ON β **-PRIME SUBMODULES**

THAWATCHAI KHUMPRAPUSSORN

Department of Mathematics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, 10520 Bangkok, Thailand thawatchai.kh@kmitl.ac.th

Abstract. We introduce the concepts of β -prime submodules and weakly β -prime submodules of unital left modules over a commutative ring with nonzero identity. Some properties of these concepts are investigated. We use the notion of the product of two submodules to characterize β -prime submodules of a multiplication module. Characterization of β -prime and weakly β -prime submodules of arbitrary modules are also given.

Key words and Phrases: β -prime submodules, weakly β -prime submodules

Abstrak. Pada paper ini diperkenalkan konsep submodul β -prima and submodul β -prima lemah dari modul kiri *unital* atas ring komutatif dengan unsur identitas tak-nol. Beberapa sifat dari konsep ini akan dikaji. Pada paper ini, digunakan notasi produk dari dua submodul untuk mengkarakterisasi submodul β -prima dari modul perkalian. Selain itu, akan dikarakterisasi juga submodul β -prima dan β -prima lemah dari modul sebarang yang diberikan.

Kata kunci: submodul β -prima, submodul β -prima lemah

1. INTRODUCTION

Throughout this paper all rings are assumed to be commutative with nonzero identity and all left modules are unital. Let (G, +) be a group and $H \subseteq G$. We denote the symbol $\beta(H)$ by $\{h + h \mid h \in H\}$ and $\alpha(H)$ by $\{h \mid h + h \in H\}$. It is clear that $\beta(H) \subseteq H \subseteq \alpha(H)$. Let M be a left R-module. If N is a submodule of an R-module M, by (N : M) we mean $\{r \in R \mid rM \subseteq N\}$. For an element $x \in M$

²⁰¹⁰ Mathematics Subject Classification: 16D99. Received: 24-04-2018, accepted: 10-10-2018.

¹²⁸

and a submodule N of M, we will denote $\{r \in R \mid rx \in N\}$ with the short form (N:x).

The first Lemma obtains properties of $\alpha(H)$ and $\beta(H)$ where H are ideals and submodules, respectively. The proof of the following lemma is routine and so we omit it.

Lemma 1.1. Let I be an ideal of R and N be a submodule of an R-module M. Then

- (i) $\beta(I)$ and $\alpha(I)$ are ideals of R.
- (ii) $\beta(N)$ and $\alpha(N)$ are submodules of M.

Let R be a commutative ring with identity. A unitary left R-module M is a multiplication module if for each submodule N of M, there exists an ideal I of R such that N = IM. Recall that a proper submodule P of a module M over a commutative ring R is said to be prime submodule if whenever $rm \in P$ for some $r \in R$ and $m \in M$, then $r \in (P : M)$ or $m \in P$. Historically, Z. El-Bast and P. Smith [3] introduced the notion of multiplication modules and gave a characterization of prime submodules of a unital module. The definition of a multiplication module leads to the product of two submodules which is showed by R. Ameri [1] that this product is well-defined and is used to characterize prime submodule of a multiplication module.

S. Atani and F. Farzalipour in [2] defined a weakly prime submodules, i.e., a proper submodule P of an R-module M with the property that for $r \in R$ and $m \in M$, $0 \neq rm \in P$ implies $r \in (P : M)$ or $m \in P$. Every prime submodule of a module is a weakly prime submodule. However, a weakly prime submodule need not be prime. This result obtains that a weakly prime submodule is a generalization of a prime submodule. Various properties of prime submodules and weakly prime submodules are considered (see [1] and [2]).

The major objective of this paper is to study a generalization of prime submodules. Our idea is to shrink and stretch a submodule of a module by taking β and α , respectively. That is, we shrink a submodule N of a module M to a submodule $\beta(N)$ and we stretch a submodule N of a module M to a submodule $\alpha(N)$. By shrinking and stretching, we get another generalization of a prime submodule, namely, β -prime submodules.

