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Abstract. In this paper, the set of statistical limit and cluster points of the arith-

metical functions (ap(n)), (γ(n)) and (τ(n)) are studied by using natural density of

subsets of natural numbers N. In addition to this, statistical limit and cluster points

of r − th difference functions (∆rγ(n)) and (∆rτ(n)) for each fixed r ∈ N are also

investigated.
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1. INTRODUCTION

In [3] and [12], Fast and Steinhaus introduced the concept of statistical con-
vergence independently as a generalization of classical convergence. Prior to these
studies in [14], Zygmund gave a name almost convergence to this concept and es-
tablished a relation between statistical convergence and strong summability. In the
last two decades, this concept was studied as a nonmatrix summability method by
various authors including Connor [2], Fridy [5], Fridy-Miller [6], Schoenberg [11]
and many others. Especially, Fridy in [7] viewed the statistical convergence as a
sequential limit concept and by extending this concept in a natural way, he defined
the statistical analogue of the set of limit points and cluster points of a number
sequence. Both concepts are just the natural extension of the ordinary limit points
but in the sense of statistical convergence.

An arithmetic function is a function defined on natural numbers which takes
values in the real or complex numbers. Although aritmetical functions are actually
a sequence, they have some applications in the theory of analytic numbers due to

2020 Mathematics Subject Classification: 40A35, 11B05.

Received: 27-03-2019, accepted: 10-06-2020.

∗Corresponding Author

224



A note on the arithmetical functions ap(n), γ(n) and τ(n) 225

their unique properties. A few of the best known arithmetic functions are Euler
Phi function φ(n), number of divisors function β(n), the sum of divisors function
σ(n), etc. Some papers which are directly related this topic [1], [4], [8] and [10],
etc.

In this paper, we are going to study the statistical limit and statistical cluster
points of the arithmetic functions; ap(n), γ(n) and τ(n).

Let K be a subset of natural numbers N. For any n ∈ N, let Kn := {k ≤ n :
k ∈ K} and |Kn| denotes the number of elements of Kn. The natural density of
the set K is given by

δ(K) := lim
n→∞

(
|Kn|
n

),

if this limit exists.

A real number sequence x = (xk)∞k=1 is statistically convergent to L provided
that for every ε > 0 the set K(ε) = {k ∈ N : |xk − L| ≥ ε} has a natural density of
zero. In this case, we write st− limx = L.

Let (yk) be a sequence, (yk(j)) be a sub-sequence and let K = {k(j) : j ∈ N}.
If δ(K) = 0, then the sub-sequence (yk(j)) is called thin sub-sequence of

(yn), otherwise it is called nonthin sub-sequence. That is, we call (yk(j)) nonthin
sub-sequence if K does not have density zero.

Definition 1.1. A number λ is a statistical limit point of the number sequence
x = (xn) provided that there is a nonthin sub-sequence of x = (xn) that converges
to λ.

Definition 1.2. A number γ is a statistical cluster point of the number sequence
x = (xn) provided that for every ε > 0 the set {k ∈ N : |xk − γ| ≤ ε} does not have
density zero.

It is also well known that, a number l is an ordinary limit point of a sequence
(xk) if there exists a sub-sequence that converges to l.

Definition 1.3. Let p be a prime number. The arithmetic function ap(n) is defined
as follows ap(1) = 0 and if n ≥ 1, then ap(n) is the unique positive integer j ≥ 0
satisfying pj |n but not pj+1 - n.

It is possible to express a given number n ∈ N as follows:

n = a1
b1 = a2

b2 = a3
b3 · · · = aγ(n)

bγ(n) . (1)

Definition 1.4. γ(n) is the number of different ways of expressing the number n
as in the form in equation (1) and the sequence τ(n) is the sum of each bi’s in (1).
That is;

τ(n) := b1 + b2 + b3 + · · ·+ bγ(n),

for all n ≥ 1.

