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APPLYING THE APOS THEORY
TO IMPROVE STUDENTS ABILITY

TO PROVE IN ELEMENTARY

ABSTRACT ALGEBRA

I M. Arnawa, U. Sumarno, B. Kartasasmita,
and E.T. Baskoro

Abstract. This study is a quasi-experimental nonrandomized pretest-posttest control
group design. The experiment group is treated by APOS theory instruction (APOS),
that implements four characteristics of APOS theory, (1) mathematical knowledge was
constructed through mental construction: actions, processes, objects, and organizing
these in schemas, (2) using computer, (3) using cooperative learning groups, and (4)
using ACE teaching cycle (activities, class discussion, and exercise). The control group is
treated by conventional/traditional mathematics instruction (TRAD). The main purpose
of this study is to analyze about achievement in proof. 180 students from two different
universities (two classes at the Department of Mathematics UNAND and two classes at
the Department of Mathematics Education UNP PADANG) were engaged as the research
subjects. Based on the result of data analysis, the main result of this study is that the
proof ability of students’ in the APOS group is significantly better than student in TRAD
group, so it is strongly suggested to apply APOS theory in Abstract Algebra course.

1. INTRODUCTION

Proof is an essential characteristic of mathematics and as such should be a
key component in mathematics education ([10, 13, 20]), that has been considered as
a fundamental part of mathematical endeavor since ancient times [14]. According
to Reid in [19], it makes mathematics different from all other areas of human
activity. Proof is most valuable when it leads to understanding and help in thinking
more clearly and effectively about mathematics. Understanding as a fundamental
aspect of education (see [19]) is considered to be ultimate outcome toward which all
learning and teaching processes in mathematics education are directed [12]. Thus,
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above all, the purpose of teaching and learning proof is to promote understanding
[10].

Despite its importance, proof has been known difficult to teach and learn.
Research indicates that students at both high school and university level have
difficulties, not only in producing proof, but also even in recognizing what a proof
is. Moore [18] found seven major sources of student difficulties in learning to
do proofs, including inability to state the definition, inadequate concepts image,
inability to use the definition to structure a proof, inability or unwillingness to
generate examples, and difficulties with mathematics language and notation.

Especially in Abstract Algebra, Hart [9] describes a study of 29 college math-
ematics majors, taking different Abstract Algebra courses from beginning under-
graduate to beginning graduate, that were asked to write six standard Abstract Al-
gebra proofs, in 15 minute or less for each proof. On the basis of their performance
on three criterion proofs, students were classified into four levels of conceptual un-
derstanding. Analysis of errors made, processes used, correctness of proofs, and
student assessment of tasks suggested that the journey from novice to expert in
a content domain may be an irregular and unstable developmental process, rather
than the dichotomy often assumed in the literature.

Selden and Selden [1] describe errors and misconceptions exhibited by col-
lege students as they attempted to write proofs in a junior-level Abstract Algebra
course. The Abstract Algebra courses used for the study were those taught by the
investigators at several different universities. Seventeen errors were documented
and analyzed. The errors were classified into two ways: (1) according to whether
or not they were misconception-based, and (2) according to their logical character-
istics. In discussing their results, the investigator raised some questions, such as
the completeness of their lists, the sources of the errors, and how they might be
prevented. They also suggest that students’ reasoning abilities could be improved
if lower-division mathematics courses would include instruction on creating and
validating algorithms, rather than just implementing algorithms.

Abstract Algebra is a generalization of school algebra in which the variables
can represent various mathematical object, including numbers, vectors, matrices,
functions, transformations, and permutations, in which the expressions and equa-
tions are formed through operations that make sense for particular objects: addition
and multiplication for matrices, composition for functions, and so on. Abstract Al-
gebra consists of axiomatic theories that provide opportunities to consider many
different mathematical systems as being special cases of the same abstract struc-
ture.

