NEW BOUNDS FOR DISTANCE ENERGY OF A GRAPH

G. SRIDHARA¹, M. R. RAJESH KANNA ² AND
H L PARASHIVAMURTHY ³

¹Post Graduate Department of Mathematics,
Maharani’s Science College for Women,
J. L. B. Road, Mysore - 570 005, India.
e-mail:srsrig@gmail.com
²Department of Mathematics,
Sri D Devaraj Urs Government First Grade College,
Hunsur - 571105, India.
e-mail:mr.rajeshkanna@gmail.com
³ Research Scholar,
Research and Development Centre,
Bharathiar University, Coimbatore - 641 046, India.
and
BGS Institute of Technology, B.G Nagar, Bellur- 571448, India.
e-mail:hlpmathsbs@gmail.com

Abstract. For any connected graph \(G \), the distance energy, \(E_D(G) \) is defined as the
sum of the absolute eigenvalues of its distance matrix. Distance energy was intro-
duced by Indulal et al. in the year 2008 [10]. It has significant importance in QSPR
analysis of molecular descriptor to study their physico-chemical properties. Our
interest in this article is to establish new lower and upper bounds for distance energy.

Key words and Phrases: Distance matrix, Wiener index, Bounds for distance energy
of a graph.

1. INTRODUCTION

In chemistry, Huckle molecular Orbital(HMO) theory is used to calculate
\(\pi \)-electron energy of conjugated hydrocarbon. Later it was proved this quantity
is equivalent to \(E(G) = \sum_{i=1}^{n} |\lambda_i|, \) where \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) are eigenvalues of
the respective molecular graph and called it as energy of graph. The studies on

2020 Mathematics Subject Classification: 05C50, 05C69.
Received: 07-12-2018, accepted: 23-02-2020.
In what follows in this paper, we take the graph G as simple undirected graph G with n vertices and m edges. For any two vertices v_i and v_j, the distance between them is denoted by d_{ij} and is defined as the shortest path from v_i to v_j. Two parameters that are of interest are Wiener index, $W(G)$ and distance matrix $A_D(G)$. They are respectively defined by $W(G) = \sum_{i<j} d_{ij}$ and $A_D(G) = [d_{ij}]$. For the sake of simplicity Wiener index is written as W. Clearly $A_D(G)$ is a symmetric matrix, its eigenvalues are root of equation $\phi(G; \mu) = |\mu I - A(G)| = 0$. These eigenvalues are called $D-$eigenvalues or $D-$spectrum which are generally ordered in the form $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$. The largest eigenvalue μ_1 is called the distance spectral radius of the graph G. Given a graph G, the distance energy of G is defined by $E_D(G) = \sum_{i=1}^{n} |\mu_i|$. For a connected graph G, Koolen and Moulton upper bound [8] for distance energy in terms of W, M and n is

$$E_D(G) \leq \left(\frac{2W}{n}\right) + \sqrt{(n-1)(2M - \left(\frac{2W}{n}\right)^2)} \quad \text{for} \quad 2W \geq n$$

(1)

where $M = \sum_{i<j} d_{ij}^2$. Further results on upper bounds can also seen in the paper [9].

McClelland bounds [8] for distance energy of graph which is true for any connected graph G

$$\sqrt{2M + n(n-1)|\det(A)|^2} \leq E_D(G) \leq \sqrt{2Mn}. \quad (2)$$

For all studies on distance energy refer papers [1, 10, 15]. We use the following two lemmas, which followed from the properties of distance eigenvalues [8].

Lemma 1.1. Let G be a graph with $n \geq 3$ vertices and m edges. Let $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ be $D-$eigenvalues of G then

$$\sum_{i=1}^{n} \mu_i = 0$$

and

$$\sum_{i=1}^{n} \mu_i^2 = 2M.$$
Lemma 1.2. If $\mu_1(G)$ is distance spectral radius of the graph G then $\mu_1(G) \geq \frac{2W}{n}$. Since $2W \geq n$, $\mu_1 \geq 1$.