2. β -PRIME SUBMODULES

The aim of this section is to introduce the generalization of prime submodules in a different way which is motivated by the literature.

Definition 2.1. Let P be a proper submodule of M. We call P is β -prime if for any element $r \in R$ and $m \in M$ such that $rm \in P$, we have $r + r \in (P : M)$ or $m + m \in P$.

Clearly, every prime submodule of M is a β -prime submodule of M. In \mathbb{Z} as \mathbb{Z} -module, $8\mathbb{Z}$ is a β -prime submodule of \mathbb{Z} and $8\mathbb{Z}$ is not a prime submodule of \mathbb{Z} , (see Example 5.1), a β -prime submodule need not to be a prime submodule.

Theorem 2.2. Let P be a proper submodule of an R-module M. The following statements are equivalent.

- (i) P is a β -prime submodule of M.
- (ii) For each ideal I of R and for each submodule N of M,

if
$$IN \subseteq P$$
, then $\beta(I) \subseteq (P:M)$ or $\beta(N) \subseteq P$

(iii) For each $a \in R$ and for each submodule N of M,

if
$$aN \subseteq P$$
, then $a + a \in (P : M)$ or $\beta(N) \subseteq P$.

(iv) For each ideal I of R and for each $m \in M$,

if
$$Im \subseteq P$$
, then $\beta(I) \subseteq (P:M)$ or $m + m \in P$.

(v) For each $a \in R$ and for each $m \in M$,

if
$$aRm \subseteq P$$
, then $a + a \in (P : M)$ or $m + m \in P$.

(vi) For each $x \in M$, if $x + x \notin P$, then $(P : x) \subseteq \alpha((P : M))$.

Proof. The proof is straightforward.

Proposition 2.3. Let $\phi: M_1 \to M_2$ be an *R*-module homomorphism. Then

- (i) If ϕ is an epimorphism and P is a β -prime submodule of M_1 containing ker ϕ , then $\phi(P)$ is a β -prime submodule of M_2 .
- (ii) If K is a β -prime submodule of M_2 , then $\phi^{-1}(K)$ is a β -prime submodule of M_1 .
- (iii) If N is a β -prime submodule of M_1 and K is a submodule of M_1 contained in N, then $N/_K$ is a β -prime submodule of $M_1/_K$.

Proof. These proof are trivial.

Let R_1 and R_2 be commutative rings with identity, M_i be a unital R_i -module where i = 1, 2. Then $M_1 \times M_2$ is an $(R_1 \times R_2)$ -module under the operation $(r_1, r_2)(m_1, m_1) = (r_1m_1, r_2m_2)$ for all $(r_1, r_2) \in R_1 \times R_2$ and $(m_1, m_2) \in M_1 \times M_2$. We have the following results.

Lemma 2.4. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ and P be an R_1 -submodule of M_1 . If $r_1 \in R_1$ and $r_2 \in R_2$ with $r_1 + r_1 \in (P : M_1)$, then $(r_1, r_2) + (r_1, r_2) \in (P \times M_2 : M_1 \times M_2)$.

Proof. It is evident.

Proposition 2.5. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ and let P be an R_1 -submodule of M_1 . Then P is a β -prime submodule of M_1 if and only if $P \times M_2$ is a β -prime submodule of $M_1 \times M_2$.

Proof. (\rightarrow) Assume that P is a β -prime submodule of M_1 . Let $(r_1, r_2) \in R_1 \times R_2$ and $(m_1, m_2) \in M_1 \times M_2$ be such that $(r_1, r_2)(m_1, m_2) \in P \times M_2$. Then $(r_1m_1, r_2m_2) \in P \times M_2$. This means $r_1m_1 \in P$ and $r_2m_2 \in M_2$. Since P is a β -prime submodule of M_1 , $r_1 + r_1 \in (P : M_1)$ or $m_1 + m_1 \in P$. By Lemma 2.4, we have $(r_1, r_2) + (r_1, r_2) \in (P \times M_2 : M_1 \times M_2)$ or $(m_1, m_2) + (m_1, m_2) \in P \times M_2$. Therefore $P \times M_2$ is a β -prime submodule of $M_1 \times M_2$.