According to Findel [4], proof plays a central role in the learning of Abstract
Algebra. A course in Abstract Algebra is the place where students might extract
common features from many mathematical systems that they have used in previous
mathematics courses, such as calculus, linear algebra, and school algebra. Students
have the opportunities to develop deeper understanding of concepts such as identity,
inverse, equivalence, and function. For example, what is shared, by the identity
for multiplication of real numbers, the identity matrix, and the identity function?
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What is the common idea behind the inverse of function, the inverse of a matrix,
and the multiplicative inverse of a number? In Abstract Algebra, students can also
learn about the importance of precise language in mathematics and about the role
of definitions in supporting such precision. Mathematics is also about noticing when
things are the same and being able to describe how they are different. In Abstract
Algebra, this naive notion of ”sameness” becomes formalized in the concept of
isomorphism.

The learning of many university level mathematical topics has been inves-
tigated using the APOS (Action-Process-Object-Schema) theory and an instruc-
tional sequences have been designed to reflect it. This study focuses on the effect
of instruction based upon APOS theory to improve students’ ability to prove in
elementary Abstract Algebra. Specifically, this study was designed to address the
following research question and to test the corresponding directional research hy-
pothesis:

Research Question:
What is the effect of the APOS theory paradigm on the ability to prove in

Elementary Abstract Algebra?

Research Hypothesis:
The ability to prove of students who have been involved in APOS theory

instruction is statistically greater than the ability to prove of students who have
been involved in only teacher-centered, traditional learning.

2. LITERATURE REVIEW

This section is intended to provide the reader with reference definitions and basic
ideas for the following sections.

2.1. APOS Theory and Related Research
The work of Dubinsky and his colleagues is based on a well-articulated frame-

work for research and curriculum development in undergraduate mathematics ed-
ucation [15], which grows largely from Dubinsky’s elaboration of Piaget’s notion of
reflective abstraction [5]. The core of the framework is the theoretical perspective
that all mathematical conceptions can be understood as actions, processes, object,
or schemas (hence the acronym APOS). It is important to keep in mind that the
theoretical perspective provides ways to categorize student’s thinking about math-
ematical concepts, not categories for concepts themselves. Thus, one student may
have an action conception of coset and another a process conception. The cate-
gories are roughly developmental, with each new conception requiring new mental
constructions.

According to Dubinsky’s theory, an action conception is different from process
conception in that in the former, the student is particularly focused on going
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through specific procedural steps and is unable to talk clearly about one of steps
until all the previous steps have been carried out. An action conception can be-
come a process conception through a mental construction called interiorization.
Then, the student can think about the result of the process without actually hav-
ing done it and, in particular, can imagine reversing the process. A student who
has an object conception of a mathematical idea can imagine it as a totality and,
in particular, can act on it with higher-level actions or processes. Processes can
be encapsulated into objects, and it is sometimes usefully that the student be able
to de-encapsulate an object to focus on the underlying process. Schemas are co-
ordinated collections of actions, processes, objects, and other schemas, which can
themselves be encapsulated into objects.

Dubinsky’s research and development framework consists of three activities:
theoretical analysis, design and implementation of instruction, and observation and
evaluation of the implemented instruction. The theoretical analysis describes the
actions, processes, objects, and schemas that students might construct in order
to develop an understanding of the target concepts. Instructional activities are
designed specifically to help students make the constructions identified in the the-
oretical analysis, and typically include computer activities using the programming
language ISETL (Interactive Set Language), whose syntax closely resembles math-
ematical notation. Evaluation consists largely of interviews and written exams to
determine to what extent students made the desired constructions. The framework
is cyclical in that observation and evaluation inform revisions in the theoretical
perspective, which informs subsequent instructional design, and so on. The re-
search papers primarily report the result of a particular implementation, focusing
primarily on characterizing the action, process, and object conceptions of student,
reporting the number of students in each category, and sometimes, comparing result
with classes that had received traditional instruction.

