inf
0<t<1

ϕ(t)−q/n = ϕ(1)−q/n,

we let

`k ≡ [1 + ϕ(sk)q/nsk
−1] (∼ ϕ(sk)q/nsk

−1)

mk ≡ [1 + ϕ(sk)−q/n] (∼ ϕ(sk)−q/n).

Then

`kskmk ∼ ϕ(sk)
q
n sk
−1skϕ(sk)−

q
n = 1, sk ↓ 0 (25)

as k →∞. Hence

ϕ((`kmk)−1)−qmk
−n ∼ ϕ(sk)−qsk

n`k
n ∼ 1 (26)
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as k →∞.

Devide equally a+ [0, 1]n into `k
n cubes to have a non-overlapping collection

{bk,j + [0, `k
−1]n}j=1,2,...,`kn .

Furthermore, we devide [0, `k
−1]n equally into mk

n cubes to obtain a collection

{ek,j + [0,mk
−1]n}j=1,2,...,mkn

of cubes. Then

bk,j + [0, `k
−1]n =

mk
n⋃

i=1

(bk,j + ek,i + [0, (`kmk)−1]n).

If we set

gk,i,j,a =
1

ϕ((`kmk)−1)
χbk,j+ek,i+[0,(`kmk)−1]n .

and

fk,i,a = fk,i =

`k
n∑

j=1

χbk,j+ek,i+[0,(`kmk)−1]n

ϕ((`kmk)−1)
=

`k
n∑

j=1

gk,i,j,a. (27)

Then, each fk,i,a is supported in a + [0, 1]n and each gk,i,j,a is supported in bk,j +
[0, `k

−1]n. We will show that {fk,i,a}a∈Rn,k∈N, i=1,2,...,mkn forms a bounded set
in Mϕ

q (Rn). This is achieved by verifying the assumption of Example 3.30. Let
F1, F2, . . . , F3n be a partition of {1, 2, . . . , `kn} such that

{bk,j + [−`k−1, 2`k
−1]n}j∈Fl′n

is not overlapping for each l′ = 1, 2, . . . , 3n. To check this we need to verify (23)
and (24).

From Lemma 3.25, we have (23). Meanwhile,

‖gk,i,j,a‖q = ϕ((`kmk)−1)(`kmk)−
n
q ∼ `k−

n
q .

Thus for each l′ = 1, 2, . . . , 3n 1

ϕ((`kmk)−1)

∑
j∈Fl′

χbk,j+ek,i+[0,(`kmk)−1]n


a∈Rn,k∈N, i=1,2,...,mkn

is a bounded set. So {fk,i,a}a∈Rn,k∈N, i=1,2,...,mkn forms a bounded set in Mϕ
q (Rn).

From these examples, we obtain the following conclusion:

Corollary 3.32. [75, Corollary 4.11] Let 0 < q1, q2 < ∞, and let ϕ1 ∈ Gq1 and
ϕ2 ∈ Gq2 . Assume in addition that inf

t>0
ϕ1(t) = 0. Then Mϕ1

q1 (Rn) ⊂ Mϕ2
q2 (Rn) if

and only if q1 ≥ q2 and ϕ1 & ϕ2. Furthemore, if q1 < q2, there exists a compactly
supported function f ∈ Mϕ2

q2 (Rn) \Mϕ1
q1 (Rn). In particular, for 0 < q1 ≤ p1 < ∞

and 0 < q2 ≤ p2 <∞, Mp1
q1 (Rn) ⊂Mp2

q2 (Rn) if and only if q1 ≥ q2 and p1 = p2.
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Proof. The “if” part is trivial thanks to Lemma 3.12. Let us concentrate on the
“only if” part.

Assume q1 < q2. We employ Example 3.31 with q = q1 and ϕ = ϕ1. Then∥∥∥∥∥∥
∑
j∈Fl′

χbk,j+ek,i+[0,(`kmk)−1]n

∥∥∥∥∥∥
Lq2

∼
(
`k
n(`kmk)−n

) 1
q2 = mk

− n
q2 .

As a result,

1

ϕ((`kmk)−1)

∥∥∥∥∥∥
∑
j∈Fl′

χbk,j+ek,i+[0,(`kmk)−1]n

∥∥∥∥∥∥
Lq2

∼ 1

ϕ((`kmk)−1)mk

n
q2

= mk

n
q−

n
q2 →∞,

since inft>0 ϕ1(t) = 0. Thus, Mϕ1
q1 (Rn) contains a function which does not belong

to Lq2loc(Rn). Consequently, if Mϕ1
q1 (Rn) ⊂ Mϕ2

q2 (Rn), then q1 ≥ q2. Finally, we
must have ϕ1 & ϕ2 from Lemma 3.25 if Mϕ1

q1 (Rn) ⊂Mϕ2
q2 (Rn). �

When inf
t>0

ϕ1(t) > 0, the situation is different.

Example 3.33. When ϕ1 is constant, we use Theorem 3.28 to have the following
characterization. Let 0 < q1, q2 < ∞, and let ϕ1 = 1 ∈ Gq1 and ϕ2 ∈ Gq2 . Then
L∞(Rn) =Mϕ1

q1 (Rn) ⊂Mϕ2
q2 (Rn) if and only if sup

t>0
ϕ2(t) <∞.

For the later purpose we use the following characterization of
∗
Mϕ

q (Rn), which

is defined to be the closure of Mϕ
q (Rn) ∩ L0

c(Rn) in Mϕ
q (Rn).

Lemma 3.34. For 0 < q ≤ p <∞, we have
∗
Mϕ

q (Rn) =
{
f ∈Mϕ

q (Rn) : lim
R→∞

‖χRn\B(R)f‖Mϕ
q

= 0
}
. (28)

Proof. Assume that f ∈Mϕ
q (Rn) satisfies

lim
R→∞

‖χRn\B(R)f‖Mϕ
q

= 0.

Then f = lim
R→∞

χB(R)f in Mϕ
q (Rn). Conversely, if f ∈

∗
Mϕ

q (Rn) and ε > 0, then

we can find g ∈ Mϕ
q (Rn) ∩ L0

c(Rn) such that ‖f − g‖Mϕ
q
< ε. By the triangle

inequality

‖χRn\B(R)f‖Mϕ
q
. ‖χRn\B(R)g‖Mϕ

q
+ ‖f − g‖Mϕ

q
.

Let R > 0 be large enough as to have supp(g) ⊂ B(R). Then the above inequality
reads as:

‖χRn\B(R)f‖Mϕ
q
. ‖f − g‖Mϕ

q
(< ε),

as required. �

We also have the following characterization of the spaceMϕ

q (Rn), the closure
of L∞(Rn) ∩Mϕ

q (Rn) in Mϕ
q (Rn):
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Lemma 3.35. Let 0 < q <∞ and ϕ ∈ Gq. If f ∈Mϕ
q (Rn), then

lim
R→∞

‖χ{|f |>R}f‖Mϕ
q

= 0. (29)

Proof. Let ε > 0 be fixed. Since f ∈ Mϕ
q (Rn), we can choose g ∈ L∞(Rn) ∩

Mϕ
q (Rn) so that ‖g − f‖Mϕ

q
< ε. Let R > ‖g‖∞ We estimate

‖χ{|f |>2R}f‖Mϕ
q
. ‖f − g‖Mϕ

q
+ ‖χ{|f |>2R}g‖Mϕ

q

If |g| ≤ R and |f | > 2R, then |g| ≤ R ≤ |f − g|. Thus

‖χ{|f |>2R}f‖Mϕ
q
. 2‖f − g‖Mϕ

q
+ ‖χ{|g|>R}g‖Mϕ

q
≤ 2ε.

As a result (29) holds. �

The generalized tilde subspace M̃ϕ
q (Rn) is defined to be the completion of

L∞(Rn) ∩Mϕ
q (Rn) in Mϕ

q (Rn).

Proposition 3.36. Let 0 < q < ∞ and ϕ ∈ Gq. Then M̃ϕ
q (Rn) = Mϕ

q (Rn) ∩
∗
Mϕ

q (Rn).

Proof. It is easy to show that M̃ϕ
q (Rn) ⊂Mϕ

q (Rn)∩
∗
Mϕ

q (Rn). Let f ∈Mϕ
q (Rn)∩

∗
Mϕ

q (Rn). By Lemmas 3.34 and 3.35, we see that

f = lim
R→∞

χB(R)∩{|f |>R}f.

Thus f ∈ M̃ϕ
q (Rn). �

Although we can define many other closed subspaces as we did for Morrey
spaces, we content ourselves with these three definitions, which we actually use.

Remark 3.37. Here the space M̃ϕ
q (Rn) is introduced. See [3, 12, 66, 88, 89] for a

different class of closed subspaces.

4. Boundedness properties of the operators in generalized Morrey
spaces

Having set down the boundedness properties of generalized Morrey spaces,
we are now interested in the boundedness properties of the operators.

4.1. Maximal operator in generalized Morrey spaces and the class Z0.
After we generalize the parameter p in the space Mp

q(Rn), we realize that the
boundedness of the maximal operator is obtained due to the condition on q ∈ (1,∞).

Theorem 4.1. [73, Theorem 1], [75, Corollary 5.6], [91, Theorem 2.3] Let 1 < q <
∞ and ϕ ∈ Gq. Then

‖Mf‖Mϕ
q
. ‖f‖Mϕ

q

for all measurable functions f .
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We observe that we did not requere anything other than ϕ ∈ Gq as an evidence
of the fact that the parametre q play a central role for the boundedness of the
Hardy–Littlewood maximal operator. Theorem 4.1 extends the result in [10] from
Morrey spaces to generalized Morrey spaces.

Proof. Once we assume ϕ ∈ Gq, the proof of this theorem will be an adaptation of
the classical case. Fix a cube Q(x, r). We need to prove

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

Mf(y)q dy

) 1
q

. ‖f‖Mϕ
q
.

We let f1 ≡ χQ(x,5r)f and f2 ≡ f − f1. We need to prove

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

Mf1(y)q dy

) 1
q

. ‖f‖Mϕ
q

(30)

and

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

Mf2(y)q dy

) 1
q

. ‖f‖Mϕ
q
. (31)

The proof of (30) follows from the boundedness of the Hardy–Littlewood maximal
operator and the fact that ϕ(5r) ' ϕ(r) for any r > 0. As for (31), we use

M [χRn\5Qf ](y) . sup
R:Q⊂R∈Q

1

|R|

∫
R

|f(z)| dz (y ∈ Q)

with Q = Q(x, r). Then by virtue of the fact that ϕ is increasing, we obtain

ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

Mf2(y)q dy

) 1
q

. ϕ(r)× sup
R:Q⊂R∈Q

1

|R|

∫
R

|f(z)| dz

. sup
R:Q⊂R∈Q

ϕ(r)× 1

|R|

∫
R

|f(z)| dz

. ‖f‖Mϕ
1

≤ ‖f‖Mϕ
q
,

where for the last inequality, we used the nesting property of Mϕ
q (Rn), 1 ≤ q <

∞. �

As we have seen, any function ϕ : (0,∞) → (0,∞) will do. So we have the
following boundedness for small Morrey spaces.

Example 4.2. Let 1 < q ≤ p < ∞. Then M is bounded on mp
q(Rn) and hence

Lquloc(Rn). In fact, M is bounded on Mϕ
q (Rn) ∼ mp

q(Rn) thanks to Theorem 4.1,

where ϕ(t) = max(t
n
p , 1), t > 0.

Similar to Theorem 4.1, we can prove the following theorem:

Theorem 4.3. [73, Theorem 1], [75, Corollary 6.2] Let 1 ≤ q < ∞ and ϕ ∈ Gq.
Then ‖Mf‖wMϕ

q
. ‖f‖Mϕ

q
for all measurable functions f .
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Once again any function Gq will do as long as ϕ ∈ Gq. Theorem 4.3 extends
the result in [10] from Morrey spaces to generalized Morrey spaces.

Proof. Simply resort to the weak-(1, 1) boundedness of M and modify the proof of
Theorem 4.1. �

We move on to the vector-valued inequality. We use the following estimate:

Lemma 4.4. For all measurable functions f and cubes Q, we have

M [χRn\5Qf ](y) . sup
Q⊂R∈Q

mR(|f |) (y ∈ Q). (32)

Proof. We write out M [χRn\5Qf ](y) in full:

M [χRn\5Qf ](y) = sup
R∈Q

χR(y)

|R|
‖f‖L1(R\5Q),

where R runs over all cubes. In order that χR(y)‖f‖L1(R\5Q) be nonzero, we need
to have y ∈ R and R \ 5Q 6= ∅. Thus, R meets both Q and Rn \ 5Q. If R ∈ Q is a
cube that meets both Q and Rn \ 5Q, then `(R) ≥ 2`(Q) and 2R ⊃ Q. Thus, (32)
follows. �

Unlike the usual maximal inequality, we need the integral condition (33).

Theorem 4.5. Let 1 < q <∞, 1 < u ≤ ∞ and ϕ ∈ Gq. Assume in addition that∫ ∞
r

ds

ϕ(s)s
.

1

ϕ(r)
(r > 0). (33)

Then for all {fj}∞j=1 ⊂Mϕ
q (Rn),∥∥∥∥∥∥∥

 ∞∑
j=1

Mfj
u

 1
u

∥∥∥∥∥∥∥
Mϕ

q

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

. (34)

Proof. When u =∞, the result is clear from Theorem 4.1. The proof is essentially
the same as the classical case except that we truly use (33). The proof of the
estimate of the inner term remains unchanged except in that we need to generalize
the parameter p to the function ϕ. Let fj,1 = χ5Qfj and fj,2 = fj − fj,1. We can
handle fj,1’s in a standard manner as before. Going through a similar argument to
the classical case and using Lemma 4.4, we will haveϕ(`(Q))q

|Q|

∫
Q

 ∞∑
j=1

Mfj,2(y)u


q
u

dy


1
q

.
∞∑
k=1

ϕ(`(Q))

|2kQ|

∫
2kQ

 ∞∑
j=1

|fj(z)|u
 1

u

dz.
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If we use the definition of the Morrey norm, we obtainϕ(`(Q))q

|Q|

∫
Q

 ∞∑
j=1

Mfj,2(y)u


q
u

dy


1
q

.
∞∑
k=1

ϕ(`(Q))

ϕ(2k`(Q))

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

.