 (\leftarrow) Assume that $P \times M_2$ is a β -prime submodule of $M_1 \times M_2$. Let $r \in R$ and $m \in M_1$ be such that $rm \in P$. Then $(r, 0)(m, 0) = (rm, 0) \in P \times M_2$. This implies that $(r, 0) + (r, 0) \in (P \times M_2 : M_1 \times M_2)$ or $(m, 0) + (m, 0) \in P \times M_2$. Therefore $r + r \in (P : M_1)$ or $m + m \in P$. This proves that P is a β -prime submodule of M_1 .

Similarly ways, we have

Proposition 2.6. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ and let P be an R_2 -submodule of M_2 . Then P is a β -prime submodule of M_2 if and only if $M_1 \times P$ is a β -prime submodule of $M_1 \times M_2$.

Multiplication module play an important role in studying prime submodules. In [3], Z. El-Bast and P. Smith proved that a module M is a multiplication module if and only if N = (N : M)M for all submodule N of M.

The definition of the product of two submodules was given by R. Ameri [1] as follows. Let N and K be submodules of a multiplication module M. Then the product of N and K, denoted by NK, is defined by (N : M)(K : M)M. R. Ameri cleverly used the concept of product of submodules to characterize prime submodules in a multiplication module. Also, we use this notion to characterize β -prime submodules. Before doing that, we give a useful Lemma.

Lemma 2.7. Let U and P be submodules of an R-module M and I be an ideal of R such that U = IM. If $\{u + u \mid u \in U\} \notin P$, then there are $r \in I$ and $y \in M \setminus P$ such that $ry + ry \notin P$.

Proof. Assume that $\{u + u \mid u \in U\} \notin P$. Then $u + u \notin P$ for some $u \in U$. Since U = IM, $u = \sum_{i=1}^{k} r_i m_i$ for some $r_i \in I$, $m_i \in M$ and integer k. Note that $u + u = \sum_{i=1}^{k} (r_i m_i + r_i m_i)$. Since $u + u \notin P$, we get that $r_i m_i + r_i m_i \notin P$ for some

$$i \in \{1, 2, \dots, k\}.$$

Note that for all $m, n \in M$, we denote mn the product of the submodules Rm and Rn of M.

Theorem 2.8. Let P be a proper submodule of a multiplication module M. Then

- (i) P is a β -prime submodule of M.
- (ii) For each submodules U and V of M, if $UV \subseteq P$, then $\beta(U) \subseteq P$ or $\beta(V) \subseteq P$.
- (iii) For every $m, n \in M$, if $m \cdot n \subseteq P$, then $m + m \in P$ or $n + n \in P$.

Proof. $(i) \to (ii)$ Assume that P is a β -prime submodule of M. Let U and V be submodules of M such that $UV \subseteq P$. Suppose that $\{u + u \mid u \in U\} \notin P$ and $\{v + v \mid v \in V\} \notin P$. Let I and J be ideals of R such that U = IM and V = JM. There exist $r \in I, s \in J$ and $x, y \in M \setminus P$ such that $ry + ry \notin P$ and $sx + sx \notin P$. Also, $rsx \in IJM \subseteq P$. Since P is a β -prime submodule of M and $sx + sx \notin P$, we have $(r + r)M \subseteq P$ which leads to a contradiction to $ry + ry \notin P$.

 $(ii) \rightarrow (iii)$ Clearly.