Throughout this paper, during proof of the theorems we use notations $M = \sum_{i<j} d_{ij}^2$ and $A_D(G) = A$. Note that $M = \sum_{i<j} d_{ij}^2 \geq \sum_{i<j} d_{ij} = W$ and $\sqrt{M} = \sqrt{\sum_{i<j} d_{ij}^2} \leq \sum_{i<j} d_{ij} = W$.

2. MAIN RESULTS

2.1. Lower bound for spectral distance radius.

Lemma 2.1. If A is adjacency distance matrix of a graph G with n vertices and m edges then

$$|\det(A)| \leq (2M)^\frac{n}{2}.$$ \hspace{1cm} (3)

Proof. Derivation follows from $|\det(A)| = |\mu_1 \mu_2 ... \mu_n| = |\mu_1| |\mu_2| ... |\mu_n|$. But $|\det(A)| \leq |\mu_1| |\mu_2| ... |\mu_n| = |\mu_1|^n \leq (\sqrt{2M})^n$. This gives $|\det(A)| \leq (2M)^\frac{n}{2}$. \hspace{1cm} \Box

Lemma 2.2. If G is a connected graph with n vertices and m edges then the largest distance eigenvalue, μ_1 of G satisfies

$$|\mu_1| \geq |\det(A)|^{\frac{1}{n}}.$$ \hspace{1cm} (4)

Proof. Using the relation $\mu_1 + \mu_2 + \cdots + \mu_n = 0$ on distance eigenvalues of the graph G gives $\mu_2 + \cdots + \mu_n = -\mu_1$. Since $\mu_1 \geq 1$, the sum $\mu_2 + \cdots + \mu_n$ is negative quantity. Therefore

$$\mu_2 + \cdots + \mu_n \leq |\mu_2 \mu_3 \cdots \mu_n|^{\frac{1}{n-1}},$$

i.e.

$$-\mu_1 \leq \frac{|\mu_2 \mu_3 \cdots \mu_n|^{\frac{1}{n-1}}}{\mu_1^{\frac{n-2}{n-1}}},$$

which implies

$$-\mu_1^{\frac{n}{n-1}} \leq |\det(A)|^{\frac{1}{n-1}}.$$ \hspace{1cm} (5)

So,

$$|\mu_1|^{\frac{n}{n-1}} \leq |\det(A)|^{\frac{n}{n-1}}$$

if $|\mu_1| \leq 1$ and $|\mu_1|^{\frac{2n}{n-1}} \geq |\det(A)|^{\frac{2}{n-1}}$ if $|\mu_1| \geq 1$. But $|\mu_1| \geq 1$. Hence $|\mu_1| \geq |\det(A)|^{\frac{1}{n}}$. \hspace{1cm} \Box.
Lemma 2.3. If G is a graph with n vertices and m edges then the largest distance eigenvalue, μ_1 of G satisfies
\[
|\mu_1| \geq \frac{|\det(A)|^{\frac{1}{n}}}{\sqrt{n}}.
\]
(5)

Proof. Arithmetic and geometric mean of $|\mu_1|, |\mu_2|, \ldots, |\mu_n|$ are respectively are
\[
\frac{|\mu_1| + |\mu_2| + \cdots + |\mu_n|}{n}
\]
and
\[
|\mu_1\mu_2\cdots\mu_n|^{\frac{1}{n}}.
\]
Since arithmetic mean is greater than or equal to geometric mean it follows that
\[
|\mu_1| + |\mu_2| + \cdots + |\mu_n| \geq |\mu_1\mu_2\cdots\mu_n|^\frac{1}{n}.
\]
Therefore
\[
\frac{|\mu_1| + |\mu_2| + \cdots + |\mu_n|}{\sqrt{n}} \geq \frac{|\mu_1\mu_2\cdots\mu_n|^{\frac{1}{n}}}{\sqrt{n}}.
\]
implies
\[
\frac{n|\mu_1|}{\sqrt{n}} \geq |\det(A)|^{\frac{1}{n}}.
\]
\[
|\mu_1| \geq \frac{|\det(A)|^{\frac{1}{n}}}{\sqrt{n}}.
\]