On the learning of Abstract Algebra, the evaluation of the first round of cur-
riculum development is reported in a research article (see [6]) and the resulting
second version of the curriculum has been published (see [8]). Dubinsky et al. [6]
conclude, not surprisingly, that many of the concepts, especially coset and quotient
group, seem quite difficult for students, and they offer some explanations. They
discuss a number of cognitive obstacles that are common among beginning Abstract
Algebra students. Regarding the group concept, the idea of an abstract binary op-
eration poses a significant obstacle for students, who often think of a group as a set
and ignore the operation. Student are often unable to correctly answer questions
about cosets and quotients of non-cyclic groups, and they often confuse normality
with commutativity. Although some of students can perform the calculations re-
quired in listing the elements of a coset, they have difficulties in thinking of cosets
as objects that can themselves be manipulated. It may seem obvious that a set is
an object, but sets are often described by a process that list all elements or that
would eventually list any element. In this way a set is a process. A set is not a
full-fledged object in the mind of the student until the student can imagine a set as
an element of another set (not just as a subset of another set). The researchers iso-
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late certain prerequisites to succeed in Abstract Algebra, including understanding
of functions as both processes and objects.

This research has been criticized by Burn [3], who characterizes Dubinsky’s
research on learning fundamental concepts of group theory (see [6]) as a report of a
novel teaching procedure using the computer and particular activities. He suggests
that the fundamental concept of group theory may be not group, subgroup, coset,
and normality, but rather closure, associative, identity, inverse, function, and set.
Burn further points out that some of the interview excerpts that were regarded as
misconceptions may actually reveal insight on the part of the student (e.g., closure is
enough to determine whether a subset of finite group is a subgroup). Furthermore,
quotient groups are quite easy to see in some situation (e.g., even and odd integers,
rotations and reflections in the transformations of the plane). It should not be
surprising, Burn suggests, that concepts in Abstract Algebra can be described in the
language of set and function. Finally, he proposes that automorphism (especially
permutations and symmetries) may be more profitably viewed as the fundamental
concept of group theory, rather than group, subgroup, coset, and normality.

Dubinsky et al. [7] respond by reaffirming that their previous article is not
a report of a novel teaching procedure but an attempt to contribute to knowledge
of how student understand certain concepts in group theory. Regarding Burns’
unsupported claims about the ease with which students might understand certain
instances of quotient group or permutation, they suggest that Burn conduct a study
and report on it.

The second iteration of research and curriculum development using the APOS
framework to study the learning of Abstract Algebra is reported in a collection of
articles (see [16] & [17]). The general conclusion of these articles is that the au-
thors’ initial epistemological analyses of various topics are supported by the data, in
the sense that the analyses describe the important processes, objects, and schemas
that students need to construct in order to learn those topics. The authors then
typically offer refinements of the epistemological analysies and later offer pedagog-
ical suggestions. Some specific conclusions include the suggestion that the crucial
idea in calculating a quotient group may be constructing the binary operation, the
importance of being able to choose appropriately between two binary operations
defined on a set (e.g., multiplication and addition), and specific misconceptions
such as the fact that some students believe that Zn is subgroup of Z.

2.2. The Ability to Prove
According to Selden & Selden [2], the ability to prove consists of ability

in proof construction and validation of proofs. Validation normally emphasizes
proceeding linearly from the beginning to the end of a written proof, possibly
repeated several times. This linear order is unlikely to occur in proof construction.
Given a theorem to prove, one must often attend not only to the beginning but also
to the end of a proof before developing the middle. In addition, many proofs have a
hierarchical structure based on sub proofs and sub constructions that emerge during
the process of proof construction. Validation might include asking and answering
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questions, assenting to claims, constructing sub proofs, remembering or finding
and interpreting other theorems and definitions, complying with instructions (e.g.,
to consider or name something), and conscious (but probably nonverbal) feelings
of rightness or wrongness. Proof validation can also include production of new
text (someone constructs modification of a written argument) that might include
additional calculations, expansions of definitions, or constructions of sub-proofs.
Toward the end of validation, in an the effort to capture the essence of the argument
in a single train of thought, contractions of the argument might be undertaken.

