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A MATHEMATICAL MODEL OF DENGUE

INTERNAL TRANSMISSION PROCESS

N. Nuraini, E. Soewono, K.A. Sidarto

Abstract. In this paper we formulate a mathematical model of internal process of dengue

virus transmission in the human body. We analyze the dynamic of dengue virus using a

system of differential equation. We obtain a local stability of equilibrium for this model

base on a threshold parameter. In particular, we prove the stability result for a free-virus

and abundance of virus-states. Finally, numerical simulation of the model are performed

to study the behaviour of the system for a short period of time.

1. INTRODUCTION

Dengue viral infections are one of the most important mosquito borne diseases
in the world. They may give rise dengue fever (DF), dengue haemorrhagic fever
(DHF), or dengue shock syndrome (DSS). The incidence of DHF has increased
dramatically in recent years with approximately five times more cases reported
since 1980 than previous 30 years. Dengue may be caused by one of the dengue
viral serotypes, DEN-1, DEN-2, DEN-3 and DEN-4. Although serological surveys
conducted in Indonesia showed that DEN-1 and DEN-2 were prevalent serotypes
until the late 1980s, the DEN-3 serotype has been the predominant serotype in the
recent outbreaks [4] and [6]. In fact, DEN-3 has been associated with severe dengue
epidemics and it has been suggested that the DEN-3 virus may have certain char-
acteristic that make it more virulent. Generally, infection with one serotype confers
future protective immunity against that particular serotype but not against other
serotypes. Furthermore, when infected for a second time with different serotype, a
more severe will occur [3]. After the bite of an infected mosquito, the dengue virus
enters the body and replicates within cell of the mononuclear phagocyte lineage
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(macrophages, monocytes, and B cell). The incubation period of dengue infections
is 7-10 days. A viraemic phase follows where the patient becomes febrile and infec-
tive. Thereafter, the patient may either recover or progress to the leakage phase,
leading to DHF and/or dengue shock syndrome [6]. To estimate the duration of
viremia, researchers assumed detectable viremia started on the day prior to onset
of illness and ended on the last day in which it was detected. For example, if a
child was admitted on the third day of illness and virus was detected until the fifth
day of illness (study days 1-3), then the viremia duration was 5 days. Duration
of Dengue viremia ranged from 1 to 7 days [8]. This fact is address the question
does the mathematical model can show this phenomenon? In this paper we want to
formulate the mathematical model of dengue internal process transmission based
on some assumptions. This formula describes in section 2. In the section 3 we
analyze the model with dynamical analysis near the equilibrium point based on a
threshold number. The numerical result explained in the section 4. And the last
section we discuss about the result of this work and explain the viremia phenomena
from the numerical simulation.

2. FORMULATION OF THE MODEL

In order to derive the equations of the mathematical model, we assumed that
dengue viruses are virulent, and no other microorganism that attack the body. It
is believed that mainly support dengue virus infections ( in vivo) are monocytes,
macrophages and other cells of reticuloendothelial origin [5]. We define this cell as
susceptible cell denoted by S (t). The infected cell compartment is I (t), and the
free virus particles is V (t). This diagram below describe the transmission virus in
the human body based on this model.

Figure 1: Transmission Diagram

The dynamic of the cell population given by equation (1- 4).

dS(t)
dt

= α− βS(t)V (t)− δS(t),

dI(t)
dt

= βS(t)V (t)− σI(t), (1)
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dV (t)
dt

= µnI(t)− γ1V (t)− γ2V (t)− βS(t)V (t)

Equations (1) represent the rate of susceptible, infected cells and also a virus.
In this model we used a simplest assumption that susceptible cell as uninfected cells
are produced at a constant rate, α, and die at a rate δS(t). Free virus particles
infect susceptible cells at rate proportional to the product of their abundances,
βS(t)V (t). The constant rate, β, describes the efficacy of this process, including
the rate at which virus particles find susceptible cells, the rate of virus entry, and
the rate and probability of successful infection. Infected cells produce free virus at
a rate proportional to their abundance, µnI(t), with n is the multiplication rate
and free virus particles are removed from the system at rate (γ1+γ2)V (t), where γ1

is natural death rate of virus and γ2 is the death rate of virus by T-cells. The free
virus also move to the susceptible cells compartment as βS(t)V (t). The infected
cells die at a rate σI(t). We consider this model as a model of virus dynamic that
described in [7]. In the next section the condition for the existence of equilibria of
the equations (1) are established.