2.2. Bounds for distance energy of graph.

Lemma 2.4. If G is a graph with n vertices and m edges and A is the adjacency distance matrix which is non-singular then
\[
n|\det(A)|^{\frac{1}{n}} \leq E_D(G) \leq \frac{2Mn}{|\det(A)|^{\frac{1}{n}}}.
\]
(6)

Proof. Using inequality of arithmetic and geometric mean of $|\mu_1|, |\mu_2|, \ldots, |\mu_n|$ we have
\[
\frac{|\mu_1| + |\mu_2| + \cdots + |\mu_n|}{n} \geq |\mu_1\mu_2\cdots\mu_n|^\frac{1}{n}.
\]
So,
\[
E_D(G) \geq n|\det(A)|^{\frac{1}{n}}.
\]
From \[
\frac{|\mu_1| + |\mu_2| + \cdots + |\mu_n|}{n} \geq |\det(A)|^{\frac{1}{n}} \]
gives $|\mu_1| \geq |\det(A)|^{\frac{1}{n}}$. So,
\[
|\mu_1| \sum_{i=1}^{n} |\mu_i| \geq |\det(A)|^{\frac{1}{n}} \sum_{i=1}^{n} |\mu_i|.
\]
New bounds for energy of graphs

Since $|\mu_i| \leq |\mu| \forall i$, therefore $n|\mu|^2 \geq |\det(A)|^{1/2}\mathcal{E}(G)$. But $|\mu|^2 \leq 2M$ from which we have $\mathcal{E}_D(G) \leq \frac{2Mn}{|\det(A)|^{1/2}}$. Thus $n|\det(A)|^{1/2} \leq \mathcal{E}_D(G) \leq \frac{2Mn}{|\det(A)|^{1/2}}$. □

We use Holder’s inequality inequality to get bounds for energy of graphs

Holder’s inequality: If $x_{ij}(i = 1, 2, ..., n$ and $j = 1, 2, 3, ..., n$) is a non-negative real numbers then $\prod_{i=1}^{n} \left(\sum_{j=1}^{n} x_{ij} \right)^{\frac{1}{p}} \geq \sum_{j=1}^{n} \left(\prod_{i=1}^{n} x_{ij} \right)^{\frac{1}{q}}$

i.e., $\left(x_{11} + x_{12} + ... + x_{1n} \right)^{\frac{1}{p}} \left(x_{21} + x_{22} + ... + x_{2n} \right)^{\frac{1}{p}} \left(x_{n1} + x_{n2} + ... + x_{nn} \right)^{\frac{1}{p}} \geq \left(x_{11}^p + x_{21}^p + ... + x_{n1}^p \right)^{\frac{1}{q}} \left(x_{12}^p + x_{22}^p + ... + x_{n2}^p \right)^{\frac{1}{q}} ... \left(x_{n1}^p + x_{n2}^p + ... + x_{nn}^p \right)^{\frac{1}{q}}$

Theorem 2.5. Let G be a graph with n vertices and m edges with $2M \geq n$. If A is a adjacency distance matrix which is non-singular then

$$n \frac{n-1}{2} |\det(A)|^{1/2} \leq \mathcal{E}_D(G) < \frac{(4M)^n}{|\det(A)|^{(n-1)}}. \quad (7)$$

Proof. Apply Holder’s inequality using

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \geq \begin{pmatrix} \frac{1}{|\mu_1|} & 1 & \cdots & \frac{1}{|\mu_1|} \\ \frac{1}{|\mu_2|} & 1 & \cdots & \frac{1}{|\mu_2|} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{|\mu_n|} & \frac{1}{|\mu_n|} & \cdots & 1 \end{pmatrix}$$

and simplify left hand side and right hand side of inequality separately.

$$LHS = \left(1 + \frac{n-1}{|\mu_1|} \right)^{\frac{1}{p}} \left(1 + \frac{n-1}{|\mu_2|} \right)^{\frac{1}{q}} ... \left(1 + \frac{n-1}{|\mu_n|} \right)^{\frac{1}{q}} \leq \left(1 + \frac{n-1}{|\mu_1|} \right) \left(1 + \frac{n-1}{|\mu_2|} \right) ... \left(1 + \frac{n-1}{|\mu_n|} \right).$$