For any n,m ∈ N; we are going to use a symbol (n,m) for the greatest
common factor of n and m throughout the paper. The following two Lemma’s are
needed in the proof of some of our results.
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Lemma 1.5. [9] For any two real numbers α > 1 and β denote

S = {nα+ β : n ∈ N}.

Then,

δ(S) =
1

α
.

Lemma 1.6. [9] If

A0 = {n > 1 : n = pα1
1 .pα2

2 ...pαnn with (α1, ...αn) = 1},

then δ(A0) = 1.

2. MAIN RESULTS

The definition and elementary properties of the arithmetical function (ap(n))

were studied by Šalát in [13]. Later, the idea given in [13] were extended to the
concept of ideal convergence in [4].

2.1. The statistical limit and cluster point of (ap(n)). In this subsection, we
will study the statistical limit and cluster points (which were studied by Fridy in
[7] for real valued number sequences) of the arithmetical function (ap(n)).

Let us consider the following sets:

K0 := {n ∈ N : (n, p) = 1},K1 := {n ∈ N : n = pki where ki ∈ K0},

K2 := {n ∈ N : n = p2ki where ki ∈ K0},K3 := {n ∈ N : n = p3ki where ki ∈ K0},
...

Km := {n ∈ N : n = pmki where ki ∈ K0}
and so on. Also, let

B :=

∞⋃
i=1

Ki. (2)

Lemma 2.1. For each i 6= j, the sets Ki and Kj defined above are mutually disjoint
subset of natural numbers.

Proof. Let n ∈ Ki be an arbitrary element. Then, n = pik1 where k1 ∈ K0. For
j 6= i suppose that n ∈ Kj , then we have also n = pjk2 where k2 ∈ K0.

Now, if i < j, then n = pjk2 = pipj−ik2 = pik1 holds. This implies that k1 =
pj−ik2 and this also in turn implies that k1 could not be in K0 which contradicts
to our assumption n ∈ K0. Hence, n /∈ Kj .

Similarly, if we consider i > j, then n = pik1 = pjpi−jk1 = pjk2. This
implies that k2 = pi−jk1 and hence k2 could not be in K0 which contradicts to our
assumption k2 ∈ K0. Therefore, n /∈ Kj . This completes the proof.
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Lemma 2.2. The set B defined in (2) is exactly the same as the set

C := {n : n = pk, k ∈ N}.
That is, we have B = C.

Proof.

Let n ∈ B be an arbitrary element. By Lemma 2.1, the sets Ki’s are mutually
disjoint. Then, for a fixed i ∈ N we have n ∈ Ki. This implies that n = pik0, where
k0 ∈ K0. Now, if i = 1, then n ∈ C holds. If i > 1, then n = p(pi−1k0). This
implies that n = pk2 for k2 = pi−1k0. So, we have n ∈ C. Hence, we have B ⊆ C.

To prove the converse inclusion, let n ∈ C be an arbitrary element. Then,
n = pk where k ∈ N. Now, if (p, k) = 1, then we have n ∈ K1. If (p, k) 6= 1,
then (p, k) = p this implies n = p2k2. If (p, k2) = 1, then n ∈ K2 holds. Since n
is an arbitrary but fixed element, then if we continue in this way we will stop at
some point i ∈ N such that n = piki and (ki, p) = 1 which implies that n ∈ Ki.
Therefore, C ⊆ B. This completes the proof.

Lemma 2.3. For the set K0 := {n ∈ N : (n, p) = 1} we have

δ(K0) =
p− 1

p
. (3)

Proof. By Lemma 2.2, we have

B =

∞⋃
i=1

Ki = {n : n = pk, k ∈ N}.

We also have N \ {1} = K0 ∪ B and K0 ∩ B = ∅. We know that 1 = δ(N \ {1}) =
δ(B) + δ(K0) and from Lemma 1.5 we have

δ(B) = δ(C) =
1

p
,

and it gives that

δ(K0) = 1− 1

p
=
p− 1

p
.