 $(iii) \rightarrow (i)$ Assume that (iii) holds. Let $r \in R$ and $m \in M$ be such that $rm \in P$ and $m + m \notin P$. To show that $(r+r)M \subseteq P$, let $n \in M$. Then there are ideals I and J of R such that Rm = IM and Rn = JM. This implies that Rrn = rJM. Then $rn \cdot m = rJIM = JrRm = JRrm \subseteq JRP \subseteq P$. By (*iii*) and $m + m \notin P$, we have $rn + rn \in P$. This shows that $(r+r)M \subseteq P$. \Box

3. β -MULTIPLICATIVE SYSTEM

Definition 3.1. Let R be a ring and M be an R-module. A nonempty set $S \subseteq M \setminus \{0\}$ is called a β -multiplicative system if for all ideals I of R and for all submodules K and N of M, if $\left(K + \beta(I)M\right) \cap S \neq \emptyset$ and $\left(K + \beta(N)\right) \cap S \neq \emptyset$, then $\left(K + IN\right) \cap S \neq \emptyset$.

Proposition 3.2. Let P be a submodule of an R-module M. Then P is a β -prime submodule of M if and only if $M \setminus P$ is a β -multiplicative system.

Proof. (→) Assume that *P* is a β-prime submodule of *M*. Let *I* be an ideal of *R* and let *K* and *N* be submodules of *M* such that $(K + IN) \cap M \setminus P = \emptyset$. Then $K + IN \subseteq P$. It follows that $K \subseteq P$ and $IN \subseteq P$. Since *P* is a β-prime submodule of *M*, $\beta(I)M \subseteq P$ or $\beta(N) \subseteq P$. Hence $K + \beta(I)M \subseteq P$ or $K + \beta(N) \subseteq P$. This leads to $(K + \beta(I)M) \cap M \setminus P = \emptyset$ or $(K + \beta(N)) \cap M \setminus P = \emptyset$. This obtains that $M \setminus P$ is a β-multiplicative system.

 (\leftarrow) Assume that $M \setminus P$ is a β -multiplicative system. Let I be an ideals of Rand N be a submodule of M such that $IN \subseteq P$. Hence $(IN) \cap M \setminus P = \emptyset$. Since $M \setminus P$ is a β -multiplicative system, $(\beta(I)M) \cap M \setminus P = \emptyset$ or $(\beta(N)) \cap M \setminus P = \emptyset$. That is, $\beta(I)M \subseteq P$ or $\beta(N) \subseteq P$. Therefore P is a β -prime submodule of M. \Box

Proposition 3.3. Let P be a submodule of an R-module M. The following statements are equivalent.

- (i) P is a β -prime submodule of M.
- (ii) $M \setminus P$ is a β -multiplicative system.
- (iii) For every ideal I of R and for every $m \in M$,

if $\beta(I)M \cap M \setminus P \neq \emptyset$ and $m + m \in M \setminus P$, then $Im \cap M \setminus P \neq \emptyset$.

(iv) For every $r \in R$ and for every $m \in M$, if $(r+r)M \cap M \setminus P \neq \emptyset$ and $m+m \in M \setminus P$, then $rRm \cap M \setminus P \neq \emptyset$.

Proof. $(i) \leftrightarrow (ii)$ by Proposition 3.2.

 $(ii) \rightarrow (iii)$ Assume that $M \setminus P$ is a β -multiplicative system. Let I be an ideal of R and $m \in M$ such that $\beta(I)M \cap M \setminus P \neq \emptyset$ and $m + m \in M \setminus P$. Since $m \in Rm$, we have $m + m \in \beta(Rm)$. This means $\beta(Rm) \cap M \setminus P \neq \emptyset$. Since $M \setminus P$ is a β -multiplicative system, $Im \cap M \setminus P = IRm \cap M \setminus P \neq \emptyset$.

 $(iii) \rightarrow (iv)$ Assume that (iii) holds. Let $r \in R$ and $m \in M$ be such that $(r+r)M \cap M \setminus P \neq \emptyset$ and $m+m \in M \setminus P$. Then $\beta(Rr)M \cap M \setminus P \neq \emptyset$. By (iii), we have $rRm \cap M \setminus P \neq \emptyset$.