Since $2M \geq n > (n-1)$ it follows that

$$LHS < \left(1 + \frac{2M}{|\mu_1|} \right) \left(1 + \frac{2M}{|\mu_2|} \right) ... \left(1 + \frac{2M}{|\mu_n|} \right)$$

But

$$|\mu_i| \leq \sqrt{2M} \leq 2M \Rightarrow 1 \leq \frac{2M}{|\mu_i|} \forall i.$$

So

$$LHS < \left(\frac{2M}{|\mu_1|} + \frac{2M}{|\mu_1|} \right) \left(\frac{2M}{|\mu_2|} + \frac{2M}{|\mu_2|} \right) ... \left(\frac{2M}{|\mu_n|} + \frac{2M}{|\mu_n|} \right)$$

$$= \left(\frac{4M}{|\mu_1|} \right) \left(\frac{4M}{|\mu_2|} \right) ... \left(\frac{4M}{|\mu_n|} \right)$$

$$= \frac{\left(4M \right)^n}{|\det(A)|}$$
\[\text{RHS} = \frac{1}{|\mu_2|^{\frac{1}{n}}|\mu_3|^{\frac{1}{n}} \cdots |\mu_n|^{\frac{1}{n}}} + \frac{1}{|\mu_1|^{\frac{1}{n}}|\mu_3|^{\frac{1}{n}} \cdots |\mu_n|^{\frac{1}{n}}} + \cdots + \frac{1}{|\mu_1|^{\frac{1}{n}}|\mu_2|^{\frac{1}{n}} \cdots |\mu_{n-1}|^{\frac{1}{n}}} = \frac{1}{|\det(A)|^{\frac{1}{n}}} \sum_{i=1}^{n} |\mu_i|^{\frac{1}{n}}. \]

Therefore
\[\frac{1}{|\det(A)|^{\frac{1}{n}}} \sum_{i=1}^{n} |\mu_i|^{\frac{1}{n}} < \frac{(4M)^n}{|\det(A)|} \]

and
\[\sum_{i=1}^{n} |\mu_i|^{\frac{1}{n}} < \frac{(4M)^n}{|\det(A)|^{(1 - \frac{1}{n})}}. \]

But
\[\left(\sum_{i=1}^{n} |\mu_i| \right)^{\frac{1}{n}} \leq \sum_{i=1}^{n} |\mu_i|^{\frac{1}{n}}. \]

Hence
\[\left(\sum_{i=1}^{n} |\mu_i| \right)^{\frac{1}{n}} < \frac{(4M)^n}{|\det(A)|^{\frac{n}{n(n-1)}}} \]

and
\[\mathcal{E}_D(G) < \frac{(4M)^n^2}{|\det(A)|^{(n-1)}}. \]

To get lower bound we apply Holder’s inequality using the substitution

\[
\begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1n} \\
 x_{21} & x_{22} & \cdots & x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nn}
\end{pmatrix} =
\begin{pmatrix}
 |\mu_1| & |\mu_1| & \cdots & |\mu_1| \\
 |\mu_2| & |\mu_2| & \cdots & |\mu_2| \\
 \vdots & \vdots & \ddots & \vdots \\
 |\mu_n| & |\mu_n| & \cdots & |\mu_n|
\end{pmatrix}.
\]

\[(n|\mu_1|)^{\frac{1}{n}} + (n|\mu_2|)^{\frac{1}{n}} + \cdots + (n|\mu_n|)^{\frac{1}{n}} \geq n(|\mu_1||\mu_2| \cdots |\mu_n|)^{\frac{1}{n}}.\]

\[|\mu_1|^{\frac{1}{n}} + |\mu_2|^{\frac{1}{n}} + \cdots + |\mu_n|^{\frac{1}{n}} \geq n^{\frac{n-1}{n}} (|\det(A)|)^{\frac{1}{n}} \]