Validation and proof construction also differ in important respects. Proof
construction is much more like mathematical problem solving, in the sense of
Schoenfeld, than is validation [2]. Generally, constructing a proof requires that
more diverse ideas come to mind at the ”right time” than validating it does.

3. METHODOLOGY

3.1. Research Design
In order to examine the effect of APOS theory in a realistic school setting, this

study employed a quasi-experimental nonrandomized pretest-posttest control group
design. This design was selected because it was not possible to randomly assign
students to the experimental treatment (receiving APOS theory instruction) and
to the control treatment (receiving traditional instruction). Instead, all students
in a particular class have to receive one treatment or the other. In addition, this
design was employed because the study was intended to establish a cause-effect
relationship through the manipulation of treatment variable. Moreover, the use
of a control group was possible, thus allowing gain differences to be attributed to
treatment differences.

The distinguishing features of the nonrandomized pretest-posttest control
group design are as follows: (1) the subjects in both control and experimental
groups were pre-tested; (2) the experimental group was taught using APOS theory
approach while the control group was taught using the teacher-centered traditional
approach; and (3) the two groups were then post-tested. The following is the
research paradigm that was utilized in this study.

O X O

O O

In this study, the independent variables were the method of learning (APOS
and TRAD). The dependent variable was the ability to prove.

3.2. Subjects
The subjects for our study were 180 student at Department of Mathematics

UNAND and Department of Mathematics Education UNP who had taken (but not
yet passed) or were taking a first course in Abstract Algebra of the course during
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February-May 2005/2006. Of these 180 students, 90 students were taught using
APOS theory instruction, and the rest were taught using traditional mathematics
instruction.

3.3 Instructional Treatments
Each class received two 150-minute periods per week (for five week) in Ab-

stract Algebra instruction. The students in control group were taught using tra-
ditional instruction in mathematics, that is: (1) presentation of new materials on
Abstract Algebra, (2) examples or non-examples and proofs of lemmas or theorems
were given, (3) questions asked were designed to confirm definitions, examples,
and proofs which have been given, (4) students solved the exercises and problems
given in the text books individually and each product was subsequently checked
for accuracy, and finally (5) assignments or homework was given. The course uses
a textbook that was written by Herstein (see [11]).

Students in the experimental group, by contrast, were taught using APOS
theory instruction. The overall structure of the experimental course was based on
the ACE teaching cycle utilizing both computers and cooperative groups. Students
were grouped permanently consists of three or four members each, and the ma-
jority of course work was completed in groups. Material was broken into topical
sections, each of which ran for approximately one week. Two and a half hours
of class sessions per week were spent in computer laboratory, and two and a half
hours of class sessions per week were held in a classroom with no computers. In the
computer laboratory, students completed computer activities using the mathemat-
ical programming language ISETL. In order to stimulate reflection, the computer
activities usually dealt with concepts that had not been formally studied in class.
These concepts were then discussed in the successive class meetings. To encour-
age further exploration of the concepts, students were assigned homework to be
completed outside class; both computer exercises and traditional exercises were in-
cluded in the assignments. The course uses a textbook that was written explicitly
to support this pedagogical approach (see [8]). Here is a small sample for APOS
theory approach to Abstract Algebra course (getting acquainted with groups and
its properties).
Activities in the computer laboratory:

(1) Students write some ISETL functions (func) which would help students to
construct the notion of closed, associative, identity element, inverse of an
element, commutative, and groups:

is_closed:= func(G,o);
return forall x, y in G | x .o y in G;
end func;

is_associative:= func(G,o);
return forall x,y,z in G|(x .o y).o z =
x .o(y .o z);
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end func;

has_identity:= func(G,o);
return;
exists e in G|forall x in G|x o.e = x);

end func;

identity:= func(G,o);
return;
choose e in G|forall x in G|x o. e = x);

end func;

has_inverses:= func(G,o);
local e; e:= identity (G,o);
return;
is_defined(e)and(forall x in G|exists y in G|x.o y= e);
end;

inverses:= func(G,o,x);
local e;
e:= identity (G,o);

return;
choose y in G|y.o x = e;
end;

is_group := func(G,o);
return

is_closed(G,o) and
is_assoc G,o)and
has_identity(G,o)and
has_inverses(G,o);

end;

is_commutative:= func(G,o);
return forall x,y in G|x .o y = y .o x;
end func;

(2) Students applying those ISETL function filled Table 1, Table 2a, and Table
2b.