 $(iv) \to (i)$ Let $r \in R$ and $m \in M$ be such that $(r+r)M \notin P$ and $m+m \notin P$. This implies that $(r+r)M \cap M \setminus P \neq \emptyset$. By (iv), we have $rRm \cap M \setminus P \neq \emptyset$. If $rm \in P$, then $rRm \subseteq P$ which is a contradiction. Therefore $rm \notin P$. This shows that P is a β -prime submodule of M.

Proposition 3.4. Let M be an R-module and X be a β -multiplicative system. If P is a submodule of M maximal with respect to the property that $P \cap X = \emptyset$, then P is a β -prime submodule of M.

Proof. Assume that P is a submodule of M maximal with respect to the property that $P \cap X = \emptyset$. Let I be an ideal of R and N be a submodule of M. Assume that $\beta(I)M \nsubseteq P$ and $\beta(N) \nsubseteq P$. Then $\left(P + \beta(I)M\right) \cap X \neq \emptyset$ and $\left(P + \beta(N)\right) \cap X \neq \emptyset$. Since X is a β -multiplicative system, $\left(P + IN\right) \cap X \neq \emptyset$. Since $P \cap X = \emptyset$, $IN \nsubseteq P$. This implies that P is a β -prime submodule of M.

Definition 3.5. Let M be an R-module and N be a submodule of M. If there is a β -prime submodule of M containing N, then we define

THAWATCHAI KHUMPRAPUSSORN

 $\sqrt[\beta]{N} = \{x \in M \mid \text{ every } \beta \text{-multiplicative system containing } x \text{ meets } N\}.$ If there is no a β -prime submodule of M containing N, then we define $\sqrt[\beta]{N} = M$.

Theorem 3.6. Let M be an R-module and N be a submodule of M. Then either $\sqrt[\beta]{N} = M$ or $\sqrt[\beta]{N}$ is the intersection of all β -prime submodule of M containing N.

Proof. Assume that $\sqrt[\beta]{N} \neq M$. Let $x \in \sqrt[\beta]{N}$ and P be a β -prime submodule of M containing N. Then $M \setminus P$ is a β -multiplicative system and $N \cap (M \setminus P) = \emptyset$. Hence $x \in P$. Conversely, let $x \in M$ be such that $x \notin \sqrt[\beta]{N}$. Let S be a β -multiplicative system such that $x \in S$ and $S \cap N = \emptyset$. We apply Zorn's lemma on the set of submodule J of M containing N and $S \cap J = \emptyset$. Then we have a submodule K of M that is maximal with respect to the property $S \cap K = \emptyset$. By Proposition 3.4, K is a β -prime submodule of M. Hence $x \notin K$.

4. WEAKLY β -PRIME SUBMODULES

In 2007, E. Atani and F. Farzalipour [2] gave the notion of weakly prime submodules as the generalization of prime submodules. A proper submodule P of a module M over a commutative ring R is said to be weakly prime submodule if whenever $0 \neq rm \in P$ for some $r \in R$ and $m \in M$, then $r \in (P : M)$ or $m \in P$. In this section we extend weakly prime submodules to weakly β -prime submodules. Some of its properties are also investigated.

Definition 4.1. Let P be a proper submodule of M. We call P is weakly β -prime if for any $r \in R$ and $m \in M$ such that $rm \in P \setminus \{0\}$, we have $r + r \in (P : M)$ or $m + m \in P$.

It is clear that every β -prime submodule is a weakly β -prime submodule. Also, every weakly prime submodule is a weakly β -prime submodule. However, weakly β -prime submodules need not to be β -prime submodules or weakly prime submodules.

Theorem 4.2. If P is a weakly β -prime submodule of M and $(P: M)\beta(P) \neq 0$, then P is a β -prime submodule of M.