But \(|\mu_1| + |\mu_2| + \cdots + |\mu_n| | \geq |\mu_1|^{\frac{1}{n}} + |\mu_2|^{\frac{1}{n}} + \cdots + |\mu_n|^{\frac{1}{n}}. \) Therefore
\[\mathcal{E}_D(G) \geq n^{\frac{n-1}{n}} |\det(A)|^{\frac{1}{n}}. \]

Combining above bounds we have, \(n^{\frac{n-1}{n}} |\det(A)|^{\frac{1}{n}} \leq \mathcal{E}_D(G) < \frac{(4m)^n^2}{|\det(A)|^{(n-1)}}. \) \qed
2.3. Lower and upper bound for distance energy of graph.

Theorem 2.6. Let G be a graph with $n \geq 2$ vertices and m edges with $2M \geq n$, then

$$
E_D(G) \geq \frac{2M}{n} + \left(\frac{|\text{det}(A)|}{2M} \right)^{\frac{1}{n-1}}.
$$

Proof. Apply arithmetic mean and geometric mean inequality to real numbers $|\mu_2|, |\mu_3|, \ldots, |\mu_n|$ for $(n-1)$ terms,

$$
\frac{|\mu_2| + |\mu_3| + \cdots + |\mu_n|}{n-1} \geq |\mu_2 \mu_3 \cdots \mu_n|^{\frac{1}{n-1}}.
$$

So,

$$
E(G) - |\mu_1| \geq \frac{|\mu_1 \mu_2 \cdots \mu_n|^{\frac{1}{n-1}}}{|\mu_1|^{\frac{1}{n-1}}}.
$$

And

$$
E_D(G) \geq |\mu_1| + \left(\frac{|\text{det}(A)|}{|\mu_1|} \right)^{\frac{1}{n-1}}.
$$

Let $|\mu_1| = x$ and $\Psi(x) = x + \left(\frac{|\text{det}(A)|}{x} \right)^{\frac{1}{n-1}}$. We shall minimize the function by finding $\Psi'(x)$ and $\Psi''(x)$. At maxima or minima $\Psi'(x) = 0$ which gives

$$
1 - \frac{|\text{det}(A)|}{(n-1)x^{\frac{n-2}{n}}} = 0.
$$

Thus the function $\Psi(x)$ attains maxima or minima at $x = \frac{|\text{det}(A)|^{\frac{1}{n-1}}}{(n-1)^{\frac{n-2}{n}}}$. At this point, $\Psi''(x) = \frac{n}{(n-1)^2} |\text{det}(A)|^{\frac{1}{n-1}} x^{\frac{1-2n}{n}} \geq 0$. This means the function attains the minimum value at this point. The minimum value is

$$
\Psi\left(\frac{|\text{det}(A)|^{\frac{1}{n-1}}}{(n-1)^{\frac{n-2}{n}}} \right) = \frac{n|\text{det}(A)|^{\frac{1}{n}}}{(n-1)^{\frac{n-1}{n}}}.
$$

But the function is increasing in the interval $\left[\frac{|\text{det}(A)|^{\frac{1}{n}}}{(n-1)^{\frac{n-2}{n}}} \right] \leq |\text{det}(A)|^{\frac{1}{n}} \leq \frac{2M}{n} \leq |\mu_1| \leq \sqrt{2M}$.

$$
E_D(G) \geq \Psi\left(\frac{2M}{n} \right).
$$

$$
E_D(G) \geq \frac{2M}{n} + \left(\frac{|\text{det}(A)|}{2M} \right)^{\frac{1}{n-1}}.
$$

□
Theorem 2.7. Let G be a graph with $n \geq 3$ vertices and m edges with $2M \geq n$ then

$$E_D(G) \geq \frac{2M}{n} + \frac{(n-2)^{\frac{3}{2}}|\text{det}(A)|^{\frac{n-1}{n}}}{}{n^{\frac{1}{2}}}.$$ (9)