3. ANALYSIS OF THE MODEL

First, we note that the feasible region of biological interest

Ω = {(S, I, V ) : S, I, V ≥ 0}

is positively invariant of system (1), since the vector field on the boundary of Ω
does not point the exterior of Ω. We can immediately identify two equilibrium
points of system (1), which belong to the boundary of Ω; E1 = (α

δ , 0, 0), and
E2 = (S∗, I∗, V ∗), where

S∗ =
σ(γ1 + γ2)
β(µn− σ)

,

I∗ =
αβ(µn− σ)− σδ(γ1 + γ2)

αβ(µn− σ)
, (2)

V ∗ =
αβ(µn− σ)− σδ(γ1 + γ2)

σδ(γ1 + γ2)
.

Thus, E1 is the virus-free equilibrium (VFE), and E2 is the equilibrium of abun-
dance of susceptible cells, infected cells and free virus. In order to analyze the
equilibrium points of system (1), we introduce the parameter basic reproductive
ratio, R0, which is defined as the number of newly infected cells that arise from
any one infected cells when almost all cells are uninfected [2]. Whether or not the
virus can grow and established an infection depends on a condition very similar to
the spread of an infectious disease in a population of host individuals. If R0 < 1
then the virus will not spread, since every infected cell will on average produce less
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than one other infected cell. If on the other hand, R0 > 1, then every infected
cell will on average produce more than one newly infected cell [7]. In this model,
before infection, we have I = 0, and V = 0, and susceptible cells are at equilibrium
S = α

δ . Denote by t = 0 the time when infection occurs. Suppose that infection
occurs with a certain amount of virus particles, V0. Thus the initial condition are
S0 = α

δ , I0 = 0, and V0. The rate at which one infected cell gives rise to new
infected cells is given by Sβ(µn−σ)

σ . If all cells are uninfected then S = α
δ . Since

the life-time of an uninfected cell is 1
(γ1+γ2)

, we obtain

R0 =
αβ(µn− σ)
σδ(γ1 + γ2)

This number provides a key threshold quantity which will be used for stability
analysis of the equations (1) throughout the paper.

The stability properties of VFE is given in the next theorem.

Theorem 3.1. The virus-free equilibrium E1 is locally asymptotically stable if
R0 < 1 and unstable otherwise.

Proof. To determine the local stability of E1, the Jacobian of equations (1) is eval-
uated at the VFE to yield

DE1 =

 −δ 0 −αβ
δ

0 −σ αβ
δ

0 µn −γ1 − γ2 − αβ
δ


The eigenvalues of JE1 are −δ and roots of polynomial

p(s) = s2 + (σ + γ1 + γ2 +
αβ

δ
)s + σ(γ1 + γ2)−

αβ(µn− σ)
δ

.

The roots of polynomial p(s) have negative real parts when R0 < 1 then E1 is
locally asymptotically stable (see appendix A.1). This complete the proof of the
theorem.

We study now the existence and stability of the equilibrium of E2. Substitut-
ing the expressions of basic reproductive number in E2 = (S∗, I∗, V ∗), we obtain
the following form.

S∗ =
α

δR0
, I∗ = 1− 1

R0
, V ∗ = R0 − 1. (3)

It can be seen that S∗, I∗, V ∗ in (3) are positive if the following conditions
holds:

(1− 1
R0

) > 0
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and
(R0 − 1) > 0

what can be recast as R0 > 1.
Linearizing system (1) near the equilibrium E2 we have

DE2 =

 R0 0 −αβ
δR0

R0 − δ −σ αβ
δR0

−(R0 − δ) µn −γ1 − γ2 − αβ
δR0


The eigenvalues of JE2 are the roots of polynomial q(s) = s3 + as2 + bs + c,

where

a = δR0 + σ + λ
µn

µn− σ
,

b = (δσ + αβ)R0 +
αβ(µn− σ)

σ
,

c = αβ(µn− σ)(1− 1
R0

),

and λ = (γ1 + γ2).
Note that a, b are positive and c > 0 ⇐⇒ αβ(µn− σ) > δσλ or R0 > 1.
Using Routh-Hurwitz criterion (see Appendix A.2) the all roots of polynomial

q(s) have negative real parts if and only if ab > c or

a1R
3
0 + a1R

2
0 + a3R0 + a4 > 0, (4)

where

a1 = δ(δσ + αβ)

a2 = (
λµn

µn− σ
+ σ)(δσ + αβ)

a3 = (
αβλµn

σ
)

a4 = αβ(µn− σ)

We can summarize these findings in the following theorem.