Proof. Assume that P is a weakly β -prime submodule of M and $(P: M)\beta(P) \neq 0$. Let $r \in R$ and $m \in M$ be such that $rm \in P$. If $rm \neq 0$, then $r + r \in (P: M)$ or $m + m \in P$. Assume that rm = 0. We have the following two cases.

Case 1. $r\beta(P) \neq 0$.

Let $n_0 \in P$ be such that $r(n_0+n_0) \neq 0$. Then $r(m+n_0+n_0) = r(n_0+n_0) \in P$. Since P is a weakly β -prime submodule of M and $n_0 \in P$, we have $r+r \in (P:M)$ or $m+m \in P$.

Case 2. $r\beta(P) = 0$. We divide this case into two subcases as follows.

Subcase 2.1. $(P:M)m \neq 0$.

Let $t \in (P : M)$ be such that $tm \neq 0$. Then $(r+t)m = rm + tm = tm \in P$. Since P is a weakly β -prime submodule of M and $t \in (P : M)$, $r + r \in (P : M)$ or $m + m \in P$.

Subcase 2.2. (P:M)m = 0.

Since $(P:M)\beta(P) \neq 0$, we have $k(n+n) \neq 0$ for some $k \in (P:M)$ and $n \in P$. Then $(r+k)(m+n+n) = k(n+n) \in P$. Since P is a weakly β -prime submodule of M, $r+k+r+k \in (P:M)$ or $m+n+n+m+n+n \in P$. Since $k \in (P:M)$ and $n \in P$, $r+r \in (P:M)$ or $m+m \in P$. This proves that P is a β -prime submodule of M.

Theorem 4.3. If P is a weakly β -prime submodule of a multiplication module M and P is not a β -prime submodule of M, then $\beta(P)^2 = \{0\}$.

Proof. Assume that P is a weakly β -prime submodule of a multiplication module M and P is not a β -prime submodule of M. By Theorem 4.2, $(P:M)\beta(P) = \{0\}$. Then $\beta(P)^2 = (\beta(P):M)(\beta(P):M)M = (\beta(P):M)\beta(P) \subseteq (P:M)\beta(P) = \{0\}$. Hence $\beta(P)^2 = \{0\}$.

Theorem 4.4. Let M be an R-module and P be a submodule of M. The following statements are equivalent.

(i) P is a weakly β -prime submodule of M.

(*ii*) $(P:m) \subseteq \alpha((P:M)) \cup (0:m)$ for all $m \in M \setminus \alpha(P)$.

(iii) $(P:m) \subseteq \alpha((P:M))$ or $(P:m) \subseteq (0:m)$ for all $m \in M \setminus \alpha(P)$.

Proof. $(i) \to (ii)$ Assume that P is a weakly β -prime submodule of M. Let $m \in M \setminus \alpha(P)$ and $r \in (P : m)$. Then $rm \in P$. If rm = 0, then $r \in (0 : m)$. Assume that $rm \neq 0$. Since P is a weakly β -prime submodule of M and $m + m \notin P$, $r + r \in (P : M)$. Hence $r \in \alpha((P : M))$.

 $(ii) \to (i)$ Assume that $(P:m) \subseteq \alpha((P:M)) \cup (0:m)$ for all $m \in M \setminus \alpha(P)$. Let $r \in R$ and $m \in M$ be such that $rm \in P \setminus \{0\}$ and $m + m \notin P$. Then $(P:m) \subseteq \alpha((P:M)) \cup (0:m)$. Since $rm \neq 0$ and $r \in (P:m)$, we have $r \in \alpha((P:M))$. Hence $r + r \in (P:M)$. That is P is a weakly β -prime submodule of M.

It is clear that $(ii) \leftrightarrow (iii)$.

Let M_1 and M_2 be *R*-modules. Then $M_1 \times M_2$ is an *R*-module under the operations (a, b) + (c, d) = (a + c, b + d) and r(a, b) = (ra, rb) for all $a, c \in M_1$, $b, d \in M_2$ and $r \in R$. We denote this module by $M_1 \oplus M_2$.