(35)

Since ϕ ∈ Gq, we obtain

∞∑
k=1

ϕ(`(Q))

ϕ(2k`(Q))
.
∫ ∞
`(Q)

ϕ(`(Q))

ϕ(t)t
dt.

If we use (33) and ϕ ∈ Gq, then we have

∞∑
k=1

ϕ(`(Q))

ϕ(2k`(Q))
. 1.

Inserting this estimate into (35), we obtain the counterpart to the classical case. �

Since (33) is an important condition, we are interested in its characterization.
In fact, we have the following useful one.

Theorem 4.6. Assume that ϕ : (0,∞)→ (0,∞) is an almost increasing function.
Then the following are equivalent:

• ϕ satisfies (33).
• There exists m0 ∈ N such that

ϕ(2m0r) > 2ϕ(r) (36)

for all r > 0.

Proof. Assume that (33) holds. Let m′0 be a positive integer such that ϕ(2m
′
0−1r) ≤

2ϕ(r) for all r > 0. Thus since ϕ is almost increasing,

logm′0
2ϕ(r)

≤
∫ 2m

′
0−1r

r

ds

ϕ(s)s
.

1

ϕ(r)
.

Since ϕ(r) > 0, we have an upper bound M for m′0. Thus if we set m0 = M + 1,
we obtain the desired number m0.

If (33) holds, then∫ ∞
r

ds

ϕ(s)s
=

∞∑
j=1

∫ 2m0jr

2m0(j−1)r

ds

ϕ(s)s
.
∞∑
j=1

∫ 2m0jr

2m0(j−1)r

ds

2jϕ(r)s
.

1

ϕ(r)
,

as required. �

As we have mentioned, we need (33) for the vector-valued maximal inequality.
We give an example showing that (33) is absolutely necessary: By no means (33)
is artificial as the following proposition shows:
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Proposition 4.7. Let 1 < q < ∞, 1 < u < ∞ and ϕ ∈ Gq. Assume in addition
that ∥∥∥∥∥∥∥

 ∞∑
j=1

Mfj
u

 1
u

∥∥∥∥∥∥∥
wMϕ

q

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

. (37)

holds for all sequences of measurable functions {fj}∞j=1. Then (33) holds.

We exclude the case where u =∞, where (37) still holds without (33).

Proof. Assume to the contrary; for all m ∈ N ∩ [2,∞), there would exist rm > 0
such that ϕ(2mrm) ≤ 2ϕ(rm) for r = rm. Fix m ∈ N for the time being. Let us
consider fj = χ[1,j](m)χB(2jrm)\B(2j−1rm) for j ∈ N. Observe∥∥∥∥∥∥∥

 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

=

∥∥∥∥∥∥∥
 m∑
j=1

χB(2jrm)\B(2j−1rm)

 1
u

∥∥∥∥∥∥∥
Mϕ

q

.

As a result,∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

≤ ‖χB(2mrm)‖Mϕ
q
≤ ϕ(2mrm) . ϕ(rm).

Let x ∈ B(rm). For j > m, we have Mfj(x) = 0. Meanwhile for 1 ≤ j ≤ m, we
have

Mfj(x) ≥ 1

|B(x, 2j+1rm)|

∫
B(x,2j+1rm)

fj(y) dy

≥ 1

|B(x, 2j+1rm)|

∫
B(2jrm)

χB(2jrm)\B(2j−1rm)(y) dy

=
2n − 1

4n
≥ 1

4n
.

Consequently,∥∥∥∥∥∥∥
 ∞∑
j=1

Mfj
u

 1
u

∥∥∥∥∥∥∥
wMϕ

q

≥ ϕ(rm)

m∑
j=1

(
1

4n

)u
∼ ϕ(rm) m

1
u .

By our assumption, we have

ϕ(rm)m
1
u .

∥∥∥∥∥∥∥
 ∞∑
j=1

Mfj
u

 1
u

∥∥∥∥∥∥∥
wMϕ

q

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

. ϕ(rm),

or equivalently

m ≤ D
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where D does not depend on m. This contradicts to the fact that m ∈ N ∩ [2,∞)
is arbitrary. �

Example 4.8. Let 1 ≤ q ≤ p <∞. Then∥∥∥∥∥∥∥
 ∞∑
j=1

Mfj
u

 1
u

∥∥∥∥∥∥∥
wmpq

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
mpq

({fj}∞j=1 ⊂ mp
q(Rn))

fails. In particular,∥∥∥∥∥∥∥
 ∞∑
j=1

Mfj
u

 1
u

∥∥∥∥∥∥∥
wLquloc

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Lquloc

({fj}∞j=1 ⊂ L
q
uloc(Rn))

fails. In fact, let ϕ(t) ≡ max(t
n
p , 1) for t > 0 as before. Then ϕ fails (33) because∫ ∞

u

dr

ϕ(r)
∼ log

1

u
.

Proposition 4.7 led us to the conclusion that (33) is fundamental. The fol-
lowing proposition will be fundamental in the study of the boundedness of the
operators in generalized Morrey spaces.

Theorem 4.9. [73, Lemma 2] If a nonnegative locally integrable function ψ and a
positive constant D > 0 satisfy∫ ∞

r

ψ(t)
dt

t
≤ Dψ(r) (r > 0)

then ∫ ∞
r

ψ(t)tε
dt

t
≤ rε

1−Dε
·
∫ ∞
r

ψ(t)t−1 dt ≤ D

1−Dε
· ψ(r)rε (r > 0) (38)

for all 0 < ε < D−1.

Proof. Let

Ψ(r) =

∫ ∞
r

ψ(t)t−1 dt (r > 0).

For 0 < r < R∫ R

r

ψ(t)tε
dt

t
= [−Ψ(t)tε]Rr +

∫ R

r

Ψ(t)εtε
dt

t
≤ Ψ(r)rε + εD

∫ R

r

ψ(t)tε
dt

t
.

Therefore ∫ R

r

ψ(t)tε
dt

t
≤ 1

1− εD
Ψ(r)rε ≤ D

1− εD
ψ(r)rε.

It remains to let R→∞. �

We change variables to have the following variant:
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Theorem 4.10. [73, Lemma 2] Let ψ : (0,∞) → (0,∞) be a measurable function
satisfying ∫ r

0

ψ(t)
dt

t
≤ Dψ(r) (r > 0)

for some D > 0 independent of r > 0. If 0 < ε < D−1, then∫ r

0

ψ(t)
dt

t1+ε
≤ 1

1−Dε
r−ε

∫ r

0

ψ(t)
dt

t
≤ D

1−Dε
r−εψ(r).

Proof. Set

η(t) = ψ

(
1

t

)
(t > 0).

Then our assumption reads as:∫ ∞
r

η(t)
dt

t
≤ Dη(r) (r > 0).

Thus, ∫ ∞
r

η(t)
dt

t1−ε
≤ 1

1−Dε
rε
∫ ∞
r

η(t)
dt

t
≤ D

1−Dε
rεη(r) (r > 0)

according to Theorem 4.9. If we express this inequality in terms of ψ, we obtain
the desired result. �

In the next proposition, we further characterize and apply our key assumption
(33).

Proposition 4.11. [80, Proposition 2.7] Let ϕ be a nonnegative locally integrable

function such that ϕ(s) . ϕ(r) for all r, s > 0 with
1

2
≤ r

s
≤ 2. There exists a

constant ε > 0 such that
tε

ϕ(t)
.

rε

ϕ(r)
(t ≥ r) (39)

holds if and only if holds (33), or equivalently, ϕ satisfies (38) for some ε > 0. If
one of these conditions is satisfied, then∫ ∞

r

ds

ϕ(s)us
.

1

ϕ(r)u
(r > 0) (40)

for all 0 < u <∞, where the implicit constant depends only on u.

Proof. The implication (33) =⇒ (38) follows from Proposition 4.9.

Assume (38). Then we have

tε

ϕ(t)
.
∫ 2t

t

dv

v1−εϕ(v)
.

rε

ϕ(r)

thanks to the doubling property of ϕ, proving (39).

If we assume (39), then we have∫ ∞
r

ds

ϕ(s)s
=

∫ ∞
r

sε

ϕ(s)

ds

s1+ε
.
∫ ∞
r

rε

ϕ(r)

ds

s1+ε
=

1

εϕ(r)
,
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which implies (33). Note that (39) also implies (40) because ϕu satisfies (39) as
well. �

Let 0 < u < ∞ be fixed. Inequality (40) is necessary for (33); simply apply
Proposition 4.11 to ϕu.

Example 4.12. Let ϕ ∈ Gq satisfy (40). Then we have∫ ∞
r

1

ϕ(s)s1−ε ds .
rε

ϕ(r)
(r > 0).

Hence
sε

ϕ(s)
.

rε

ϕ(r)

whenever 0 < r ≤ s <∞. As a result,∫ 1

0

ϕ(r)
dr

r
<∞.

Let ϕ(t) ≡ max(t
n
p , 1) for t > 0 as before. Then ϕ clearly fails to satisfy this

condition.

We generalize condition (33) as follows:

Definition 4.13. Let γ ∈ R.

• The (upper) Zygmund class Zγ is defined to be the set of all measurable
functions ϕ : (0,∞)→ (0,∞) for which lim

r↓0
ϕ(r) = 0 and∫ r

0

ϕ(t)t−γ−1 dt . ϕ(r)r−γ (r > 0),

• The (lower) Zygmund class Zγ is defined to be the set of all measurable
functions ϕ : (0,∞)→ (0,∞) for which lim

r↓0
ϕ(r) = 0 and∫ ∞

r

ϕ(t)t−γ−1 dt . ϕ(r)r−γ (r > 0).

Note that (33) reads as 1
ϕ ∈ Z0.

Example 4.14. Let ϕ(t) = tp with 1 < p <∞, and let γ ∈ R.

• ϕ ∈ Zγ if and only if p > γ.
• ϕ ∈ Zγ if and only if p < γ.
• 1 /∈ Zγ if and only if γ < 0.

We present an example of the functions in Mϕ
q (Rn). Let 0 < η < ∞. We

define the powered Hardy–Littlewood maximal operator M (η) by

M (η)f(x) ≡ sup
R>0

(
1

|B(x,R)|

∫
B(x,R)

|f(y)|ηdy

) 1
η

(x ∈ Rn).
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Example 4.15. [80, Proposition 2.11] Let 0 < q <∞ and ϕ ∈ Gq. Define

f ≡
∞∑

j=−∞

χ[2−j−1,2−j ]n

ϕ(2−j)
, g ≡ sup

j∈Z

χ[0,2−j ]n

ϕ(2−j)
.

We claim that the following are equivalent;

(a) f ∈Mϕ
q (Rn),

(b) g ∈Mϕ
q (Rn),

(c) 1
ϕ ∈ Z

n
q .

Let 0 < u < q. Note that f ≤ g ≤ 2nM (u)f , where M (u) denotes the powered
Hardy–Littlewood maximal operator. Observe that M (u) is bounded on Mϕ

q (Rn).
Thus (a) and (b) are equivalent. Since f is expressed as f = f0(‖ · ‖∞), that is,
there exists a function f0 : [0,∞) → R such that f(x) = f0(‖x‖∞) for all x ∈ Rn,
where ‖ · ‖∞ denotes the `∞-norm, it follows that (a) and (c) are equivalent.

Example 4.16. [80, Proposition 2.11] Let 0 < q < ∞, and let ϕ ∈ Gq. Define a
decreasing function ϕ† by:

ϕ†(t)≡ϕ(t)t−
n
q (41)

for t > 0. Define h ≡
∞∑

j=−∞

χ[0,2−j ]n

ϕ(2−j)
. Then

∞∑
j=l

1

ϕ(2−j)
.

1

ϕ(2−l)
and that

l∑
j=∞

1

ϕ†(2−j)
.

1

ϕ†(2−l)

for all l ∈ Z if and only if h ∈Mϕ
q (Rn).

To verify this, we let f, g be as in Example 4.15. Suppose first h ∈Mϕ
q (Rn).

Then

ϕ(2−l)

 1

|[0, 2−l]n|

∫
[0,2−l]n

 ∞∑
j=l

1

ϕ(2−j)

q

dx


1
q

≤ ‖h‖Mϕ
q
.

Thus

∞∑
j=l

1

ϕ(2−j)
≤
‖h‖Mϕ

q

ϕ(2−l)
for all l ∈ Z. This implies that f ≤ g ≤ h . f , where

f and g are defined in Example 4.15. Thus from Example 4.15,

l∑
j=∞

1

ϕ†(2−j)
.

1

ϕ†(2−l)
holds as well.

Conversely, assume that

l∑
j=∞

1

ϕ†(2−j)
.

1

ϕ†(2−l)
(42)
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and
∞∑
j=l

1

ϕ(2−j)
.

1

ϕ(2−l)
(43)

hold for all l ∈ Z. Then we have h ∼ f from (43). Thus f ∈ Mϕ
q (Rn) by (42),

from which it follows that h ∈Mϕ
q (Rn).

We further present some examples of the functions in Mϕ
p (Rn).

Lemma 4.17. [18, Lemma 2.4] Let 0 < q < ∞ and ϕ ∈ Gq ∩ Z−
n
q . Then the

function ψ(x) = ϕ(|x|) belongs to Mϕ
q (Rn).