(3) The instructor would guide students (students’ team) to apply those ISETL
functions.
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Table 1: Some Example and Non Example of Groups

Sets Biner Is Is Has Has Is
Op. Associative? Closed? Inverses? Identity? Group?

(Y/N) (Y/N) (Y/N) (Y/N) (Y/N)

Z20 + (mod 20)

S3 ◦ (composition
of func.)

Z20 − {0} • (mod 5)

S4 ◦ (composition
of func.)

Z5 + (mod 5)

Z5 • (mod 5)

Z5 − {0} • (mod 5)

Table 2a: Some Fact about Properties of Groups

Groups Invers Invers Invers Invers (a ∗ b) = Invers (a ∗ b) =
(a) (b) (a ∗ b) Invers (a)∗ Invers (b)∗

Invers (b)? Invers (a)?
(Y/N) (Y/N)

(Z20, +mod20)
a = 15, b = 17

(S3, ◦)
a = [3, 2, 1]
b = [2, 1, 3]

(Z5 − {0}, •mod 5)
a = 3, b = 4

(S4, ◦)
a = [4, 3, 2, 1],
b = [4, 2, 1, 3]

Table 2b: Some Fact about Properties of Groups

Sets Biner Op. Is group? if a 6= b then c ∗ a 6= c ∗ b
(Y/N) (Y/N)

Z20 + (mod 20)
a = 3, b = 5, c = 7

Z20 • (mod 20)
a = 4, b = 8, c = 5

Z20 − {0} • (mod 20)
a = 3, b = 7, c = 9

S4 ◦
a = [4, 3, 2, 1], b = (Composition

[3, 4, 2, 1], c = [2, 4, 3, 1] of func.)

Z5 − {0} • (mod 5)
a = 2, b = 3, c = 4
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Classroom Interaction/Classroom Discussion:
The instructor would give some exposition on those ISETL functions which was
being studied and summarize the result of student’s activities (based on Table 1,
Table 2a, and Table 2b). During class, based on Table 1, Table 2a, and Table 2b,
the instructor would guide students to state definition of groups and state theorems.
Occasionally the instructor would prove some theorems. However, students would
mostly prove the theorems. Students were not told how to solve problems. They
learned that, before a question was probed, serious thought should be given to the
issue. Every effort should be made to resolve the issue before seeking wisdom from
instructor. This process would usually involve significant interaction within the
students’ team and some time with other teams. When a question was put to the
instructor, it was often greeted with a question (a question that leads students to
find out what he/she really is trying to do).
Exercises:
The instructor would give some exercises for students to work on in teams. Most of
them are expected to be completed outside of class. The purpose of the exercises is
for students to reinforce the idea (groups and its properties) they have constructed,
to use the mathematics they have learned and to begin thinking occasionally about
situations that would be studied later. For example: (1) Prove that the set of
Q−{0} with the binary operation M, where M is defined by: x M y = (x · y)/2 (· is
the standard multiplication of rational numbers), is a group. (2) Find a subset H
of Q− {0} such that H is a group with the binary operation M.

The instructor would: (1) give sufficient time for students to develop their
own solutions, (2) write on the blackboard the arguments presented by students,
without alteration, repeating aloud what may have been said too softly, (3) invite
students to give some comments, (4) guide students to obtain the right solution.