Proposition 4.5. Let N_1 be a submodule of M_1 and N_2 be a submodule of M_2 . If $N_1 \times N_2$ is a weakly β -prime submodule of $M_1 \oplus M_2$, then N_1 is a weakly β -prime submodule of M_1 and N_2 is a weakly β -prime submodule of M_2 .

Proof. The proof is straightforward.

Let R_1 and R_2 be commutative rings with identity and M_i be a unital R_i module where i = 1, 2. Then $M_1 \times M_2$ is an $(R_1 \times R_2)$ -module under the operation $(r_1, r_2)(m_1, m_1) = (r_1m_1, r_2m_2)$ for all $(r_1, r_2) \in R_1 \times R_2$ and $(m_1, m_2) \in M_1 \times M_2$. We have the following results.

Proposition 4.6. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ and let P be an R_1 -submodule of M_1 . Consider the following statements.

(i) P is a β -prime submodule of M_1 .

(ii) $P \times M_2$ is a β -prime prime submodule of $M_1 \times M_2$.

(iii) $P \times M_2$ is a weakly β -prime submodule of $M_1 \times M_2$.

Then $(i) \rightarrow (ii) \rightarrow (iii)$. Moreover, if $M_2 \neq \{0\}$, then (i), (ii) and (iii) are equivalent.

Proof. We have $(i) \leftrightarrow (ii)$ from proposition 2.5 and the part $(ii) \rightarrow (iii)$ and $(iii) \rightarrow (i)$ are obvious.

5. EXAMPLES

Example 5.1. To show that $8\mathbb{Z}$ is a β -prime submodule of \mathbb{Z} , let r and m be integers such that $8 \mid rm$ and $8 \nmid r + r$. Then 8k = rm for some integer k and $4 \nmid r$. We have the following two cases.

Case 1. $2 \mid r \text{ and } 4 \nmid r$.

Then 2t = r for some odd integers t. Hence 8k = rm = 2tm. Therefore 4k = tm. This implies that 2g = m for some integer g. Thus 4k = tm = 2gt. So 2k = gt. Hence 2h = g for some integers h. That is $4 \mid m$. This shows that $8 \mid m + m$.

Case 2. $2 \mid m \text{ and } 4 \nmid r$.

Then 2t = m for some integers t. We have 4k = rt. If $2 \mid t$, then $4 \mid m$. Assume that $2 \mid r$. Then 2x = r for some odd integers x. Thus 2k = xt. This implies that $2 \mid t$. Therefore $8 \mid m + m$.

Example 5.2. Consider \mathbb{Z} as an \mathbb{Z} -module and let $p \in \mathbb{Z}$. Then $p\mathbb{Z}$ is a β -prime submodule of \mathbb{Z} if and only if p = 0 or p = 8 or p is a prime number or p = 2q where q is a prime number.

Proof. (\rightarrow) Assume that $p\mathbb{Z}$ is a β -prime submodule of \mathbb{Z} . Suppose that $p \neq 0$ and $p \neq 8$ and p is not prime number. Then p = ab for some integers a and b with 1 < a, b < p. Then $p \mid ab$. This implies that $p \mid a + a$ or $p \mid b + b$. If $p \mid a + a$, then $ab = p \leq 2a$. Hence b = 2. Assume that a is not a prime integer. Then a = cd for some integers c and d with 1 < c, d < a. Hence p = 2a = 2cd and p > 8. This means $p \mid 4c$ or $p \mid d + d$. If $p \mid 2d$, then $a \mid d$ which is a contradiction. Assume that

 $p \mid 4c$. Then $p \mid 8$ or $p \mid 2c$ which is a contradiction with the fact that p > 8 and a > c. Hence p = 2q for some prime integers q.

 (\leftarrow) It is easy to see that if p = 0 or p = 8 or p is a prime number or p = 2q where q is a prime number, then $p\mathbb{Z}$ is a β -prime submodule of \mathbb{Z} .