Proof. First note that ϕ ∈ Z−
n
q is equivalent to

1

rn

∫ r

0

ϕ(t)qtn−1 dt . ϕ(r)q (r > 0). (44)

Note that ϕ(| · |) is radial decreasing, so that for all a ∈ Rn and r > 0,(
1

|B(a, r)|

∫
B(a,r)

ϕ(|x|)qdx

) 1
q

≤

(
1

|B(r)|

∫
B(r)

ϕ(|x|)qdx

) 1
q

. (45)

Combining (44) and (45) and using the spherical coordinate, we obtain the desired
result. �

Remark 4.18. See [110, Theorem 2.1] for the weak boundedness of the maximal
operators, where the integral conditions is assumed.

Remark 4.19. See [29, Theorem 4.2] and [2, Theorem 3.4] for the strong bound-
edness of the maximal operators, where the integral conditions is assumed. See
[79, 75, 91] for the strong boundedness of the maximal operators, where the integral
conditions is not assumed.

Remark 4.20. See [7, Theorem 1], [108, Theorem 2.9], [120, Theorem 1.9] and
[127, Theorem 2.1] for the boundedness of the maximal operator on generalized
Morrey spaces in the multilinear setting.

4.2. Singular integral operators on generalized Morrey spaces. Let T be
a singular integral operator. To define the function Tf for f ∈ Mϕ

q (Rn) we follow
the same strategy as the one for f ∈ Mp

q(Rn). To this end, we need to establish
the following estimate:

Lemma 4.21. Let 1 < q <∞ and ϕ ∈ Gq satisfy 1
ϕ ∈ Z0. Then ‖Tf‖Mϕ

q
. ‖f‖Mϕ

q

for all f ∈ L∞c (Rn).

We note that 1
ϕ ∈ Z0 appeared once again.

Proof. Let Q be a fixed cube. Then we need to prove

ϕ(`(Q))

(
1

|Q|

∫
Q

|Tf(y)|q dy
) 1
q

. ‖f‖Mϕ
q
.
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To this end, we decompose f according to 2Q: f1 = χ2Qf , f2 = f − f1. As for f1,
we have

ϕ(`(Q))

(
1

|Q|

∫
Q

|Tf1(y)|q dy
) 1
q

≤ ϕ(`(Q))

(
1

|Q|

∫
Rn
|Tf1(y)|q dy

) 1
q

. ϕ(`(Q))

(
1

|Q|

∫
Rn
|f1(y)|q dy

) 1
q

. ϕ(`(Q))

(
1

|Q|

∫
2Q

|f(y)|q dy
) 1
q

. ‖f‖Mϕ
q
.

As for f2, we use the size condition of K, the integral kernel of T , to have the local
estimate:

|Tf2(y)| .
∫
Rn\2Q

|f(y)| dy
|y − c(Q)|n

.
∫ ∞
`(Q)

(
1

`n+1

∫
B(c(Q),`)

|f(y)| dy

)
d`.

By the definition of the norm, Lemma 3.12 and (33), we obtain

|Tf2(y)| .
∫ ∞
`(Q)

1

rϕ(r)
dr · ‖f‖Mϕ

q
.

1

ϕ(`(Q))
‖f‖Mϕ

q
.

It remains to integrate this pointwise estimate. �

To carry out our program of proving the boundedness of the singular integral
operators, we need to investigate the predual and its predual.

Definition 4.22. Let 1 < q <∞ and ϕ ∈ Gq.

• [60, Definition 2.3], [109, Definition 4] A (ϕ, q)-block is said to be a measur-

able function A supported on a cube Q satisfying ‖A‖Lq′ ≤ |Q|
− 1
qϕ(`(Q)).

In this case A is said to be a (ϕ, q)-block supported on Q.
• [60, Definition 2.5], [109, Definition 5] The block space Hϕq′(Rn) is the set

of all measurable functions f for which it can be written

f =

∞∑
j=1

λjAj ,

for some sequence {Aj}∞j=1 of (ϕ, q)-blocks and {λj}∞j=1 ∈ `1(Rn). The
norm ‖f‖Hϕ

q′
is the infimum of ‖{λj}∞j=1‖`1 where {Aj}∞j=1 and {λj}∞j=1

run over all expressions above.

Example 4.23. Let 1 < q <∞ and ϕ ∈ Gq. Let A be a non-zero Lq
′
(Rn)-function

supported on a cube Q. Then B ≡ ϕ(`(Q))

|Q|
1
q ‖A‖Lq′

A is a (ϕ, q)-block supported on Q.
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Proposition 4.24. Let 1 < q < ∞ and ϕ ∈ Gq be such that ϕ(t) & t
n
q for alll

t > 0. Then a measurable function f belongs to Hϕq′(Rn) if and only if f admits a
decomposition:

f = λ0B +

∞∑
j=1

λjAj ,

for some sequence {Aj}∞j=1 of (ϕ, q)-blocks supported on cubes of volume less than

or equal to 1 and {λj}∞j=1 ∈ `1(Rn) and B ∈ Lq′(Rn) with unit norm. Furthermore
the norm ‖f‖Hϕ

q′
is the infimum of ‖{λj}∞j=0‖`1 where {Aj}∞j=1, B and {λj}∞j=1 run

over all expressions above.

Proof. Let A be a (ϕ, q)-block supported on Q with `(Q) � 1. Then we can say

that A is a (ϕ, q)-block suppported on Q is and only if 2A has the Lq
′
(Rn)-norm

1 and A is supported on Q. So, in the decomposition in Definition 4.22 any block
Aj with the cube Qj satisfying |Qj | � 1 can be combined into a block supported
on “Rn”. �

The following lemma justifies the definition above.

Lemma 4.25. [109, Lemma 2] Let 1 < q < ∞ and ϕ ∈ Gq. If A is a (ϕ, q)-block
and f ∈Mϕ

q (Rn), then ‖A · f‖L1 ≤ ‖f‖Mϕ
q

.

Proof. Since A is a (ϕ, q)-block, we can find a cube Q such that supp(A) ⊂ Q and

that ‖A‖Lq′ ≤ |Q|
− 1
qϕ(`(Q)). By the Hölder inequality,

‖A · f‖L1 = ‖A · fχQ‖L1 ≤ ‖A‖Lq′‖fχQ‖Lq ≤ |Q|
− 1
qϕ(`(Q))‖fχQ‖Lq ≤ ‖f‖Mϕ

q
,

as required. �

About the definition above, the following proposition is fundamental:

Proposition 4.26. [60, Lemma 4.2] Let 1 < q <∞ and ϕ ∈ Gq. Let f ∈Mϕ
q (Rn)

and g ∈ Hϕq′(Rn). Then ‖f · g‖L1 ≤ ‖f‖Mϕ
q
‖g‖Hϕ

q′
.

Proof. Let ε > 0 be fixed. Then we can decompose g as

g =
∑
k∈K

λkbk

where K ⊂ N is an index set,∑
k∈K

|λk| ≤ (1 + ε)‖g‖Hϕ
q′

(46)

and each bk is a (ϕ, q)-block. According to Lemma 4.25, we have

‖f · g‖L1 ≤
∑
k∈K

|λk| · ‖f‖Mϕ
q
≤ (1 + ε)‖f‖Mϕ

q
‖g‖Hϕ

q′
.

Consequently

‖f · g‖L1 ≤ (1 + ε)‖f‖Mϕ
q
‖g‖Hϕ

q′
.
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Since ε > 0 is arbitrary, it follows that

‖f · g‖L1 ≤ ‖f‖Mϕ
q
‖g‖Hϕ

q′
.

�

For j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn define the set Qjk by

Qjk ≡
[
k1

2j
,
k1 + 1

2j

)
× · · · ×

[
kn
2j
,
kn + 1

2j

)
=

n∏
l=1

[
kl
2j
,
kl + 1

2j

)
.

A dyadic cube is a set of the form Qjk for some j ∈ Z, k = (k1, k2, . . . , kn) ∈ Zn.
The set of all dyadic cubes is denoted by D; D = D ≡ {Qjk : j ∈ Z, k ∈ Zn} . For
j ∈ Z the set of dyadic cubes of the j-th generation is given by

Dj = Dj(Rn) ≡ {Qjk : k ∈ Zn} = {Q ∈ D : `(Q) = 2−j}.

It is easy to see that Hϕq′(Rn) is a normed space. Similar to the classical case,
we can prove the following decomposition theorem:

Theorem 4.27. Let 1 < q < ∞, ϕ ∈ Gq, and let f ∈ Hϕq′(Rn). Then f can be
decomposed as

f =
∑
Q∈D

λ(Q)b(Q),

where λ(Q) is a non-negative number with∑
Q∈D

λ(Q) ≤ 3n‖f‖Hϕ
q′

and b(Q) is a (ϕ, q)-block supported in Q.

Proof. We suppose that ‖f‖Hϕ
q′
< 1. It suffices to find a decomposition

f =
∑
Q∈D

λ(Q)b(Q),

where λ(Q) is a non-negative number with∑
Q∈D

λ(Q) < 3n.

First, decompose f as

f =
∑
k∈K

λkbk

where K ⊂ N is an index set, ∑
k∈K

|λk| < 1 (47)

and each bk is a (ϕ, q)-block. We will divide K into the disjoint sets K(Q) ⊂ N,
Q ∈ D, as

K =
⋃
Q∈D

K(Q)
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so that supp(bk) ⊂ 3Q and |Qk| ≥ |Q| whenever k ∈ K(Q). We achieve this as
follows: Let D = {Q(j)}∞j=1 be an emumeration of D. For each k ∈ K, we write

jk ≡ min{j : supp(bk) ⊂ 3Q(j), |Qk| ≥ |Q(j)|}

for each k. We set

K(Q(j)) ≡ {k ∈ K : jk = j}.
We set

λ(Q) ≡ 3n
∑

k∈K(Q)

|λk|, b(Q) ≡


1

λ(Q)

∑
k∈K(Q) λkbk (λ(Q) 6= 0),

0 (λ(Q) 6= 0).

We now rewrite f as

f =
∑
k∈K

λkbk =
∑
Q∈D

 ∑
k∈K(Q)

λkbk


=
∑
Q∈D

3n
∑

k∈K(Q)

|λk|

 ·

3n

∑
k∈K(Q)

|λk|

−1 ∑
Q∈D

λ(Q)b(Q)

 .

By (47), we have

∑
Q∈D

λ(Q) = 3n
∑
Q∈D

 ∑
k∈K(Q)

|λk|

 = 3n
∑
k∈K

|λk| < 3n.

Since each bk is a (ϕ, q)-block, we obtain3n
∑

k∈K(Q)

|λk|

−1 ∥∥∥∥∥∥
∑

k∈K(Q)

λkbk

∥∥∥∥∥∥
q′

≤

3n
∑

k∈K(Q)

|λk|

−1 ∑
k∈K(Q)

|λk| · ‖bk‖q′

≤

3n
∑

k∈K(Q)

|λk|

−1

ϕ(`(Q))|Q|−
1
q

∑
k∈K(Q)

|λk|

≤ ϕ(`(3Q))|3Q|−
1
q ,

which implies that b(Q) is a (ϕ, q)-block supported in 3Q. These complete the
proof. �

Example 4.28. Let 1 < q < ∞, ϕ ∈ Gq, and let f ∈ Hϕq′(Rn). Assume that

inft>0 t
−nq ϕ(t) > 0, so that Proposition 4.24 is applicable. Then f can be decom-

posed as

f = B +
∑

Q∈D,|Q|≤1

λ(Q)b(Q),
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where λ(Q) is a non-negative number with

‖B‖Lq′ +
∑
Q∈D

λ(Q) . ‖f‖Hϕ
q′

and b(Q) is a (ϕ, q)-block supported in Q.

Corollary 4.29. Let 1 < q < ∞ and ϕ ∈ Gq. Then every function in Hϕq′(Rn) is
locally integrable.

Proof. Simply combine Lemma 3.12, Proposition 4.26 and the fact that χQ ∈
Mϕ

q (Rn) for any cube Q. �

Proposition 4.30. Let 1 < q < ∞ and ϕ ∈ Gq. Assume in addition that ϕ
satisfies (33). Suppose that f and fk, (k = 1, 2, . . .), are nonnegative, that each

fk ∈ Hϕ
′

q′ (Rn), that ‖fk‖Hϕ′
q′
≤ 1 and that fk ↑ f a.e. Then f ∈ Hϕ

′

q′ (Rn) and

‖f‖Hϕ′
q′
≤ 1.

Proof. By Theorem 4.27 fk can be decomposed as

fk =
∑
Q∈D

λk(Q)bk(Q),

where λk(Q) is a non-negative number with∑
Q∈D

λk(Q) ≤ 3n (48)

and bk(Q) is a (ϕ, q)-block supported in Q and

‖bk(Q)‖q′ ≤
ϕ(`(Q))

|Q|
1
q

. (49)

Using (48), (49) and the weak-compactness of the Lebesgue space Lq
′
(Q) we now

apply a diagonalization argument and, hence, we can select an increasing sequence
{kj}∞j=1 of integers that satisfies the following:

lim
j→∞

λkj (Q) = λ(Q), (50)

lim
j→∞

bkj (Q) = b(Q) in the weak-topology of Lq
′
(Q), (51)

where b(Q) is a (ϕ, q)-block supported in Q. We set

f0 ≡
∑
Q∈D

λ(Q)b(Q).

Then, by the Fatou theorem and (48),∑
Q∈D

λ(Q) ≤ lim inf
j→∞

∑
Q∈D

λkj (Q) ≤ 3n, (52)

which implies f0 ∈ Hϕq′(Rn).
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We will verify that

lim
j→∞

∫
Q0

fkj (x) dx =

∫
Q0

f0(x) dx (53)

for all Q0 ∈ D. Once (53) is established, we will see that f = f0 and hence
f ∈ Hϕq′(Rn) by virtue of the Lebesgue differentiation theorem because at least we

know that f0 locally in Lq
′
(Rn). By the definition of fkj , we have∫

Q0

fkj (x) dx =

∞∑
l=−∞

∑
Q∈Dl

Q0∩Q6=∅

λkj (Q)

∫
Q0

bkj (Q)(x) dx.