3.4 Instrumentation
Two test instruments (Test I and Test II) were used. Test I and Test II

consist of, respectively, six and five carefully selected proofs from Elementary Ab-
stract Algebra. These proofs were selected in order to (a) reflect an understand-
ing of Elementary Abstract Algebra, (b) be the representative of basic types of
proof in Abstract Algebra, (c) be done in 20 minutes each by students with some
understanding of the definition of group, subgroup, commutative group, normal
subgroup, and homomorphism, (d) be complex enough to generate interesting data
concerning processes and errors from students with a wide range of conceptual
understanding.

On the issue of validity (the degree to which a test measures what it purports
to measure), both test had been designed with the purpose of testing the extent
to which each student had mastered the mathematical skills stipulated in the in-
structional objectives. This also implies that both tests have the content validity
based on the fact that the test items adequately represented the subject matter of
the mathematics and mathematics education curriculum.

Two weeks prior to the course began, every student in each class, control or
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experimental took the two hour pre-test for Test I and the two hour pre-test for
Test II, at the end of the 3-week instruction, they took the two hour post-test for
Test I, and then at the end of 5-week instruction, they took the two hour post-test
for Test II, so we have four measurements (scores) for each student (180 students).
The supervision of the testing was done by the respective classroom’s lecturers ac-
cording to the normal time table of the course.

3.5 Data Analysis
Data were gathered on correctness of the proofs; there were 720 (2 x 90 x

4) answer sheets which must be assessed using a method adapted from Malone et
al. (see [9]), where each proof was graded on a scale of 0 to 4 as follows: 0 (non-
commencement); 1 (approach made); 2 (substantial progress); 3 (result achieved
with only minor errors); 4 (completion). For example, there is a problem in Test
I as follows: If G is a group in with (a ∗ b)2 = a2 ∗ b2 for all a and b in G, show
that G is commutative group. Some students answered that problem as follows:
Let G be a group such that for all a and b in G, (a ∗ b)2 = a2 ∗ b2. To show G is
commutative means, for all a and b in G, it must be proved that a ∗ b = b ∗ a.

Since (a ∗ b)2 = a2 ∗ b2, then
square root[(a ∗ b)2] = square root[a2 ∗ b2], or

a ∗ b = b ∗ a.

In this case, he/she has known: (1) what must be shown, and (2) the premise
to start the proof process. But, definitely there was an error in step 2, therefore
he/she showed that he/she has not comprehended the concept of n power of group
element, so for this problem he/she carried a score of 2.

Analysis of variance (one way ANOVA) was used as the primary statistical
analysis. The essential result from the computation are the F-ratio and probability
(p) value for the group main effect. The level of significance for the hypothesis in
this study was set at .05 level (p < .05).

4. RESULTS AND DISCUSSION

4.1 Results
For every student (of 180 students) we have: (1) gain scores for Test I (gains

Test I = post-test Test I - pre-test Test I), (2) gain scores for Test II (gains Test II
= post-test Test II - pre-test Test II), (3) gain scores for Test I & II (gains Test I
& II = gains Test I + gains Test II). The statistical package used for the computer
analysis of all data was SPSS12. The means and standard deviations of gains Test
I, gains Test II, and gains Test I & II are presented in Table 3.
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Table 3: Means and Standard Deviations for Gains Test I, Gains Test II,
and Gains Test I & II

Instruction N Gains Test I Gains Test II Gains Test I and II

X SD X SD X SD

APOS 90 11.72 4.04 11.22 3.25 22.94 6.48

TRAD 90 10.56 4.22 9.12 3.76 19.68 7.51

Difference in 1.16 2.10 3.26

Gains between

APOS and TRAD

Maximum score for Test I and Test II were 24 and 20 respectively.
The gains means for Test I, Test II, and Test I & II have the difference of

1.16, 2.1, and 3.26 respectively (i.e. subtract 10.56 from 11.72, subtract 9.12 from
11.22, and subtract 19.68 from 22.94), indicating a remarkable improvement in
the achievement gains of the students who had been involved in the APOS theory
instruction, because Abstract Algebra is difficult subject for students. Table 3 also
shows that the students who had been involved in the APOS theory instruction have
smaller standard deviation for the gains on Test I, Test II, and Test I & II than
students who had been involved in traditional approach, indicating that students
in experimental group has less variance score than students in control group (all
student getting score 0 for pre-test Test I and pre-test Test II, so gains Test I =
score Test I and gains Test II = score Test II).