In the following, $M_2(\mathbb{Z})$ denotes the ring of 2×2 matrices over \mathbb{Z} .

Example 5.3. We have that $\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ is a weakly β -prime submodule of $M_2(\mathbb{Z})$ as $M_2(\mathbb{Z})$ -module. However, $\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ is not a β -prime submodule of $M_2(\mathbb{Z})$ because of $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

Example 5.4. (i) This follows from Example 5.2 that $8\mathbb{Z}$ is a β -prime submodule of \mathbb{Z} and $8\mathbb{Z}$ is not a prime submodule of \mathbb{Z} .

(ii) This follows from Proposition 4.6 that $8\mathbb{Z} \times \mathbb{Z}$ is a weakly β -prime submodule of $\mathbb{Z} \times \mathbb{Z}$ but $8\mathbb{Z} \times \mathbb{Z}$ is not a weakly prime submodule of $\mathbb{Z} \times \mathbb{Z}$ as $\mathbb{Z} \times \mathbb{Z}$ -module because of $(0,0) \neq (2,1)(4,1) = (8,1) \in 8\mathbb{Z} \times \mathbb{Z}$ and $(2,1)(\mathbb{Z} \times \mathbb{Z}) \nsubseteq 8\mathbb{Z} \times \mathbb{Z}$ and $(4,1) \notin 8\mathbb{Z} \times \mathbb{Z}$.

The following implication directly follows from Definition 2.1 and 4.1.

 $\begin{array}{rcl} \text{prime} & \Rightarrow & \beta - \text{prime} \\ & & \downarrow \\ \text{weakly prime} & \Rightarrow & \beta - \text{weakly prime} \end{array}$

However, Example 5.3 and 5.4 obtain that the converse of each part is not true. The following Example shows that the condition $M_2 \neq \{0\}$ is necessary for Proposition 4.6.

Example 5.5. Consider $M_2(\mathbb{Z})$ as a $M_2(\mathbb{Z})$ -module and \mathbb{Z} as a \mathbb{Z} -module. Then $M_2(\mathbb{Z}) \times \mathbb{Z}$ is a $(M_2(\mathbb{Z}) \times \mathbb{Z})$ -module under the operation in Proposition 4.6. We have $\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\} \times \{0\}$ is a weakly β -prime submodule of $M_2(\mathbb{Z}) \times \mathbb{Z}$. However, $\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ is not a β -prime submodule of $M_2(\mathbb{Z})$.

Example 5.6. Let \mathbb{Z} be an \mathbb{Z} -module. Then

(i) We have that $6\mathbb{Z}$ is a β -prime submodule of \mathbb{Z} and $\beta(6\mathbb{Z}) = 12\mathbb{Z}$ is not a β -prime submodule of \mathbb{Z} . Next, we have $\beta(\mathbb{Z}) = 2\mathbb{Z}$ is a β -prime submodule of \mathbb{Z} and \mathbb{Z} is not a β -prime submodule of \mathbb{Z} . This example shows that the β -prime submodule condition between P and $\beta(P)$ do not depend on others.

THAWATCHAI KHUMPRAPUSSORN

(ii) We know that β(3Z) = 6Z is not a prime submodule of Z and 3Z is a prime submodule of Z. On the other hand, β(Z) = 2Z is a prime submodule of Z and Z is not a prime submodule of Z. This obtains that the prime submodule condition between P and β(P) do not depend on others.

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

REFERENCES

- Ameri, R., "On the prime submodules of multiplication modules", International Journal of Mathematics and Mathematical Sciences, 27 (2003), 1715-1724.
- [2] Atani, S.E., Farzalipour, F., "On weakly prime submodules", Tamkang Journal of Mathematics, 38(3) (2007), 247-252.
- [3] El-Bast, Z., Smith, P.F., "Multiplication modules", Communications in Algebra, 16(4) (1988), 755-779.