Note that

‖bkj (Q)‖1 ≤ |Q0 ∩Q|
1
q ‖bkj (Q)‖q′ ≤

ϕ(`(Q))|Q ∩Q0|
1
q

|Q|
1
q

≤ ϕ(`(Q))

|Q|
1
q

(54)

for any cube Q containing Q0.

We distinguish two cases. If

lim
t→∞

ϕ(t)t−
n
q = 0,

then for all ε > 0 there exists l ∈ N such that
∞∑
l=N

∑
Q∈Dl

Q0∩Q6=∅

∣∣∣∣λkj (Q)

∫
Q0

bkj (Q)(x) dx

∣∣∣∣ < ε.

Thus, we are in the position of using the Lebesgue convergence theorem based on
Example 4.12. Thus we obtain (53). If

lim
t→∞

ϕ(t)t−
n
q > 0,

then we go through a similar argument using Example 4.28 to obtain (53).

Since fk ↑ f a.e., we must have by (53)∫
Q0

f(x) dx =

∫
Q0

f0(x) dx

for all Q0 ∈ D. This yields f = f0 a.e., by the Lebesgue differentiation theorem,
and, hence, f ∈ Hϕq′(Rn). Since we have verified f ∈ Hϕq′(Rn), it follows that

‖f‖Hϕ
q′

= sup

{∣∣∣∣∫
Rn
fk(x)g(x) dx

∣∣∣∣ : k = 1, 2, . . . , ‖g‖Mϕ
q
≤ 1

}
≤ 1.

This completes the proof of the theorem.

�

The proof of the following theorem is completely the same as the classical
case once Proposition 4.30 is proved.

Theorem 4.31. Let 1 < q <∞, and let ϕ ∈ Gq satisfy 1
ϕ ∈ Z0.
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• The dual of Hϕq′(Rn) is Mϕ
q (Rn). More precisely, we have the following

mappings:
– Any f ∈Mϕ

q (Rn) defines a continuous functional Lf by:

Lf : g 7→
∫
Rn
f(x)g(x) dx ∈ C

on Hϕq′(Rn).

– Conversely, every continuous functional L on Hϕq′(Rn) can be realized

with f ∈Mϕ
q (Rn) as L = Lf .

– The correspondence f ∈ Mϕ
q (Rn) 7→ Lf ∈ (Hϕq′(Rn))∗ is an isomor-

phism. Furthermore

‖f‖Mϕ
q

= sup

{∣∣∣∣∫
Rn
f(x)g(x) dx

∣∣∣∣ : g ∈ Hϕq′(R
n), ‖g‖Hϕ

q′
= 1

}
(55)

and

‖g‖Hϕ
q′

= sup

{∣∣∣∣∫
Rn
f(x)g(x) dx

∣∣∣∣ : f ∈Mϕ
q (Rn), ‖f‖Mϕ

q
= 1

}
. (56)

• The dual of M̃ϕ
q (Rn) is Hϕq′(Rn) in the following sense.

– Any f ∈ Hϕq′(Rn) defines a continuous functional L′f by:

Lf : g 7→
∫
Rn
f(x)g(x) dx ∈ C

on M̃ϕ
q (Rn).

– Conversely, every continuous functional L on M̃ϕ
q (Rn) can be realized

with f ∈ Hϕq′(Rn) as L = L′f .

– The correspondence f ∈ Hϕq′(Rn) 7→ L′f ∈ (M̃ϕ
q (Rn))∗ is an isomor-

phism. Furthermore

‖f‖M̃ϕ
q

= sup

{∣∣∣∣∫
Rn
f(x)g(x) dx

∣∣∣∣ : g ∈ Hϕq′(R
n), ‖g‖Hϕ

q′
= 1

}
(57)

and

‖g‖Hϕ
q′

= sup

{∣∣∣∣∫
Rn
f(x)g(x) dx

∣∣∣∣ : f ∈ M̃ϕ
q (Rn), ‖f‖M̃ϕ

q
= 1

}
. (58)

Proof.

• (a) This is a consequence of Proposition 4.26.
(b) We let Qj = 2j [−1, 1]n. For the sake of the simplicity we denote

Lq
′
(Qj) by the set of Lq

′
(Rn)-functions supported on Qj . The func-

tional g 7→ L(g) is well defined and bounded on Lq
′
(Qj). Thus by the

duality Lp
′
-Lp there exists fj such that

L(g) =

∫
Qj

fj(x)g(x) dx
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for all g ∈ Lq(Qj). By the uniqueness of this theorem we can find an
Lqloc(Rn) function f such that f |Qj = fj a.e. for any j.
We will prove f ∈Mp

q(Rn). For this purpose, we take an arbitrary Q
and estimate;

I ≡ ϕ(`(Q))

(
1

|Q|

∫
Q

|f(x)|q dx
) 1
q

. (59)

For a fixed cube Q and a fixed function f we set

g(x) ≡ χQ(x)sgn(f(x))|f(x)|q−1 x ∈ Rn.

Then we can write

I = ϕ(`(Q))

(
1

|Q|

∫
Q

f(x)g(x) dx

) 1
q

= ϕ(`(Q))

(
1

|Q|
L(g)

) 1
q

. (60)

Notice that the function |Q|
1
p
− 1
q

‖g‖q′
g is a (p′, q′)-block. Hence, we have

|L(g)| ≤ ϕ(`(Q))−1‖L‖∗|Q|
1
q ‖g‖q′ . As a result we have I ≤ ‖L‖∗.

This is the desired result.
(c) Carefully reexamine the proof of (a) and (b). The proof of (c) is

already included in them.
• The heart of the matters is to prove (b); (a) and (c) are obtained similarly

to (1). Let L′ : M̃ϕ
q (Rn) → C be a bounded linear mapping. Since ϕ−1 ∈

Z0, we have ϕ(t) . t1/P , 0 < t ≤ 1 for some P > 1. For such P > 0,
we have LP (Rn) ∩ L0

c(Rn) ↪→ Mϕ
q (Rn). As a consequence, for each k ∈

N the mapping f ∈ LP (Rn) 7→ L′(χ[−k,k]nf) ∈ C is a bounded linear

mapping that can be realized by some fk ∈ LP
′
(Rn). Furthermore, fk =

fk+1χ[−k,k]n from the L P (Rn)-LP
′
(Rn)-duality. So, f = lim

k→∞
fk exists

almost everywhere. Let h ∈ L∞c (Rn) with supp(h) ⊂ [−k, k]n for some
k ∈ N. As a result∫

Rn
|h(x)fk(x)| dx = L(hsgn(fk)) ≤ ‖L‖M̃ϕ

q→C‖h‖M̃ϕ
q
.

Since h is arbitrary, it follows that ‖fk‖Hϕ
q′
≤ ‖L‖M̃ϕ

q→C. Using fk =

fk+1χ[−k,k]n and Proposition 4.30, we see that f ∈ Hϕq′(Rn) and that

L′f |L∞c (Rn) = L|L∞c (Rn). Since L∞c (Rn) is dense in M̃ϕ
q (Rn), it follows

that L = L′f , as required.

�

We have the following conclusion.

Theorem 4.32. [73, Theorem 2] Let 1 < q < ∞ and let ϕ ∈ Gq satisfy 1
ϕ ∈

Z0. Then any singular integral operator, which is initially defined for L∞c (Rn)-
functions, can be naturally extended to a bounded linear operator onMϕ

q (Rn). More
precisely, T has the following properties:
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• For all f ∈ L∞c (Rn), Tf ∈ M̃ϕ
q (Rn) and satisfies ‖Tf‖M̃ϕ

q
. ‖f‖M̃ϕ

q
. In

particular T extends to a bounded linear operator on M̃ϕ
q (Rn).

• The adjoint operator T ∗ is bounded on Hϕq′(Rn).

• The adjoint T ∗∗ of T ∗ is a bounded linear operator on Mϕ
q (Rn).

Theorem 4.32 extends the result by Peetre in [84] from Morrey spaces to
generalized Morrey spaces. The proof is based on [87].

Proof. It suffices to prove the first assertion, since the remaining assertions are

general facts on functional analysis. Since ϕ ∈ Gq, L∞c (Rn) is a subset of M̃ϕ
q (Rn).

Let f ∈ L∞c (Rn). Then there exists R > 0 such that f is supported on Q(R). We
can decompose

|Tf | . χQ(2R)|Tf |+ (R+ | · |)−n
∫
Q(R)

|f(y)| dy ∈ M̃ϕ
q (Rn),

since
(R+ | · |)−nη . (MχQ(R))

η ∈Mϕ
q (Rn) (q−1 < η < 1)

and hence
(R+ | · |)−n = lim

L→∞
χQ(L)(R+ | · |)−n

in Mϕ
q (Rn). It thus remains to show that ‖Tf‖M̃ϕ

q
. ‖f‖M̃ϕ

q
for all f ∈ L∞c (Rn).

We argue as follows: Let Q be a cube. We need to show

ϕ(`(Q))

(
1

|Q|

∫
Q

|Tf(y)|q dy
) 1
q

. ‖f‖Mϕ
q
.

We decompose this estimate according to 3Q: Since T is known to be Lq(Rn)-
bounded,

ϕ(`(Q))

(
1

|Q|

∫
Q

|T [χ3Qf ](y)|q dy
) 1
q

≤ ϕ(`(Q))

(
1

|Q|

∫
Rn
|T [χ3Qf ](y)|q dy

) 1
q

. ϕ(`(Q))

(
1

|Q|

∫
3Q

|f(y)|q dy
) 1
q

≤ ϕ(3`(Q))

(
1

|Q|

∫
3Q

|f(y)|q dy
) 1
q

. ‖f‖Mϕ
q
.

Meanwhile, using the size condition of T , we have

ϕ(`(Q))

(
1

|Q|

∫
Q

|T [χRn\3Qf ](y)|q dy
) 1
q

≤ ϕ(`(Q)) sup
x∈Q
|T [χRn\3Qf ](x)|

. ϕ(`(Q))

∫
Rn\3Q

|f(y)|
|y − c(Q)|n

dy

. ϕ(`(Q))

∞∑
m=1

1

|2mQ|

∫
2m+1Q\2mQ

|f(y)| dy.
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Since 1
ϕ ∈ Z0, we obtain

ϕ(`(Q))

(
1

|Q|

∫
Q

|T [χRn\3Qf ](y)|q dy
) 1
q

. ϕ(`(Q))

∞∑
m=1

1

ϕ(2m`(Q))

ϕ(2m`(Q))

|2mQ|

∫
2m+1Q\2mQ

|f(y)| dy

. ϕ(`(Q))

∞∑
m=1

1

ϕ(2m`(Q))
‖f‖Mϕ

q

. ϕ(`(Q))‖f‖Mϕ
q

∫ ∞
`(Q)

1

ϕ(s)s
ds

. ‖f‖Mϕ
q
.

Thus we have ‖Tf‖M̃ϕ
q
. ‖f‖M̃ϕ

q
for all f ∈ L∞c (Rn). �

We did not use (33) for the proof of boundedness of the Hardy–Littlewood
maximal operator. However for the proof of boundedness of the singular integral
operators, (33) is absolutely necessary as the following proposition shows:

Proposition 4.33. Let 1 < q < ∞ and ϕ ∈ Gq. If ‖R1f‖wMϕ
q
. ‖f‖Mϕ

q
for all

f ∈ L∞c (Rn), then 1
ϕ ∈ Z0, where R1 denotes the first Riesz transform.

Proof. Let V ≡ {x = (x1, x2, . . . , xn) ∈ Rn : 2x1 > |x|}. Assume that 1
ϕ /∈ Z0,

so that for any m ∈ N ∩ [3,∞) there exists rm > 0 such that ϕ(2mrm) ≤ 2ϕ(rm).
Then, consider fm = χV ∩B(2m−1rm)\B(2rm). Let x ∈ V ∩ B(rm). If y ∈ V ∩
B(2m−1rm) \B(2rm), then x− y ∈ V and rm ≤ |x− y| ≤ 2mrm. Thus,

R1fm(x) =

∫
Rn

x1 − y1

|x− y|n+1
fm(y) dy

=

∫
V ∩B(2m−1rm)\B(2rm)

y1

|y|n+1
dy

≥ C
∫
V ∩B(2m−1rm)\B(2rm)

1

|y|n
dy

' logm. (61)

Since V is a cone, we have

χB(rm) .MχV ∩B(rm). (62)

We use this estimate and the boundedness of M on Mϕ
q (Rn) to obtain

ϕ(rm) . ‖χB(rm)‖Mϕ
q
. ‖MχV ∩B(rm)‖Mϕ

q
. ‖χV ∩B(rm)‖Mϕ

q
.
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By using the inequality logm . |R1fm(x)| for x ∈ V ∩B(rm) and the boundedness
of R1 on Mϕ

q (`u), we have

log(m)ϕ(rm) . ‖R1fm‖wMϕ
q

. ‖fm‖Mϕ
q

≤ ‖χB(2mrm)‖Mϕ
q

. ϕ(2mrm)

∼ ϕ(rm).

This implies logm ≤ D where D is independent of m, contradictory to the fact that
m ≥ 3 is arbitrary. Hence, there exists some m0 ∈ N such that ϕ (2m0r) > 2ϕ(r).
Thus the integral condition (33) holds. �

We disprove that T can not be exteded to a bounded linear operator on
mp
q(Rn).

Example 4.34. Let 1 ≤ q ≤ p <∞. Then

‖R1f‖wmpq . ‖f‖mpq (f ∈ L∞c (Rn))

and

‖R1f‖wLquloc
. ‖f‖Lquloc

(f ∈ L∞c (Rn))

fail. In fact, let ϕ(t) = min(t
n
p , 1), t > 0 as in Example 3.4. Then ϕ fails (33)

because

∫ ∞
1

dr

ϕ(r)
=∞.