The summary results of the one way analysis of variance are presented in
Table 4. The alpha level for the design was set at p < .05.

Table 4: The Result of One Way Analysis of Variance

Gain Test I & Test II

F P

9.297 .003

The results of the one way analysis of variance yielded a significant main
effect of instruction for the gains on Test II and Test I & II (p < .05), signifying
that APOS theory approach definitely did has an effect on the ability to prove in
comparison to the traditional approach.

Students’ mean gain scores were plotted in Figure 1. Figure 1 shows that in
both tests (Test I and Test II), for each test item, the mean of the gains for stu-
dents in control group is less than for students in experimental group, indicating
that students in experimental group have better understanding on proof in abstract
algebra (i.e. proof construction and validation of proof).

4.2 Discussion
Not surprisingly instruction with APOS theory is better than traditional

instruction in improving proving ability in Abstract Algebra. Theoretically, APOS
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Figure 1: Plot of the mean of the gains for each test item

theory based instruction has some advantages compared to the traditional one, as
shown in Table 5.

Table 5: Characteristic Differences of APOS Theory and
Traditional Approach

No. APOS Theory Approach Traditional Approach

1 Topics are designed regarding the
mental construction steps: actions,
processes, objects, and schemas. Stu-
dents are involved actively in learning.
Mathematics ideas (definitions, lem-
mas, and theorems) are discovered by
students through fact findings in the
laboratory activities.

Topics are not designed specifically,
generally refers to text-books or lec-
tures’ class notes. Students receive
information passively. Mathematics
ideas are given in a ready-made fash-
ion.

2 The role of lecturer/instructor as a fa-
cilitator, i.e. supports guidance to stu-
dents, group or entire class through
scaffolding, e.g. questioning, giving
hints.

The role of lecturer/instructor as
a knowledge transformer, i.e. the
lecturer/instructor directly explains
mathematics ideas.

3 There is multi-direction interaction
among students, as well as students
and lecturer. Students learn from
peers through work group, discussion.

One or two way interaction involving
teacher.
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5. CONCLUSIONS

Findings obtained from the one way analysis of variance (F = 9.297, p < .05)
provide evidence to conclude that the directional research hypothesis is accepted.
The interpretation would be: statistically, the ability to prove of students who have
been involved in APOS theory instruction is significantly greater than the ability to
prove of students who have involved in only teacher-centered traditional learning.

To implement the new instructional method (APOS), clearly students need
time to adjust with an innovative approach to learning Abstract Algebra charac-
terized by collaborative learning and special computer activities, thus the effect of
APOS theory instruction in proving ability do not immediately occurs.

APOS theory approach to teaching Abstract Algebra has some advantages
for student: active involvement (social interaction), opportunities to communicate
mathematically, informal classroom atmosphere, freedom to ask questions, closer
student-teacher relationship, opportunities to pursue challenging mathematical sit-
uation, and the instructor continuously attends to students’ thinking in order to
access their individual (and communal) learning capacities with respect to the task
at hand, where all of these would influence student’s ability to prove.

6. IMPLICATION FOR PRACTICE

The findings of this study suggest that the use of APOS theory instruction
may benefit Indonesian students in the development of Abstract Algebra concepts
in particular and mathematical concepts in general. APOS theory is still rela-
tively new in Indonesia and more information about the impact of APOS theory on
Indonesian students is very much needed. This study contributes a drop in the yet-
to-be-filled ocean of APOS theory instruction in Indonesia and sets the precedence
in encouraging Indonesian educators to capitalize on the strength and effectiveness
of APOS theory in our mission to realize our vision in education at university level.

Acknowledgement. The author wishes to thank the referee for his/her sugges-
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