Proof. Apply arithmetic mean and geometric mean inequality to real numbers $|\mu_2|, |\mu_3|, \ldots, |\mu_{n-1}|$ for $(n-2)$ terms,

$$\frac{|\mu_2| + |\mu_3| + \cdots + |\mu_{n-1}|}{n-2} \geq |\mu_2\mu_3 \cdots \mu_{n-1}|^{\frac{1}{n-2}}.$$

So,

$$E(G) - |\mu_1| - |\mu_n| \geq \frac{|\mu_1\mu_2 \cdots \mu_n|^{\frac{1}{n}}}{}{|\mu_1\mu_n|^{\frac{1}{n-2}}}.$$

$$E_D(G) \geq |\mu_1| + |\mu_n| + \frac{|\text{det}(A)|^{\frac{1}{n}}}{}{|\mu_1\mu_n|^{\frac{1}{n-2}}}.$$ (9)

Let $|\mu_1| = x, |\mu_n| = y$ and $g(x, y) = x + y + \frac{|\text{det}(A)|^{\frac{1}{n}}}{}{(xy)^{\frac{1}{2}}}$. Using partial differentiation we minimize the function by finding $g_x(x, y), g_y(x, y), g_{xx}(x, y), g_{yy}(x, y), g_{xy}(x, y)$ and $\Delta = g_{xx}g_{yy} - g_{xy}^2$.

$$g_x = 1 - \frac{|\text{det}(A)|^{\frac{1}{n}}}{}{n-2} (xy)^{\frac{1-n}{2}} y,$$

$$g_y = 1 - \frac{|\text{det}(A)|^{\frac{1}{n}}}{}{n-2} (xy)^{\frac{1-n}{2}} x,$$

$$g_{xx} = \frac{y^2(1-n)|\text{det}(A)|^{\frac{1}{n}}}{}{(n-2)^2} (xy)^{\frac{3-2n}{2}},$$

$$g_{yy} = \frac{x^2(1-n)|\text{det}(A)|^{\frac{1}{n}}}{}{(n-2)^2} (xy)^{\frac{3-2n}{2}},$$

$$g_{xy} = -\frac{|\text{det}(A)|^{\frac{1}{n}}}{}{n-2} \left((xy)^{\frac{1-n}{2}} + y \frac{n-1}{n-2} (xy)^{\frac{3-2n}{2}}\right).$$

$$\Delta = \frac{(xy)^2(1-n)^2|\text{det}(A)|^{\frac{2}{n}}}{}{(n-2)^4} (xy)^{\frac{6-4n}{2}} - \frac{|\text{det}(A)|^{\frac{2}{n}}}{}{(n-2)^2} \left((xy)^{\frac{1-n}{2}} + y \frac{n-1}{n-2} (xy)^{\frac{3-2n}{2}}\right)^2.$$

At maxima or minima $g_x = 0, g_y = 0$ which gives

$$(xy)^{\frac{1-n}{2}} y = \frac{n-2}{|\text{det}(A)|^{\frac{1}{n}}}.$$
and

\[(xy)^{\frac{n-2}{n^2}} x = \frac{n-2}{n \cdot |\text{det}(A)|^{\frac{n-2}{n^2}}}.\]

Solving these equations gives

\[x = y = \frac{|\text{det}(A)|^{\frac{1}{n}}}{(n-2)^{\frac{n-2}{n^2}}}.\]

Thus the function \(g(x, y)\) attains maxima or minima at

\[x = y = \frac{|\text{det}(A)|^{\frac{1}{n}}}{(n-2)^{\frac{n-2}{n^2}}}.\]

At this point, \(g_{xx}\) and \(g_{yy}\) are greater than equal to zero. Further \(\Delta \leq 0\). This means that the function attains the minimum value at this point. The minimum value is given by,

\[g\left(\frac{|\text{det}(A)|^{\frac{1}{n}}}{(n-2)^{\frac{n-2}{n^2}}}, \frac{|\text{det}(A)|^{\frac{1}{n}}}{(n-2)^{\frac{n-2}{n^2}}}\right).\]