We end this section with extension to the vector-valued inequality.

Theorem 4.35. Let 1 < q <∞, 1 < u <∞ and ϕ ∈ Gq. Let also T be a singular
integral operartor. Assume in addition that (33) holds. Then for all {fj}∞j=1 ⊂
Mϕ

q (Rn), ∥∥∥∥∥∥∥
 ∞∑
j=1

|Tfj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

for all {fj}∞j=1 ⊂Mϕ
q (Rn).

Proof. Similar to Theorem 4.5. We also use a well-known inequality:∥∥∥∥∥∥∥
 ∞∑
j=1

|Tfj |u
 1

u

∥∥∥∥∥∥∥
Lq

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Lq

for all {fj}∞j=1 ⊂ Lq(Rn). �
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Remark 4.36. One can consider the singular integral operators having rough ker-
nel. Let Ω : Sn−1 ≡ {x ∈ Rn : |x| = 1} → C be a measurable function having
enough integrability and having integral zero. Then define TΩ by

TΩf(x) =

∫
Rn

Ω(x− y)

|x− y|n
f(y) dy.

See [5] for example.

Remark 4.37. N. Samko introduced a method of defining singular integral op-
erators on generalized Morrey spaces by considering p-admissible singular integral
operators in [88, Definition 3.3]. See also [31, Theorem 4.5] and [2, Theorem 4.3].
See [57] for a similar approach in the weighted setting.

Remark 4.38. See [84], where Peetre proved the boundedness of the singular inte-
gral operators on generalized Morrey–Campanato spaces.

Remark 4.39. See [29, Theorem 6.2] for the boundedness of the singular integral
operators.

Remark 4.40. See [33, Theorems 5.3, 5.6 and 6.3] and [31, Theorem 5.6] for the
boundedness of the commutators generated by singular integral operators and BMO.

Remark 4.41. Chen and Ding dealt with the parabolic singular integral operators
in [8].

Remark 4.42. Pang, Li and Wang dealt with the oscillatory integral operators in
[83].

Remark 4.43. See [108, Theorems 2.3, 2.4 and 3.1], [120, Theorem 1.7] and [127,
Theorem 3.1] for the boundedness of the singular integral operator on generalized
Morrey spaces in the multilinear setting.

Remark 4.44.

• Wang discussed the boundedness of the intrinsic square functions in [122],
where Wang did not have to resort to the duality argument. See also [31,
Corollary 6.7], [23, Theorems 5 and 6], [57, Section 5.2] and [44, Theorem
1.4] for similar approaches. See [9, 124] for the case of the commutators.

• Karaman, Guliyev and Serbetci handled the pseudo-differential operators in
[57, Section 5.1].

• Karaman, Guliyev and Serbetci handled the Marcinkiewicz operators in [57,
Section 5.3].

• Karaman, Guliyev and Serbetci handled the Bochner–Riesz operators in [57,
Section 5.4].

Remark 4.45. Let T be a singular integral operator. In [60, Theorem 3.2] Komori
and Mizuhara considered the operator of the form (f, g) ∈ Hϕq′(Rn) ×Mϕ

q (Rn) 7→
f · Tg− Tf · g ∈ H1(Rn) and obtained a factorization theorem as an application of
the Mϕ

q′(Rn)-boundednes of the commutators.
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4.3. Generalized fractional integral operators in generalized Morrey spaces.
To consider the operator like (1−∆)−1, we are oriented to considering

Iρf(x) =

∫
Rn
f(y)

ρ(|x− y|)
|x− y|n

dy

for any suitable function f on Rn, where ρ : (0,∞) → (0,∞) is a suitable mea-
surable function. Generalized Morrey spaces allow us to consider more general
fractional integral operators.

Let us discuss what condition we need in order to guarantee that Iρ enjoys
some boundedness property. As we did in [18, p. 761], we always assume that ρ
satisfies the “Dini condition” for Iρ.∫ 1

0

ρ(s)

s
ds <∞, (63)

so that IρχQ(x) is finite for any cube Q and x ∈ Rn.

In addition, we also assume that ρ satisfies the “growth condition”: there
exist constants C > 0 and 0 < 2k1 < k2 <∞ such that

sup
r
2<s≤r

ρ(s) .
∫ k2r

k1r

ρ(s)

s
ds, r > 0, (64)

as was proposed by Perez [85]. Condition (64) is weaker than the usual doubling
condition: there exists a constant D > 0 such that

1

D
≤ ρ(r)

ρ(s)
≤ D (65)

whenever r > 0 and s > 0 satisfy r ≤ 2s ≤ 4r.

Proposition 4.46. If ρ : (0,∞) → (0,∞) satisfies the doubling condition (65),
then

sup
r
2≤s≤r

ρ(s) ≤ 2D2

∫ r

r
2

ρ(s)
ds

s
.

Proof. Keeping in mind

∫ r

1
2 r

ds

s
= log 2 < 1, we calculate

sup
r
2≤s≤r

ρ(s) ≤ Dρ(r) =
D

log 2

∫ r

r
2

ρ(r)
ds

s
≤ D2

log 2

∫ r

r
2

ρ(s)
ds

s
≤ 2D2

∫ r

r
2

ρ(s)
ds

s
.

�

Example 4.47. Let 0 < α <∞.

• ρ(t) = tα, which generates Iα, satisfies the doubling condition.

• ρ(t) =
tα

log(e+ t)
satisfies the doubling condition.

• ρ(t) =
tα

1 + tM
satisfies the doubling condition. See [61] for an application

to Schrödinger equations.
• ρ(t) = tαe−t satisfies the growth condition but fails the doubling condition.
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• Let 0 ≤ γ <∞ and β1, β2 ∈ R. We set

`B(r) ≡

{
(1 + | log r|)β1 (0 < r ≤ 1),

(1 + | log r|)β2 (1 < r <∞).

as before. Then ρ(t) = tγ`B(t) satisfies (63) if and only if γ = 0 > −1 > β1

or γ > 0. Meanwhile (65) is always satisfied. Noteworthy is the fact that
we can tolerate the case γ = 0 if β1 < −1.

To check that our example is not so artificial we consider the following kernel.

Definition 4.48. One defines (1−∆)−
s
2 f by

(1−∆)−
s
2 f = Gs ∗ f,

where Gs is given by:

Gs(x) = lim
ε↓0

1

(2π)n

∫
Rn

exp(−|εξ|2)eix·ξ

(1 + |ξ|2)
s
2

dξ (x ∈ Rn).

The function Gs is called the Bessel kernel.

The above examples are natural in some sense but somewhat artificial because
the second example and the third one do not appear naturally in the context of
other areas of mathematics. Here we present some other examples related to partial
differential equations.

Example 4.49. Note that the solution to (1 − ∆)f = g, where f is an unknown
function and g is a give function is given by:

g = (1−∆)−1f.

Although it is impossible to find IρχB(x,r)(y), y ∈ Rn, we still have a partial
but important estimate.

Lemma 4.50. Let ρ : (0,∞) → (0,∞) be a measurable function. Then inequality
ρ̃(R/2) . IρχB(R)(x) holds whenever x ∈ B(R/2) and R > 0.

Proof. Take x ∈ B(R/2). We write the integral in full:

IρχB(R)(x) =

∫
Rn

ρ(|x− y|)
|x− y|n

χB(R)(y) dy =

∫
B(R)

ρ(|x− y|)
|x− y|n

dy.

A geometric observation shows that B(x,R/2) ⊆ B(R). Hence, we have

IρχB(R)(x) ≥
∫
B(x,R/2)

ρ(|x− y|)
|x− y|n

dy = C

∫ R/2

0

ρ(s)

s
ds.

Note that we only use the spherical coordinates to obtain the last integral. �

In the case of the radially symmetric functions, we can calculate IρgR(x) for
x small.
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Lemma 4.51. [18, Lemma 2.2] For every R > 0 and a measurable function θ :
(0,∞)→ [0,∞) satisfying the doubling condition

θ(s) ∼ θ(r) (0 < r ≤ s ≤ 2r), (66)

the inequality ∫ ∞
2R

θ(t)ρ(t)

t
dt . IρgR(x) .

∫ ∞
2R/3

θ(t)ρ(t)

t
dt

holds whenever x ∈ B
(
R

3

)
, where gR(x) ≡ θ(|x|)χB(R)c(x).

Proof. We prove the right-hand inequality, the left-hand inequality being similar.

A geometric observation shows that |x − y| ∼ |y| for all x ∈ B

(
R

3

)
and y ∈

Rn \B
(

2R

3

)
. Since θ satisfies (66), then

IρgR(x) =

∫
Rn\B(R)

θ(|y|)ρ(|x− y|)
|x− y|n

dy

≤
∫
Rn\B(x,2R/3)

θ(|y|)ρ(|x− y|)
|x− y|n

dy

=

∫
Rn\B

(
2R

3

) θ(|x− y|)ρ(|y|)
|y|n

dy

.
∫ ∞

2R/3

θ(t)ρ(t)

t
dt for x ∈ B

(
R

3

)
.

It remains to write the most right-hand side in terms of the spherical coordinates.
�

For covenience, write

ρ̃(r) ≡
∫ r

0

ρ(t)

t
dt. (67)

Sometimes, we are interested in the case where matters are reduced to the classical
fractional integral operators.

Proposition 4.52. Let ρ : (0,∞) → (0,∞) be a measurable function satisfying
(64). Then the following are equivalent:

(a) ρ(r) . rα for all r > 0.
(b) ρ̃(r) . rα for all r > 0.

Proof. Clearly (a) implies (b), since

∫ r

0

sα−1 ds =
1

α
rα. Let us see (b) implies (a).

Combining (64) with (b), we obtain

ρ(r) ≤ sup
r
2<s≤r

ρ(s) .
∫ k2r

k1r

ρ(s)

s
ds .

∫ k2r

0

ρ(s)

s
ds . (k2r)

α ∼ rα.
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�

Now we present three different criteria for the boundedness of Iρ. We prove
the following three theorems on the boundedness of Iρ on generalized Morrey spaces.

For the case of q = 1, we have the following simple result:

Theorem 4.53. [18, Theorem 1.3] Let 1 ≤ p < ∞, and let ϕ ∈ Gp and ψ ∈ G1.
Let also ρ : (0,∞) → (0,∞) be a measurable function satisfying (64). Then Iρ is

bounded from Mϕ
p (Rn) to Mψ

1 (Rn) only if

1

ϕ(r)

∫ r

0

ρ(t)

t
dt+

∫ ∞
r

ρ(t)

tϕ(t)
dt .

1

ψ(r)
(r > 0). (68)

Furthermore, if (68) is satisfied, then Iρ is bounded from Mϕ
1 (Rn) to Mψ

1 (Rn).

Note that the left-hand side of (68) equals

1

ϕ(r)

∫ r

0

ρ(t)

t
dt+

∫ ∞
r

ρ(t)

tϕ(t)
dt =

∫ ∞
0

ρ(t)

tϕ(max(r, t))
dt.

Proof of Theorem 4.53(Necessity). Assume that Iρ is a bounded linear operator

from Mϕ
p (Rn) to Mψ

1 (Rn). Let r > 0. By Lemma 4.50 and the doubling property
of ψ, we obtain

ρ̃(r) .
1

rn

∫
B(r/2)

IρχB(r)(x) dx ≤ 1

rn

∫
B(r/2)

IρχB(r)(x) dx ≤ 1

ψ(r)
‖IρχB(r)‖Mψ

1

Since ψ ∈ G1 and Iρ is assumed bounded fromMϕ
p (Rn) toMψ

1 (Rn), it follows that

ρ̃(r) .
1

ψ(r)
‖χB(r)‖Mϕ

p
.

Since ‖χB(r)‖Mϕ
p
∼ ϕ(r), we conclude

ρ̃(r) .
ϕ(r)

ψ(r)
.

Let gr(x) =
χB(r)c (x)

ϕ(|x|) for x ∈ Rn. By Lemma 4.51 with θ =
1

ϕ
, we have

∫ ∞
r

ρ(t)

tϕ(t)
dt . ψ

(r
6

)−1

‖Iρgr‖Mψ
1
. ψ(r)−1‖gr‖Mϕ

1
. ψ(r)−1.

Thus Theorem 4.53 is proved. �

Proof of Theorem 4.53(Sufficiency). For a ball B(z, r), we let f1 ≡ fχB(z,2r) and
f2 ≡ f − f1. Then a geometric observation shows B(z, r) ⊂ B(y, 3r) for all y ∈
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B(z, 2r). Hence by the Fubini theorem and the normalization,∫
B(z,r)

|Iρf1(x)| dx ≤
∫
B(z,r)

(∫
B(z,2r)

|f(y)|ρ(|x− y|)
|x− y|n

dy

)
dx

≤
∫
B(z,2r)

(∫
B(y,3r)

|f(y)|ρ(|x− y|)
|x− y|n

dx

)
dy

=

∫
B(z,2r)

|f(y)| dy ×
∫
B(3r)

ρ(|x|)
|x|n

dx.

By the use of the definition of the Morrey norm, (68) and the doubling condition
of ψ, we obtain ∫

B(z,r)

|Iρf1(x)| dx . ρ̃(3r)ϕ(2r)−1rn

. ρ̃(3r)ϕ(3r)−1rn

. ψ(3r)−1rn

. ψ(r)−1rn.

Thus the estimate for f1 is valid. As for f2, we let x ∈ B(z, r). Then we have

|Iρf2(x)| ≤
∫
B(z,2r)c

|f(y)|ρ(|x− y|)
|x− y|n

dy ≤
∫
B(x,r)c

|f(y)|ρ(|x− y|)
|x− y|n

dy

and decomposing the right-hand side dyadically we obtain

|Iρf2(x)| ≤
∞∑
j=1

∫
B(x,2jr)\B(x,2j−1r)

|f(y)|ρ(|x− y|)
|x− y|n

dy .
∫ ∞

2k1r

ρ(t)

tϕ(t)
dt.