Lemma 2.4. For each m ∈ N, the density of Km defined above is given by the
following formula:

δ(Km) =
p− 1

pm+1
.

Proof. Let Sn := {k01 ≤ k02 ≤ k03 ≤ k04 ≤ k05 · · · ≤ k0n} be a set which represents
the first n elements of the set K0. It is clear from the definition of density and (3)
that

δ(K0) = lim
n→∞

K0(Sn)

Sn
=
p− 1

p
holds. Now, let

Ki := {n ∈ N : n = pik where i ∈ N and k ∈ K0}.
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By considering following equality

|Ki(p
iSn)| = |K0(Sn)| = n

for any i ∈ N, we have

δ(Ki) = lim
n→∞

(
Ki(p

iSn)

piSn

)
= lim
n→∞

( n

piSn

)
=

=
1

pi
lim
n→∞

(K0(Sn)

Sn

)
=

1

pi
δ(K0) =

=
1

pi

(p− 1

p

)
=
(p− 1

pi+1

)
.

Hence, the result follows.

Now, we are ready to say something about the set of statistical limit and
cluster points of the arithmetical function (ap(n)).

Theorem 2.5. The set of all statistical cluster and limit points of the (aritmetic
function) sequence (ap(n)) is N ∪ {0}.

Proof. For each i ∈ N, it is clear from the definition of Ki that we have:

(ap(n))n∈Ki = (i, i, i, ...)

and

lim
n→∞

{ap(n)}Ki = i

holds. Furthermore, from Lemma 2.4, the natural density of Ki is not zero.

In other words, for each i ∈ N there is a nonthin sub-sequence of (ap(n)) that
converges to i.

Similarly for each n ∈ K0 the value of the sequence is zero and δ(K0) = p−1
p

which is non zero. Hence the theorem holds.

Corollary 2.6. For any prime number p, the (arithmetical function) sequence
(ap(n)) is not statistically convergent to any real number.

Proof. Let x be any real number and p be any prime number. Then, for all ε > 0
the natural density of the set

K(ε) = {k ∈ N : |ap(n)− x| ≥ ε}

can not be zero.

In other words, if x /∈ N then it is clear that δ(K(ε)) = 1 which is non zero
and if x ∈ N then for any m ∈ N \ {x} the set Km is the subset of K(ε). Because
of monotonicity properties of density and Lemma 2.4 the density of δ(K(ε)) 6= 0.
Thus, the proof of the corollary is completed.

�
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2.2. The statistical limit and cluster point of (γ(n)) and (τ(n)). In [10],
Mycielski defined the arithmetic functions (γ(n)) and (τ(n)). Later, in [4], the
ideal convergence of these arithmetical functions was studied. In addition to the
result in [4], we are going to study the statistical limit and cluster points of these
arithmetical functions.

Now, let us recall the definitions of (γ(n)) and (τ(n)). For a given number
n ∈ N, it is possible to express it in the following different way:

n = a1
b1 = a2

b2 = a3
b3 = · · · = aγ(n)

bγ(n) . (4)

In (4), γ(n) represents the number of different ways of expressing the number
n, and the sequence τ(n) is also defined as the sum of bi’s in (4). That is,

τ(n) := b1 + b2 + b3 + · · ·+ bγ(n),

for all n ≥ 1.

In order to help us see the range of the sequence closely, let us consider the
following sets:

A0 = {n ∈ N : γ(n) = 1}, (5)

A1 = {n ∈ N : γ(n) = 2}, A2 = {n ∈ N : γ(n) = 3},
A3 = {n ∈ N : γ(n) = 4}, A4 = {n ∈ N : γ(n) = 5},

...

Am = {n ∈ N : γ(n) = m+ 1},
and so on. Let us denote the union of these sets by

D :=

∞⋃
i=1

Ai. (6)

Lemma 2.7. For all i ≥ 1, δ(Ai) = 0 holds.

Proof.