Since \(2M \geq n\), \(g(x, y)\) increases in the interval

\[|\text{det}(A)|^{\frac{1}{n}} \leq \frac{2M}{n} \leq x \leq \sqrt{2M}\]

and

\[0 \leq y \leq |\text{det}(A)|^{\frac{1}{n}} \leq \frac{2M}{n} \leq \sqrt{2M}.\]

At

\[y = \frac{|\text{det}(A)|^{\frac{1}{n}}}{(n-2)^{\frac{n-2}{n^2}}},\]

\[g(x, y) = x + \frac{(n-2)^{\frac{n-2}{n}} |\text{det}(A)|^{\frac{n-1}{(n-2)(n-2)}}}{x^{\frac{n-2}{n^2}}}.\]

Therefore,

\[\mathcal{E}_D(G) \geq g\left(x, \frac{|\text{det}(A)|^{\frac{1}{n}}}{(n-2)^{\frac{n-2}{n^2}}}\right) \geq g\left(\frac{2M}{n}, \frac{|\text{det}(A)|^{\frac{1}{n}}}{(n-2)^{\frac{n-2}{n^2}}}\right).\]

Hence,

\[\mathcal{E}_D(G) \geq \frac{2M}{n} + \frac{(n-2)^{\frac{n-2}{n}} |\text{det}(A)|^{\frac{n-1}{(n-2)(n-2)}}}{(2M/n)^{\frac{n-2}{n^2}}}.\]

\[\square\]

Theorem 2.8. Let \(G\) be a graph with \(n \geq 2\) vertices, \(m\) edges and \(G\) is a non-singular graph then

\[\mathcal{E}_D(G) \leq \sqrt{2M} + \frac{(n-1)(2M)}{|\text{det}(A)|^{\frac{1}{n}}}.\] (10)
Proof. We know that $|\mu_1| \geq |\det(A)|^{\frac{1}{n}}$, which implies

$$|\mu_1| \sum_{i=2}^{n} |\mu_i| \geq |\det(A)|^{\frac{1}{n}} \sum_{i=2}^{n} |\mu_i|.$$

Since $|\mu_i| \leq |\mu_1| \forall i$, therefore

$$(n-1)|\mu_1|^2 \geq |\det(A)|^{\frac{1}{n}} \left(\mathcal{E}(G) - |\mu_1| \right).$$

Thus

$$\mathcal{E}_D(G) \leq |\mu_1| + \frac{(n-1)|\mu_1|^2}{|\det(A)|^{\frac{1}{n}}}. $$

Let $|\mu_1| = x$ and $f(x) = x + \frac{(n-1)x^2}{|\det(A)|^{\frac{1}{n}}}$. At maxima or minima $f'(x) = 0$ which gives

$$1 + \frac{(n-1)2x}{|\det(A)|^{\frac{1}{n}}} = 0.$$

Hence the function attains maximum or minimum value at

$$x = -\frac{|\det(A)|^{\frac{1}{n}}}{2(n-1)}.$$

Since $f''(x) = \frac{2(n-1)}{|\det(A)|^{\frac{1}{n}}} > 0$ the function attains minimum value at this point.

The minimum value

$$f\left(-\frac{|\det(A)|^{\frac{1}{n}}}{2(n-1)} \right) = -\frac{|\det(A)|^{\frac{1}{n}}}{2(n-1)} + \frac{|\det(A)|^{\frac{1}{n}}}{4(n-1)} = -\frac{|\det(A)|^{\frac{1}{n}}}{4(n-1)}.$$

But $f(x)$ is an increasing function in the region $-\frac{|\det(A)|^{\frac{1}{n}}}{2(n-1)} \leq x \leq \sqrt{2M}$. Hence $f(x) \leq f(\sqrt{2M})$. Therefore

$$\mathcal{E}_D(G) \leq \sqrt{2M} + \frac{(n-1)(2M)}{|\det(A)|^{\frac{1}{n}}}.$$

\[\square\]

3. CONCLUDING REMARKS

In this paper, an effort has been made to obtain new bounds for distance energy of graph in a simplest way. Are these lower and upper bounds better than Koolen-Moulton and McClelland bounds (1.1 and 1.2)? It is yet to proved and is a scope for further research.
REFERENCES