If we use (68) once again and the doubling condition on ψ, then we obtain |Iρf2(x)| .
ψ(r)−1. Thus the estimate for f2 is valid as well. �

In the following example, we consider why we need generalized Morrey spaces.

Example 4.54. [105, Theorem 5.1], [18, Example 5.1] Let s ∈ (0, n) and κ > 0.

Define ψ(r) ≡ (1 + r)s

max(1, log r−1)
(r > 0). Let ρ(r) = rs exp(−κr), ϕ(r) = rs for

r > 0. Then ρ is a measurable function satisfying (64). Furthermore, if 0 <

r < 1,
1

ϕ(r)

∫ r

0

ρ(t)

t
dt +

∫ ∞
r

ρ(t)

tϕ(t)
dt ∼ 1

ψ(r)
and if r ≥ 1,

1

ϕ(r)

∫ r

0

ρ(t)

t
dt +∫ ∞

r

ρ(t)

tϕ(t)
dt .

1

ψ(r)
. Thus ‖(1 − ∆)−

s
2 f‖Mψ

1
.s ‖Iρf‖Mψ

1
. ‖f‖

M
n
s
1

for all f ∈

M
n
s
1 (Rn). This calculation shows we cannot delete max(1, log r−1) and that (1 −

∆)−
s
2 does not map Mp

q(Rn) to L∞(Rn) when n
p = s and 1 < q ≤ p <∞.

Example 4.54 convince us that generalized Morrey spaces occur naturally.
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Example 4.55. Let
1

s
=

1

p
− α
n

with 1 < p < s <∞ and 0 < α < n. Then Iα does

not map mp
1(Rn) to ms

1(Rn), since ρ(t) ≡ tα, t ≥ 0 and ϕ(t) ≡ max(t
n
p , 1), t > 0

satisfies ∫ ∞
r

ρ(t)

tϕ(t)
dt =∞

instead of ∫ ∞
r

ρ(t)

tϕ(t)
dt .

1

ϕ(t)
s
p
.

If we consider the truncated fractional maximal operator iα given by

iαf(x) =

∫
|y|≤1

f(x− y)

|y|n−α
dy,

then iα maps mp
1(Rn) to ms

1(Rn), since

1

ϕ(r)

∫ r

0

ρ(t)χ(0,1)(t)

t
dt+

∫ ∞
r

ρ(t)χ(0,1)(t)

tϕ(t)
dt .

1

ϕ(t)
s
p
.

Example 4.56. [105, Theorem 5.1], [18, Example 5.1] Let 0 < s < n. Define
ϕ(r) ≡ rs and ψ(r) ≡ (1 + r)−s`(−1,0)(r) for r > 0. Let ρ(r) ≡ rnGs(r), where Gs
denotes the Bessel kernel, the kernel of (1 −∆)

s
2 . Observe that ρ̃(r) ∼ min(rs, 1)

and hence ρ̃(r)
ϕ(r) ∼ min(1, r−s). Note also that∫ ∞

r

ρ(t)

tϕ(t)
dt ∼

{
log(e/r) (r < 1),

rn−sGs(r) (r ≥ 1).

Then
ρ̃(r)

ϕ(r)
+

∫ ∞
r

ρ(t)

tϕ(t)
dt ∼ 1

ψ(r)
(r > 0).

Hence it follows from Theorem 4.53 that ‖Iρf‖Mψ
1
. ‖f‖Mϕ

1
, extending Proposition

4.54. This triple (ρ, ϕ, ψ) fulfills the assumption (68). However, ρ
ϕ /∈ Z0 since

ρ(r)
ϕ(r) = o(1) as r ↓ 0 and (69) fails.

We give a result, which improves Example 4.54.

We move on to the Adams type estimate.

Theorem 4.57. [18, Theorems 1.1 and 1.2] Let 1 < p < q < ∞ and ϕ ∈ Gp.
Assume that ρ : (0,∞)→ (0,∞) satisfies (64).

• The operator Iρ is bounded from Mϕ
p (Rn) to Mϕp/q

q (Rn) if

1

ϕ(r)

∫ r

0

ρ(t)

t
dt+

∫ ∞
r

ρ(t)

tϕ(t)
dt .

1

ϕ(r)
p
q

(69)

for all r > 0. If ϕ ∈ Z−
n
p , then (69) is necessary for the boundedness of Iρ

from Mϕ
p (Rn) to Mϕp/q

q (Rn).
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• Assume ρ
ϕ ∈ Z0. Then Iρ is bounded from Mϕ

p (Rn) to Mϕp/q

q (Rn) if and

only if

ρ̃(r) . ϕ(r)1−p/q (r > 0). (70)

So, if ρ
ϕ ∈ Z0, condition (69) simplies to (70).

Remark 4.58.

• The first half of “only if” part (70) is clear from Theorem 4.53 with ψ =
ϕp/q.

• Once we assume ρ
ϕ ∈ Z0, it is eacy to check that (70) implies (69). Indeed,

if we use ρ
ϕ ∈ Z0 and ϕ ∈ Gp, then we have∫ ∞

r

ρ(s)

sϕ(s)
ds .

ρ(r)

ϕ(r)
.

Since ρ satisfies the growth condition, we have∫ ∞
r

ρ(s)

sϕ(s)
ds .

ρ̃(k2r)

ϕ(r)
.

If we use (70) and the doubling condition on ϕ, then we obtain∫ ∞
r

ρ(t)

tϕ(t)
dt .

1

ϕ(r)
p
q

.

• For the “if” part we only need the following estimate of Hedberg-type, see
Lemma 4.59 below.

Proof of Theorem 4.57, necessity. According to Theorem 4.53, we have only to
show ∫ ∞

2R

ρ(t)

tϕ(t)
dt . ϕ(2R)−p/q.

By virtue of Lemma 4.51, we obtain∫ ∞
2R

ρ(t)

tϕ(t)
dt ∼

(
1

Rn

∫
B(R3 )

Iρg(x)q dx

) 1
q

. ϕ(R)−p/q‖IρgR‖Mϕp/q

q

.

Since Iρ is bounded, we obtain∫ ∞
2R

ρ(t)

tϕ(t)
dt . ϕ(R)−p/q‖gR‖Mϕ

p
. ϕ(R)−p/q

∥∥∥∥ 1

ϕ(| · |)

∥∥∥∥
Mϕ

p

.

Recall that we are assuming ϕ ∈ Z−
n
p . Now we invoke Lemma 4.17 to conclude∫ ∞

2R

ρ(t)

tϕ(t)
dt . ϕ(R)−p/q . ϕ(2R)−p/q.

Thus necessity is proven. �

As we have mentioned, we want an estimate of Hedberg-type. We may ask
ourselves whether inf

r>0

1

ϕ(r)
p
q

can be removed, that is, we may assume sup
t>0

ϕ(t) =∞.

However, it can happen that sup
t>0

ϕ(t) <∞ as example below shows.
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Lemma 4.59. [18, Lemma 3.1] Let 1 ≤ p < q <∞, and let ϕ ∈ Gp∩W satisfy (69).
Let ρ : (0,∞) → (0,∞) be a measurable function satisfying (64). If a measurable
function f satsfies ‖f‖Mϕ

p
= 1, then

|Iρf(x)| . [Mf(x)]p/q + inf
r>0

ϕ(r)−
p
q (71)

for x ∈ Rn.

Once this estimate is satisfied, we can conclude the proof of Theorem 4.57
as follows: We choose an arbitrary ball B = B(z, r). If we integrate Lemma 4.59,
then we have

1

|B|

∫
B

|Iρf(x)|q dx . 1

|B|

∫
B

[Mf(x)]p dx+ inf
u>0

ϕ(u)−p.

If we multiply both sides by ϕ(r)p, then we have

ϕ(r)p

|B|

∫
B

|Iρf(x)|q dx .
(
ϕ(r)p

|B|

∫
B

[Mf(x)]p dx+ 1

)
. 1

by virtue of the boundedness of the maximal operator M onMϕ
p (Rn). The ball B

being arbitrary, we obtain the desired result.

Proof. Recall that k1 and k2 appeared in the condition (64) on ρ. Let

ρ∗(r) ≡
∫ k2r

k1r

ρ(s)

s
ds.

We have

|Iρf(x)| .
−1∑

j=−∞
+

∞∑
j=0

ρ∗(2jr)

(2jr)n

∫
|x−y|<2jr

|f(y)| dy

for given x ∈ Rn and r > 0. Let ΣI and ΣII be the first and second summations
above. Now we invoke the overlapping property:

−1∑
j=−∞

χ[2jk1r,2jk2r] . χ(−∞,2−1k2r],

∞∑
j=0

χ[2jk1r,2jk2r] . χ[k1r,∞). (72)

As a result, we have

−1∑
j=−∞

ρ∗(2jr) ≤
−1∑

j=−∞

∫ 2jk2r

2jk1r

ρ(s)

s
ds .

∫ k2r

0

ρ(s)

s
ds = ρ̃(k2r)

and

∞∑
j=0

ρ∗(2jr)

ϕ(2jr)
.
∫ ∞
k1r

 ∞∑
j=0

χ[2jk1r,2jk2r](s)

 ρ(s)

sϕ(s)
ds .

∫ ∞
k1r

ρ(s)

sϕ(s)
ds.

Thus thanks to (70)

ΣI .
−1∑

j=−∞
ρ∗(2jr)Mf(x) ≤ C ρ̃(k2r)Mf(x) . ϕ(r)1−p/qMf(x).
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Meanwhile

ΣII .
∞∑
j=0

ρ∗(2jr)

ϕ(2jr)
‖f‖Mϕ

p
.
∫ ∞
k1r

ρ(s)

sϕ(s)
ds.

We use ρ
ϕ ∈ Z0 or (69) now. If we use (69), then we have∫ ∞

r

ρ(t)

tϕ(t)
dt .

1

ϕ(r)
p
q

.

By the doubling property of ϕ, we obtain ΣII .
1

ϕ(r)
p
q

. Hence,

|Iρf(x)| ., ϕ(r)1−p/q
(
Mf(x) +

1

ϕ(r)

)
(73)

for all r > 0.

First assume Mf(x) ≤ inf
r>0

1

ϕ(r)
. Then, the conclusion is immediate from

(73).

Next, we assume Mf(x) > inf
r>0

1

ϕ(r)
. Since ‖f‖Mϕ

p
= 1, we have

1 ≥ ϕ(r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|p dy

) 1
p

≥ ϕ(r)

|Q(x, r)|

∫
Q(x,r)

|f(y)| dy.

Hence
1

|B(x, r)|

∫
B(x,r)

|f(y)| dy ≤ 1

ϕ(r)

for all r > 0. This implies

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy ≤ sup
R>0

1

ϕ(R)

for all r > 0. Since r > 0 and x ∈ Rn are arbitrary, it follows that Mf(x) ≤
sup
r>0

1

ϕ(r)
. We can thus find R > 0 such that Mf(x) = 2ϕ(R) and, with this R, we

can obtain the desired estimate. �

In order that Iρ be bounded from Mϕ
p (Rn) to Mϕp/q

q (Rn), we must have

ρ̃(r)

ϕ(r)
.

1

ϕ(r)
p
q

according to Theorem 4.53 with ψ = ϕp/q.

We note that if ρ(r) = rα, with 0 < α < n, then Iρ = Iα is the classical
fractional integral operator, also known as the Riesz potential, which is bounded
from Lp(Rn) to Lq(Rn) if and only if 1

p −
1
q = α

n , where 1 < p, q < ∞. The

necessary part is usually proved by using the scaling arguments.

Theorem 4.57 characterizes the kernel function ρ for which Iρ is bounded
from Lp(Rn) to Lq(Rn) for 1 < p < q <∞. We have the following result:
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Corollary 4.60. [18, Corollary 1.5] Let 1 < p < q < ∞. The operator Iρ is

bounded from Lp(Rn) to Lq(Rn) if and only if ρ(r) . r
n
p−

n
q for all r > 0.

For ρ(r) = rα, Corollary 4.60 further reads that the operator Iρ is bounded
from Lp(Rn) to Lq(Rn) if and only if α = n

p −
n
q , where 1 < p < q <∞.

With Theorems 4.53–4.57 we can characterize the function ρ for which Iρ is
bounded from one Morrey space to another.

The next corollary generalizes the previous characterization in Corollary 4.60.

Corollary 4.61. [18, Corollary 1.6] Assume that the parameters p, q, s, t and α
satisfy

1 < q ≤ p <∞, 1 < t ≤ s <∞, 0 < α < n

and
1

s
=

1

p
− α

n
,

t

s
=
q

p
.

Let ρ : (0,∞) → (0,∞) be a function satisfying the growth condition. Then the
generalized fractional integral operator Iρ is bounded from Mp

q(Rn) to Ms
t (Rn)

precisely when ρ(r) . rα.

We show by examples that two statements in Theorem 4.57 are of independent
interest. As before we write

`B(r) ≡

{
(1 + | log r|)β1 (0 < r ≤ 1),

(1 + | log r|)β2 (1 < r <∞).

This function is used to describe the “log”-growth and “log”-decay properties. Also,
we fix p and q so that 1 < p < q <∞. The key properties we are interested in are
summarized in the following table:

ρ
ϕ
∈ Z0 ϕ ∈ Z−n

p (69) (70)

Example 4.62 + + + +

Example 4.63 + − + +

Example 4.64 − − + +

Example 4.65 − − + +

Example 4.62. [18, Example 2] Let λ < 0 satisfy 0 <
(
p
q − 1

)
λ < n and −np < λ.

Take µ1, µ2 ∈ R arbitrarily. Set βi ≡
(
p
q − 1

)
µi for i = 1, 2. Define ϕ(r) ≡

r−λ`−µ1−,µ2
(r) and ρ(r) = ϕ(r)1− pq for r > 0. Then this pair (ρ, ϕ) fulfills the

assumptions ρ
ϕ ∈ Z0 and ϕ ∈ Z−

n
p in Theorem 4.57. Indeed, for r > 0 we have

ρ̃(r) ∼ ρ(r) = ϕ(r)1− pq and ∫ ∞
r

ρ(t)

tϕ(t)
dt ∼ ρ(r)

ϕ(r)
.