Let D =
⋃∞
i=1Ai. Then, we have N\{1} = A0∪D and it is clear from (5)-(6)

that A0 ∩D = ∅ holds. Since δ(N) = 1 = δ(D) + δ(A0), then we have δ(A0) = 1
from Lemma 1.6. This implies that δ(D) = 0. Hence, the desired result follows
immediately.

Theorem 2.8. The only statistical cluster and statistical limit point for both (arith-
metical functions) sequences (γ(n)) and (τ(n)) is 1.

Proof. For any ε > 0 it is clear that

A0 = {n ∈ N : |γ(n)− 1| ≤ ε}
and from Lemma 2.7 we know that δ(A0) = 1 which is nonzero. This implies that
1 is a cluster point of the sequence γ(n). But for each n ∈ N and n 6= 1 together
with the result of Lemma 2.7, we can not find a nonthin sub-sequence of γ(n) that
converges to n. In other words, for each n the set

{n ∈ N : |γ(n)− n| ≤ ε} = An
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has zero density. Therefore, the only statistical cluster and limit point of the
sequence (γ(n)) is 1.

Since we can easily verify that the following two sets are actually the same:

H0 = {n ∈ N : τ(n) = 1} = {n ∈ N : γ(n) = 1} = A0.

As a result of this fact the proof for this part is exactly the same as that of (γ(n)).

Corollary 2.9. Both sequences (γ(n)) and (τ(n)) are statistically convergent to 1.

Proof. Here, we will prove only for (γ(n)) and leave out the proof of (τ(n))
because it is exactly the same way as the proof of (γ(n)). From the fact that for
all ε > 0 the natural density of the set K(ε) = {k ∈ N : |γ(n)− 1| > ε} is zero and
as a result of Theorem 2.8, the desired result follows immediately.

2.3. The statistical limit and cluster point of ∆γ(n) and ∆τ(n). In this
subsection, we study the statistical limit points and cluster points of the difference
sequences (∆γ(n)) and (∆τ(n)).

For each n ∈ N it can be defined as follows:

(∆γ(n)) = (γ(n+ 1))− (γ(n)); (∆τ(n)) = (τ(n+ 1)− τ(n)).

Now, let us consider the following sets:

B = {n ∈ N : γ(n) 6= 1}, K0 = {n ∈ N : γ(n) = 1},

H = {n ∈ N : ∆γ(n) = 0}, D = {n ∈ N : γ(n) = 1 = γ(n+ 1)},
and

F = {n ∈ N : n ∈ H but n /∈ D}, L = {n ∈ N : n ∈ K0 but n /∈ K}.

It is clear to see that F ⊂ B. This implies δ(F ) = 0. Furthermore, we have
K0 = D ∪ L.

Now, n ∈ L if n+ 1 ∈ B. This also implies that δ(L) ≤ δ(B) = 0. Therefore,
(∆γ(n))D is nonthin sub-sequence of the sequence (∆γ(n)) because of δ(D) = 1.

Theorem 2.10. Statistical limit and cluster point of each function (∆γ(n)) and
(∆τ(n)) is only 0.

Proof. From the above discussion we can clearly see that the only non-thin sub
sequence of the sequence (∆γ(n)) is (∆γ(n))D and

(∆γ(n))D → 0,

when n→∞. Furthermore, we showed that

δ(D) = 1

This clearly tells us that there is no other nonthin sub-sequence other than ∆K0.

Since D = {n ∈ N : γ(n) = 1 = γ(n + 1)} = {n ∈ N : τ(n) = 1 = τ(n + 1)},
then the proof for this part is exactly the same as ∆γ(n). Hence, it is omitted here.
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2.4. The statistical limit and cluster points of (∆rγ(n) )and (∆rτ(n)). Here,
we will investigate the statistical limit and cluster points of (∆rγ(n)) where r is
any natural number with r ≥ 2.