Theorem 3.2. The equilibrium E2 exist if R0 > 1, and it is locally asymptotically
stable if and only if satisfy the condition (4).

In Figure (2) we show the bifurcation diagram for the equilibria of model
(1) with respect to R0. For R0 > 1 we plot the proportion of infected cells I∗

given in Eq.(3), and we illustrate the condition (4) under the fixed parameters
α = 0.056, β = 0.001, γ1 = 1, γ2 = 4, δ = 0.0024, σ = 0.03, µ = 0.013.
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Figure 2: Bifurcation diagram for model (1), line represents the stable solution,
and points represents the unstable one (left), and the stability region of E2 (right).
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4. NUMERICAL SIMULATION

Now, we discuss the numerical simulation of the model as the parameters in the
system are varied. We have a generate numerous range of parameter’s value and
generally we have the result as in Figure 3. In Figure 3 the maximum number of
infected cells is 254.2898 and achieved at the time 4.4254 days. The maximum num-
ber of virus load is 1.8.103 at the same time as the infected cells. Analyzing Figure
3, the basic model of virus dynamics shows an exponential growth phase of free
virus and infected cells followed by a peak and decay to an equilibrium. Uninfected
cells stay initially constant, then decline sharply to a nadir and subsequent recover
to their equilibrium value. Virus growth will not continue indefinitely, because the
supply of uninfected cells is limited. There will be a peak of virus load and decay
to its equilibrium.

Figure 3: Numerical simulation for susceptible cells (3a), infected cells (3b) and
virus load (3c) with the initial condition of 400 susceptible cells, zero infected
cells and 10 viruses. The parameter value of this simulation are α = 0.1668, β =
0.001, γ1 = 4, γ2 = 25, δ = 0.00041, σ = 0.32, µn = 208, R0 = 8.9589.
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5. DISCUSSION

In this paper, we have derived and analysis the dengue internal transmission
process model. We have found that the local stability of virus-free equilibrium has
been proved for R0 < 1. A threshold condition is R0 = 1, and for R0 < 1 the
virus-free equilibrium is locally asymptotically stable and unstable otherwise.

There is one equilibrium of abundance of susceptible cells, infected cells and
free virus, E2. The condition for this equilibrium to exist has proved to be R0 > 1.
The stability result of E2 is formulated in theorem 3.2, where it is summarized in
(4) conditions.

We have also studied the system (1) numerically, and results for different
values of parameters are illustrated in figure 3. As it was noted in section 1, this
model in this paper simulate the phenomena that the dengue virus may disappear
from human blood body system at least in 14 days after the bite of mosquito.

Appendix A.1. Stability.
Consider a general autonomous vector field

ẋ = f(x), x ∈ Rn. (5)

An equilibrium points of (5) is a point x̄ ∈ Rn such that

f(x̄) = 0.

Suppose all of eigenvalues of Df(x̄) have negative real parts. Then the equilibrium
points x = x̄ of the nonlinear vector field (5) is asymptotically stable ( see detail
and proof in [9] ).

Appendix A.2. Routh-Hurwitz Criteria.
Suppose that A is a stability matrix. Once the characteristic polynomial of A has
been calculated, there are a variety of criteria which can be applied to determine
whether or not all the roots have negative real parts. Perhaps the most useful of
these are criteria of Hurwitz. Consider the equation

|λI −A| = λN + a1λ
N−1 + ... + aN−1λ + aN = 0 (6)

and the associated infinite array

a1 1 0 0 0 0 ...
a3 a2 a1 1 0 0 ...
a5 a4 a3 a2 a1 0 ...
a7 a6 a5 a4 a3 a2 ...
. . . . . .
. . . . . .
. . . . . .

where ak is taken to be zero for k > N . A necessary and sufficient condition
that all the roots of (6) have negative real parts is that the sequence of determinants
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h1 = |a1|, h2 =
∣∣∣∣ a1 1

a3 a2

∣∣∣∣ , h3 =

∣∣∣∣∣∣
a1 1 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣
formed from the preceding array, be positive. Using the foregoing criteria, a neces-
sary and sufficient condition that λ3 + a1λ

2 + a2λ + a3 be a stability polynomial is
that a1, a2, a3 > 0 and a1a2 > a3. By this we mean that the roots of the polynomial
have negative real parts [1].
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