Example 4.63 is an endpoint case of the above example.
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Example 4.63. [18, Example 1] Let µ1, µ2 ≥ 0. Set α ≡ n
p−

n
q and βi ≡

(
p
q − 1

)
µi

for i = 1, 2. Define ϕ(r) ≡ r
n
q `−µ1,−µ2

(r) for r > 0 and ρ = ϕ1− pq . We note that

ρ̃ ∼ ρ. Then this pair (ρ, ϕ) fulfills the assumptions ρ
ϕ = ϕ−

p
q ∈ Z0 and (69) but

ϕ /∈ Z−
n
p since `−µ1,−µ2

/∈ Z0.

The next example concerns the case where the spaces are close to L∞(Rn)
and the smoothing order of Iρ is “almost 0”.

Example 4.64. [18, Example 3] Let µ1, µ2 < 0. Set β1 ≡
(
p
q − 1

)
µ1 + 1 ∈ (1,∞)

and β2 ≡
(
p
q − 1

)
µ2 − 1 ∈ (−1,∞). Define ρ ≡ `B as we did in Example 3.10

and let ϕ ≡ `µ1,µ2
. Then this pair (ρ, ϕ) fulfills ϕ /∈ Z−

n
p and assumption (69) but

ρ
ϕ = `β1−µ1,β2−µ2

/∈ Z0. More precisely, we have ρ̃ ∼ `β1−1,β2+1 since β1 > 1, and∫ ∞
r

ρ(t)

tϕ(t)
dt ∼ `µ1+β1−1,µ2+β2+1(r) (r > 0).

We consider a case where the target space is close to L∞(Rn).

Example 4.65. [18, Example 4] Let 1 < p, q < ∞. Let α, β1, µ1, µ2 satisfy 0 <

α < n
p , µ1 + β1 < 1, µ2 < 0. Set β2 ≡

(
p
q − 1

)
µ2 − 1 ∈ (−1,∞). Define ρ(r) ≡

min(1, rα)`B(r) as we did in Example 3.10 and let ϕ(r) ≡ max(1, r−α)`µ1,µ2
(r) for

r > 0. Then this pair (ρ, ϕ) fulfills ϕ /∈ Z−
n
p and assumption (69) but ρ

ϕ /∈ Z0 More

precisely,
ρ̃(r)

ϕ(r)
∼ `µ1+β1,µ2+β2+1(r)

and ∫ ∞
r

ρ(t)

tϕ(t)
dt ∼ `µ1+β1−1,µ2+β2+1(r)

for r > 0.

Based upon these preliminary results and Lemma 4.51, we will prove Theo-
rems 4.57–4.53.

We remark that (69) includes (70). We prove an estimate. Once we prove

Lemma 4.59 below, we can obtain the boundedness of Iρ fromMϕ
p (Rn) toMϕp/q

q (Rn)
as we will see below. Here we use the fact that the Hardy–Littlewood maximal op-
erator M is bounded onMϕ

p (Rn), if p > 1 and ϕ is almost decreasing; see Theorem
4.1.

We end this section with comparison of our results with the existing results.
We move on to the case of Spanne type.

Remark 4.66. See [29, Theorem 5.2] for the Spanne-type boundedness of Iα. See
[33, Theorem 5.4], [107, Theorem 1.8], [108, Theorems 2.6, 2.7, 3.4 and 3.6] and
[120, Theorem 1.5] for the case of the multilinear setting.

Remark 4.67. See [110, Theorem 2.3] for the weak boundedness of the maximal
operators (on nonhomogeneous spaces), where the integral conditions is assumed.
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Remark 4.68. See [29, Theorem 5.5] and [47, Theorem 5.7] for the Adams-type
boundedness of Iα. Persson and Samko obtainted the Adams-type boundedness of
Iα using the weighted Hardy operator; see [86, Theorem 5.4]. Guliyev and Shukurov
also considered a similar situation in [46, Theorem 3.6] and [47, Theorem 5.7]. See
[7, Theorem 2] for the multilinear case.

Remark 4.69.

• See [73, Theorem 3], [50] for the boundedness of Iα on generalized Morrey
spaces.

• See [75, Theorem 7.1] for the boundedness of the generalized fractional in-
tegral operators on generalized Orlicz Morrey spaces (of the first kind).

• See [17, 49, 50, 70, 117, 118] for the study of the boundedness of Iρ.
• See [94] for a different type of generalization of the form:

If(x) =

∫
Rn
K(x, y)f(y) dy.

Remark 4.70. In some special case, some authors obtained the necessity of the
boundedness of Iα = Iρ from generalized Morrey spaces to other generalized Morrey
spaces. See [19, Theorems 2.3 and 3.2] as well as [49], [101].

Remark 4.71. Kurata and Sugano pointed out that the operator of the form
V γ(−∆+V )β with a potentail V satisfying the reverse Hölder inequality falls under
the scope of the results in this section [62]. Here β, γ are suitable real parameters.
See [62] for more details.

Remark 4.72. Many researchers handled various operators.

• In [15] Eroglu dealt with fractional oscillatory integral operators and their
commutators.

• In [63] Liu and Shi considered the boundedness of the commutator generated
by BMO and the fractional integral operators. See also [33, Theorem 7.1],
[47, Theorem 7.11] for the Spanne type result and [47, Theorem 7.13] for
the Adams type result.

4.4. Generalized fractional maximal operators in generalized Morrey spaces.
We discuss the boundedness property of the generalized fractional maximal opera-
tor, defined by:

Mρf(x) = sup
r>0

ρ(r)

|B(x, r)|

∫
B(x,r)

|f(y)| dy (x ∈ Rn),

where f ∈ L1
loc(Rn) and ρ is a suitable function from (0,∞) to [0,∞).

Example 4.73. Let 0 ≤ α < n.

• If we let ρ(t) = tα, then we obtain the fractional maximal operator Mα;
Mρ = Mα.
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• If we let ρ(t) = min(tα, 1), then we obtain the local fractional maximal
operator mα; Mρ = mα, where

mαf(x) = sup
0<r≤1

rα

|B(x, r)|

∫
B(x,r)

|f(y)| dy

What Mρ is to Iρ is what Mα is to Iα. So, we are interested in when Mρ

is bounded from Mϕ
q (Rn) to Mψ

t (Rn). We start with the following necessary
condition:

Proposition 4.74. [51, Theorem 1] Let 1 ≤ q <∞ and (ϕ,ψ) ∈ Gq ×G1. Assume

that Mρ is bounded from Mϕ
q (Rn) to wMψ

1 (Rn). Then ρ . ϕ
ψ . In particular, if Mρ

is bounded from Mϕ
q (Rn) to Mψ

1 (Rn), then ρ . ϕ
ψ .

Proof. LetR > 0 be fixed. We utilize the pointwise estimate ρ(R)χB(R) ≤MρχB(2R),
and the doubling condition of ϕ to obtain

ρ(R) .
‖ρ(R)χB(R)‖wMψ

1

ψ(R)
.
‖MρχB(2R)‖Mψ

1

ψ(R)
.
‖χB(2R)‖Mϕ

q

ψ(R)
∼ ϕ(R)

ψ(R)
.

�

Our first result completely characterizes the boundedness of Mρ on general-
ized Orlicz–Morrey spaces.

Theorem 4.75. [51, Theorem 1] Let 0 < a < 1 < q <∞. Let ϕ ∈ Gq. Then, Mρ

is bounded fromMϕ
q (Rn) toMϕa

a−1q(R
n) if and only if ρ and ϕ satisfy the inequality

ρ(R) . ϕ(R)1−a (74)

for all R > 0.

The proof hinges on the following Hedberg inequality:

Lemma 4.76. [51, (15)] Let 0 < a < 1 < q < ∞. Let ϕ ∈ Gq. Then for any
f ∈Mϕ

q (Rn) with ‖f‖Mϕ
q
≤ 1,

Mρf(x) .Mf(x)a (x ∈ Rn). (75)

Once Lemma 4.76 is proved, we have only to resort to the scaling law (Lemma
3.11) and the boundedness of M on Mϕ

q (Rn).

Proof of Lemma 4.76. Remark that both ϕ is bijective. Let R > 0. By using the
definition of M , we obtain

ρ(R)

|B(x,R)|

∫
B(x,R)

|f(y)| dy ≤ ρ(R)Mf(x) . ϕ(R)1−aMf(x)

and

ρ(R)

|B(x,R)|

∫
B(x,R)

|f(y)| dy . ρ(R)
‖f‖Mϕ

1

ϕ(R)
. ϕ(R)−a.
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Thus, it follows that

ρ(R)

|B(x,R)|

∫
B(x,R)

|f(y)| dy . min
{
ϕ(R)1−aMf(x), ϕ(R)−a

}
≤ sup

t>0
min

{
t1−aMf(x), t−a

}
= Mf(x)a.

Since R > 0 being arbitrary, we obtain (75). �

The weak boundedness of Mρ can be characterized in a similar way.

Corollary 4.77. [51, Corollary 1] Let 0 < a < 1 ≤ q <∞. Let ϕ ∈ Gq. Then, Mρ

is bounded from Mϕ
q (Rn) to wMϕa

a−1q(R
n) if and only if ρ and ϕ satisfy (74) for

all R > 0.

We move on to the vector-valued inequality for Mρ on generalized Orlicz–
Morrey spaces and generalized weak Orlicz–Morrey spaces.

Theorem 4.78. [51, Theorem 8] Let 0 < a < 1 < q <∞ and let 1 ≤ u <∞. Let
ϕ ∈ Gq.

• If ρ and ϕ satisfy (33) and (74), then for {fj}∞j=1 ⊂Mϕ
q (Rn)∥∥∥∥∥∥∥

 ∞∑
j=1

Mρfj
u

 1
u

∥∥∥∥∥∥∥
Mϕa

a−1q

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

.

• Conversely, if∥∥∥∥∥∥∥
 ∞∑
j=1

Mρfj
u

 1
u

∥∥∥∥∥∥∥
wMϕa

1

.

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
 1

u

∥∥∥∥∥∥∥
Mϕ

q

(76)

for {fj}∞j=1 ⊂Mϕ
q (Rn), then ρ, ϕ and ψ satisfy (74). Moreover, under the

assumption that ρ ∼ ϕ/ψ, inequality (76) holds if and only if ϕ satisfies
(33).

Proof.

• Using (74), we may assume that ρ = ϕ1−a. Then since ϕ is a doubling
function and 0 < a < 1, we have

Mϕ1−afj . Iϕ1−a |fj |.

Thus, ∞∑
j=1

Mρfj
u

 1
u

.

 ∞∑
j=1

(Iϕ1−a |fj |)u
 1

u

. Iϕ1−a


 ∞∑
j=1

|fj |u
 1

u

 .
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Since we can verify (69), it remains to resort to the boundedness of Iϕ1−a

from Mϕ
q (Rn) to Mϕa

a−1q(R
n).

• We let

fj ≡

{
f, (j = 1),

0, (j ≥ 1),
f ∈Mϕ

1 (Rn).

Then we have the boundedness of Mρ on Mϕ
1 (Rn). Hence, by Theorem

4.75, we conclude that the inequality (74) holds.
Finally, under the assumption that ρ ∼ ϕ/ψ, we prove that inequality

(76) holds if and only if ϕ satisfies (33). To do this, it is enough to show
that (33) follows from (76). Now, assume that the integral condition (33)
fails. Then, for any m ∈ N, there exists rm > 0 such that

ϕ(2mrm) ≤ 2ϕ(rm).

Letting fj = χ[1,m](j)χB(2jrm)\B(2j−1rm), j ∈ N, we have

‖fj‖Mϕ
Φ(`u) ≤ ‖χB(2mrm)‖Mϕ

Φ
∼ ϕ(2mrm) ≤ 2ϕ(rm). (77)

Since θ ∈ Gn and ρ ∼ ϕ/ψ = ϕ/θ(ϕ), ρ(r) . ρ(s) for all r ≤ s. Due to this
fact and the inequality Mρfj & ρ(2jrm)χB(rm), we have

‖Mρfj‖wMψ
1 (`u) &

∥∥∥∥∥∥∥
 m∑
j=1

ρ(2jrm)u

 1
u

χB(rm)

∥∥∥∥∥∥∥
wMψ

1

& ρ(2rm)ψ(2rm)m
1
u

& ϕ(rm)m
1
u . (78)

We combine the inequalities (77) and (78) with the boundedness of Mρ

from wMϕ
q (`u) to Mψ

1 (`u) to obtain m ≤ D where D is independent of
m, contradictory to the fact that m ∈ N is arbitrary. Thus the integral
condition (33) holds.

�

Remark 4.79. One may ask ourselves how different Iα and Mα. See [27, Theorem
1.10] or compare [101, Theorem 1.3] with [101, Theorem 1.7] and [101, Proposition
4.1] to see the gap between Iα and Mα. See also [27, Theorems 5.1 and 5.2] to see
that when they are the same.

Remark 4.80. See [29, Theorem 5.2] and [47, Theorem 4.3] for the Spanne-type
boundedness of Mα, where the integral condition is assumed.

Remark 4.81. See [29, Theorem 5.5] and [47, Theorem 4.4] for the Adams-type
boundedness of Mα, where the integral condition is assumed.