∆rγ(n) = ∆r−1γ(n+ 1)−∆r−1γ(n) =

r∑
j=0

(−1)j
(
r

j

)
γ(n+ r − j)

Now, consider the following sets

B = {n ∈ N : γ(n) 6= 1};K0 = {n ∈ N : γ(n) = 1};H = {n : ∆rγ(n) = 0};

D = {n ∈ N : γ(n) = γ(n+ 1) = γ(n+ 2) = · · · = γ(n+ r) = 1}
and

F = {n ∈ H but n /∈ D}.

Here, let us calculate the statistical density of the set F by dividing it in to
simple and mutually disjoint sets; F1, F1, F1, . . . Fr such that

F = F1 ∪ F1 ∪ F1 ∪ · · · ∪ Fr
holds, where

F0 = {n : γ(n) 6= 1 and ∆rγ(n) = 0},

F1 = {n : γ(n) = 1, γ(n+ 1) 6= 1 and ∆rγ(n) = 0},

F2 = {n : γ(n) = 1 = γ(n+ 1), γ(n+ 2) 6= 1 and ∆rγ(n) = 0},

F3 = {n : γ(n) = 1 = γ(n+ 1) = γ(n+ 2), γ(n+ 3) 6= 1 and ∆rγ(n) = 0},
...

Fr = {n : γ(n) = γ(n+ 1) = · · · = γ(n+ r − 1) = 1, γ(n+ r) 6= 1 and ∆rγ(n) = 0}.

It is clear that F1 ⊂ B and from Theorem 2.7 we have δ(B) = 0. Hence
δ(F1) = 0.

Now, we have also n ∈ F2 if and only if n+ 2 ∈ B. This also implies that

δ(B) = lim
n→∞

|sBn |
sBn

= lim
n→∞

n

sBn
= 0 = lim

n→∞

n

sBn − 2
= lim
n→∞

n

sF2
n

= lim
n→∞

|sF2
n |
sF2
n

= δ(F2)

Thus, we have also δ(F2) = 0. Similarly, we also have n ∈ Fr if and only if
n+ r ∈ B. Hence, this gives that

δ(Fr) = lim
n→∞

|sFrn |
sFrn

= lim
n→∞

n

sFrn
= lim
n→∞

n

sBn − r
= lim
n→∞

n

sBn
= δ(B) = 0.

Therefore, δ(Fr) = 0. From this we obtain that δ(Fr) = 0. This in turn
implies that δ(D) = 1.

Hence, (∆rγ(n))D is a non-thin sub-sequence of (∆rγ(n)).

Theorem 2.11. The statistical cluster and limit point of the sequences (∆rγ(n))
and (∆rτ(n)) is 0.
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Proof. From the above discussion we can clearly see that the only non-thin sub-
sequence of the sequence (∆rγ(n)) is (∆rγ(n))D and (∆rγ(n))D → 0, as n→∞.

Furthermore, we have also showed that δ(D) = 1. This clearly implies the
fact that there is no other nonthin sub-sequence other than (∆rγ(n))D. Hence, the
result follows

The discussion above as well as the proof for (∆rτ(n)) is exactly the same to
that of (∆rγ(n)). Therefore, we leave the proof here.

3. Conclusion

In this study, it was especially focused on calculating the statistical limit
and cluster points of some arithmetic functions. Because of the definition of each
arithmetic function, they are handled separately and the results are given in four
subsections. As a continuation of this study, the same problem can be made by
considering different densities such as logarithmic density, uniform density, etc. For
example, it may be interesting to find the T−statistical limit and cluster points of
the arithmetic functions handled by the density produced by any summation matrix
T = (tn,k).

It is know from Theorem 2.5 that the statistical limit and cluster points of
the arithmetical function (ap(n)) is the set N ∪ {0}.

In [13], it is shown that the sequence (ap(n).gp(n)) is statistical convergent

to zero when gp(n) = logp
logn .

Naturally, following problem is worth investigating: Let x ∈ N be an arbitrary
statistical limit or cluster point of the (ap(n)). What should be the gp(n) for the
sequence (ap(n).gp(n)) converge to statistically to the point x?
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