Remark 4.82. See [127, Theorem 4.1] for the boundedness of the fractional max-
imal operator on generalized Morrey spaces in the multilinear setting.
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5. Overview of other types of generalizations

5.1. Morrey spaces for general Radon measures and Morrey spaces over
metric measure spaces. In addition to the genealization of p into functions, one
can replace the Lebesgue measure by general Radon measures. Here we work on a
metric measure space (X, d, µ). We refer to [125] for an exhaustive account of the
analysis on metric measure spaces. Let k > 0 and 0 < q ≤ p < ∞. We define the
Morrey space Mp

q(k, µ) as

Mp
q(k, µ) ≡

{
f ∈ Lqloc(µ) : ‖f‖Mp

q(k,µ) <∞
}
,

where

‖f‖Mp
q(k,µ) ≡ sup

B(x,r)∈B(µ)

µ(B(x, kr))
1
p−

1
q

(∫
B(x,r)

|f(z)|q dµ(z)

) 1
q

. (79)

Here B(µ) stands for the set of all balls having positve µ-measure. In the Euclidean
space Rn, Q(µ) stands for the set of all cubes having positve µ-measure. Clearly
we have Lp(µ) = Mp

p(k, µ), and by applying Hölder’s inequality to (79) we have
‖f‖Mp

q1
(k,µ) ≥ ‖f‖Mp

q2
(k,µ) for all p ≥ q1 ≥ q2 > 0 and k ≥ 1. Thus the following

inclusions hold:

Proposition 5.1. Let p ≥ q1 ≥ q2 > 0 and k ≥ 1. Then

Lp(µ) =Mp
p(k, µ) ⊂Mp

q1(k, µ) ⊂Mp
q2(k, µ).

A remarkable property of Mp
q(k, µ) is that the space Mp

q(k, µ) does not de-
pend on k > 1.

Proposition 5.2. Let (X, d, µ) be the Euclidean space Rn with the Euclidean dis-
tance and the Lebesgue measure. Then for all Mp

q(k, µ) =Mp
q(2, µ) p ≥ q > 0 and

k > 1.

We do not recall its proof whose proof hinges on a geometric structure of Rn;
see [104, Proposition 1.1]. It can happen thatMp

q(1, µ) is a proper subsetMp
q(2, µ)

in Proposition 5.2, as was shown in [99]. Instead of the norm above, we can use

‖f‖Lνq (k,µ) ≡ sup
B(x,r)∈B(µ)

rνµ(B(x, kr))−
1
q

(∫
B(x,r)

|f(z)|q dµ(z)

) 1
q

.

See [72]. See also [95]. We can also define the generalized Morrey spaces with Radon
measures. We work on a metric measure space (X, d, µ). Let ϕ : (0,∞) → (0,∞)
be a function. Then define

Mϕ
q (k, µ) ≡

{
f ∈ Lqloc(µ) : ‖f‖Mϕ

q (k,µ) <∞
}
,

where

‖f‖Mp
q(k,µ) ≡ sup

B(x,r)∈B(µ)

ϕ(µ(B(x, kr)))

(
1

µ(B(x, kr))

∫
B(x,r)

|f(z)|q dµ(z)

) 1
q

.

(80)
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See [45, 91] for generalized Morrey spaces with general Radon measures and [90]
for weak Morrey spaces with general Radon measures. See [56, 53, 93, 96, 97] for
this direction of approaches. We refer to [126] for Morrey spaces with gradient in
this type of setting.

We can consider some concrete cases. See [20, 34, 39] for generalized Morrey
spaces on Heisenberg group, [48] for parabolic genealized Morrey spaces and [13, 40]
for anisotropic genealized Morrey spaces. See [16, 32] and [121] for generalized
Morrey spaces on Carnot groups and for generalized Morrey spaces for the p-adic
fields.

5.2. Local generalized Morrey spaces. Motivated by the works [28, 43], de-
fine the generalized local Morrey space LMϕ

q (Rn) to be the set of all measurable
functions f such that

‖f‖LMϕ
q
≡ sup

r>0
ϕ(r)

(
1

|Q(r)|

∫
Q(r)

|f(y)|q dy

) 1
q

<∞. (81)

The space LMϕ
q (Rn) is sometimes referred to as the Bσ-spaces. See [78, 106] for

Bσ-spaces.

5.3. Generalized Orlicz–Morrey spaces. Instead of p, we can generalize q using
Young functions. In the definition below we exclude the case where ϕ(t) = ∞ for
some t ∈ (0,∞).

Definition 5.3 (Young function). A function Φ : [0,∞) → [0,∞) is said to be a
Young function, if there exists an increasing function ϕ which is right-continuous
such that

Φ(t) =

∫ t

0

ϕ(s)ds (t ≥ 0). (82)

Equality (82) is called the canonical representation of a Young function Φ. By
convention define Φ(∞) ≡ ∞.

There are three types of generalizations. We start with the Orlicz–Morrey
spaces of the first kind. To this end we start with the defintion of the (ϕ,Φ)-average
over Q.

Definition 5.4 ((ϕ,Φ)-average). Let ϕ : (0,∞) → (0,∞) be a function and Φ :
(0,∞) → (0,∞) a Young function. For a cube Q and f ∈ L0(Q), define the
(ϕ,Φ)-average over Q by:

‖f‖(ϕ,Φ);Q ≡ inf

{
λ > 0 :

ϕ(`(Q))

|Q|

∫
Q

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

In [75] Nakai defined the generalized Orlicz–Morrey space of the first kind
via the (ϕ,Φ)-average.

Definition 5.5 (Generalized Orlicz–Morrey spaces of the first kind). Suppose
thatwe have a function ϕ : (0,∞) → (0,∞) and a Young function Φ : [0,∞) →
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[0,∞). For a measurable function f define ‖f‖LϕΦ ≡ sup
Q∈Q
‖f‖(ϕ,Φ);Q. The function

space LϕΦ(Rn), the generalized Orlicz–Morrey space of the first kind, is defined to
be the set of all measurable functions f for which the norm ‖f‖LϕΦ is finite. Like-

wise the function space WLϕΦ(Rn), the weak generalized Orlicz–Morrey space of the
first kind, is defined to be the set of all measurable functions f for which the norm
‖f‖WLϕΦ = supλ>0 λ‖χ(λ,∞](|f |)‖LϕΦ is finite.

We move on to Orlicz–Morrey spaces of the second kind. To define Orlicz–
Morrey spaces of the second kind, we need another notion of the average.

Definition 5.6. Let Φ : [0,∞) → (0,∞) a Young function. For a cube Q, define
its Φ-average over Q by:

‖f‖Φ;Q ≡ inf

{
λ > 0 :

1

|Q|

∫
Q

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
. (83)

With this new definition of the average in mind, Sawano, Sugano and Tanaka
define generalized Orlicz–Morrey spaces of the second kind [103].

Definition 5.7 (Generalized Orlicz–Morrey spaces of the second kind). Suppose
that we have a Young function Φ : [0,∞) → [0,∞) and a function ϕ : (0,∞) →
[0,∞). Let f ∈ L0(Rn).

• Define ‖f‖Mϕ
Φ
≡ sup
Q∈Q

ϕ(`(Q))‖f‖Φ;Q. The generalized Orlicz–Morrey space

of the second kind Mϕ
Φ(Rn) is defined to be the the set of all measurable

functions f for which the norm ‖f‖Mϕ
Φ

is finite.

• Define ‖f‖WMϕ
Φ
≡ sup

λ>0
λ‖χ(0,λ)(|f |)‖Mϕ

Φ
. The function space WMϕ

Φ(Rn) is

defined to be the weak generalized Orlicz–Morrey space of the second kind
as the set of all measurable functions f for which the norm ‖f‖WMϕ

Φ
is

finite.

Finally, Deringoz, Samko and Guliyev define generalized Orlicz-Morrey space
of the third kind as follows:

Definition 5.8. The generalized Orlicz-Morrey space ZϕΦ(Rn) of the third kind is
defined as the set of all measurable functions f for which the norm

‖f‖ZϕΦ ≡ sup
Q∈Q

ϕ(`(Q))Φ−1

(
1

|Q|

)
‖f‖LΦ(Q)

is finite.

We do not go into the details of these function spaces; here we content
ourselves with mentioning that the first kind and the second kind are different
and that the second kind and the third kind are different according to [22]. See
[11, 36, 52, 98, 102, 119] for more about these function spaces.
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5.4. Generalization of ϕ to the function depending also on x. One can
consider the case where ϕ depends on x not only on r.

‖f‖Mϕ
q
≡ sup
x∈Rn,r>0

ϕ(x, r)

(
1

|Q(x, r)|

∫
Q(x,r)

|f(y)|q dy

) 1
q

<∞. (84)

See [4, 29, 45, 73] for the approach to this direction.

5.5. Martingale Morrey spaces. One can use martingales to generalize Morrey
spaces [77, 81].

Let (Ω,Σ, P ) be a probability space, and F = {Fn}n≥0 a nondecreasing
sequence of sub-σ-algebras of Σ such that Σ = σ(

⋃
n Fn). For the sake of simplicity,

let F−1 = F0. The set B ∈ Fn is called atom, more precisely (Fn, P )-atom, if any
A ⊂ B, A ∈ Fn, satisfies P (A) = P (B) or P (A) = 0. Denote by A(Fn) the set of
all atoms in Fn.

The expectation operator and the conditional expectation operators relative
to Fn are denoted by E and En, respectively. It is known as the Doob theorem
that, if p ∈ (1,∞), then any Lp-bounded martingale converges in Lp. Moreover,
if p ∈ [1,∞), then, for any f ∈ Lp, its corresponding martingale {fn}∞n=1 with
fn = Enf is an Lp-bounded martingale and converges to f in Lp (see for example
[82]). For this reason a function f ∈ L1 and the corresponding martingale {fn}∞n=1

will be denoted by the same symbol f .

Let M be the set of all martingales such that f0 = 0. For p ∈ [1,∞], let
L0
p(Ω,F , P ) be the set of all f ∈ Lp(Ω,F , P ) such that E0f = 0. For any f ∈

L0
p(Ω,F , P ), its corresponding martingale (fn) with fn = Enf is an Lp-bounded

martingale in M. For this reason we regard as L0
p(Ω,F , P ) ⊂M.

Let B = {Bn}n≥0 be sub-families of F = {Fn}n≥0 with Bn ⊂ Fn for each
n ≥ 0. We denote by B ⊂ F this relation of B and F .

In this paper we always postulate the following condition on B:

There exists a countable subset B′ ⊂ B0 such that P

( ⋃
B∈B′

B

)
= 1. (85)

We first define generalized martingale Morrey-Campanato spaces with respect to
B as the following:
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Definition 5.9. Let B ⊂ F , p ∈ [1,∞) and ϕ : (0, 1]→ (0,∞). For f ∈ L1, let

‖f‖Lϕp = ‖f‖Lϕp (B)

= sup
n≥0

sup
B∈Bn

ϕ(P (B))

(
1

P (B)

∫
B

|f(ω)|p dP (ω)

)1/p

,

‖f‖Lϕp = ‖f‖Lϕp (B)

= sup
n≥0

sup
B∈Bn

ϕ(P (B))

(
1

P (B)

∫
B

|f(ω)− Enf(ω)|p dP (ω)

)1/p

,

‖f‖(Lϕp )− = ‖f‖(Lϕp )−(B)

= sup
n≥0

sup
B∈Bn

ϕ(P (B))

(
1

P (B)

∫
B

|f(ω)− En−1f(ω)|p dP (ω)

)1/p

,

and define

Lϕp = Lϕp (B) = {f ∈ L0
p : ‖f‖Lϕp <∞},

Lϕp = Lϕp (B) = {f ∈ L0
p : ‖f‖Lϕp <∞},

(Lϕp )− = (Lϕp )−(B) = {f ∈ L0
p : ‖f‖(Lϕp )− <∞}.

5.6. Replacing sup in the Morrey norm by other norms. Instead of taking
the supremum, Fueto considered to take the Lp-norm in [21]. Although Feuto
worked in the weighted setting, we describe it in the unweighted setting.

Definition 5.10. Let 0 < q ≤ p < ∞ and 0 < r ≤ ∞. One defines Mp
q,r(Rn) to

be the set of all f ∈ Lqloc(Rn) for which

‖f‖Mp
q,r

=

∥∥∥∥∥∥
{
|Qνm|

1
p−

1
q

(∫
Qνm

|f(y)|q dy
) 1
q

}
ν∈Z,m∈Zn

∥∥∥∥∥∥
`r

is finite.

See [6, 67] for applications to partial differential equations.

5.7. Grandification of the parameter q. In addition to generalization of the
parameter p, we can also grandify the parameter q; for f ∈ L0(Rn), we define

‖f‖Mp
q),θ
≡ sup
x∈Rn,r>0

sup
ε∈(0,q−1)

εθ|Q(x, r)|
1
p−

1
q−ε

(∫
Q(x,r)

|f(y)|q−ε dy

) 1
q−ε

.

The space Mp
q),θ(R

n) collects all f ∈ L0(Rn) for which ‖f‖Mp
q),θ

is finite. See

[58, 68, 71] for more details and variants.

5.8. The case of the variable expoenent. By a variable exponent we mean any
measurable function from Rn to a subset of (−∞,∞]. We define ‖ · ‖Lp(·) which is
called the variable Lebesgue norm or the Nakano–Luxenburg norm.
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Definition 5.11 (Variable Lebesgue spaces, Variable exponent Lebesgue space).
Let

p(·) : Rn → [1,∞]

be a measurable function. Then define the variable exponent Lebesgue space Lp(·)(Rn)
with variable exponents by

Lp(·)(Rn) ≡
⋃
λ>0

{f ∈ L0(Rn) : ρp(λ
−1f) <∞},

where

ρp(f) ≡ ‖χp−1(0,∞)|f |p(·)‖1 + ‖f‖L∞(p−1(∞)).

Moreover, for f ∈ Lp(·)(Rn) one defines the variable Lebesgue norm by

‖f‖Lp(·)(Rn) ≡ inf
({
λ ∈ (0,∞) : ρp(λ

−1f) ≤ 1
}
∪ {∞}

)
.

Using this techinique, we can generalize the exponent q. See [37, 65, 66] for
example.
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