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Abstract. We introduce the concepts of β-prime submodules and weakly β-prime

submodules of unital left modules over a commutative ring with nonzero identity.

Some properties of these concepts are investigated. We use the notion of the product

of two submodules to characterize β-prime submodules of a multiplication module.

Characterization of β-prime and weakly β-prime submodules of arbitary modules

are also given.
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Abstrak. Pada paper ini diperkenalkan konsep submodul β-prima and submodul

β-prima lemah dari modul kiri unital atas ring komutatif dengan unsur identitas

tak-nol. Beberapa sifat dari konsep ini akan dikaji. Pada paper ini, digunakan

notasi produk dari dua submodul untuk mengkarakterisasi submodul β-prima dari

modul perkalian. Selain itu, akan dikarakterisasi juga submodul β-prima dan β-

prima lemah dari modul sebarang yang diberikan.

Kata kunci: submodul β-prima, submodul β-prima lemah

1. INTRODUCTION

Throughout this paper all rings are assumed to be commutative with nonzero
identity and all left modules are unital. Let (G,+) be a group and H ⊆ G. We
denote the symbol β(H) by {h + h | h ∈ H} and α(H) by {h | h + h ∈ H}. It is
clear that β(H) ⊆ H ⊆ α(H). Let M be a left R-module. If N is a submodule of
an R-module M , by (N : M) we mean {r ∈ R | rM ⊆ N}. For an element x ∈M
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and a submodule N of M , we will denote {r ∈ R | rx ∈ N} with the short form
(N : x).

The first Lemma obtains properties of α(H) and β(H) where H are ideals
and submodules, respectively. The proof of the following lemma is routine and so
we omit it.

Lemma 1.1. Let I be an ideal of R and N be a submodule of an R-module M .
Then

(i) β(I) and α(I) are ideals of R.
(ii) β(N) and α(N) are submodules of M .

Let R be a commutative ring with identity. A unitary left R-module M
is a multiplication module if for each submodule N of M , there exists an ideal
I of R such that N = IM . Recall that a proper submodule P of a module M
over a commutative ring R is said to be prime submodule if whenever rm ∈ P
for some r ∈ R and m ∈ M , then r ∈ (P : M) or m ∈ P . Historically, Z. El-
Bast and P. Smith [3] introduced the notion of multiplication modules and gave
a characterization of prime submodules of a unital module. The definition of a
multiplication module leads to the product of two submodules which is showed by
R. Ameri [1] that this product is well-defined and is used to characterize prime
submodule of a multiplication module.

S. Atani and F. Farzalipour in [2] defined a weakly prime submodules, i.e.,
a proper submodule P of an R-module M with the property that for r ∈ R and
m ∈ M , 0 6= rm ∈ P implies r ∈ (P : M) or m ∈ P . Every prime submodule of
a module is a weakly prime submodule. However, a weakly prime submodule need
not be prime. This result obtains that a weakly prime submodule is a generalization
of a prime submodule. Various properties of prime submodules and weakly prime
submodules are considered (see [1] and [2]).

The major objective of this paper is to study a generalization of prime sub-
modules. Our idea is to shrink and stretch a submodule of a module by taking β
and α, respectively. That is, we shrink a submodule N of a module M to a sub-
module β(N) and we stretch a submodule N of a module M to a submodule α(N).
By shrinking and stretching, we get another generalization of a prime submodule,
namely, β-prime submodules.

2. β-PRIME SUBMODULES

The aim of this section is to introduce the generalization of prime submodules
in a different way which is motivated by the literature.

Definition 2.1. Let P be a proper submodule of M . We call P is β-prime if for
any element r ∈ R and m ∈ M such that rm ∈ P , we have r + r ∈ (P : M) or
m+m ∈ P .
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Clearly, every prime submodule of M is a β-prime submodule of M . In Z as
Z-module, 8Z is a β-prime submodule of Z and 8Z is not a prime submodule of Z,
(see Example 5.1), a β-prime submodule need not to be a prime submodule.

Theorem 2.2. Let P be a proper submodule of an R-module M . The following
statements are equivalent.

(i) P is a β-prime submodule of M .
(ii) For each ideal I of R and for each submodule N of M ,

if IN ⊆ P , then β(I) ⊆ (P : M) or β(N) ⊆ P .

(iii) For each a ∈ R and for each submodule N of M ,

if aN ⊆ P , then a+ a ∈ (P : M) or β(N) ⊆ P .

(iv) For each ideal I of R and for each m ∈M ,

if Im ⊆ P , then β(I) ⊆ (P : M) or m+m ∈ P .

(v) For each a ∈ R and for each m ∈M ,

if aRm ⊆ P , then a+ a ∈ (P : M) or m+m ∈ P .

(vi) For each x ∈M , if x+ x /∈ P , then (P : x) ⊆ α((P : M)).

Proof. The proof is straightforward. �

Proposition 2.3. Let φ : M1 →M2 be an R-module homomorphism. Then

(i) If φ is an epimorphism and P is a β-prime submodule of M1 containing kerφ,
then φ(P ) is a β-prime submodule of M2.

(ii) If K is a β-prime submodule of M2, then φ−1(K) is a β-prime submodule of
M1.

(iii) If N is a β-prime submodule of M1 and K is a submodule of M1 contained

in N , then N
/
K

is a β-prime submodule of M1

/
K

.

Proof. These proof are trivial. �

Let R1 and R2 be commutative rings with identity, Mi be a unital Ri-module
where i = 1, 2. Then M1 × M2 is an (R1 × R2)-module under the operation
(r1, r2)(m1,m1) = (r1m1, r2m2) for all (r1, r2) ∈ R1×R2 and (m1,m2) ∈M1×M2.
We have the following results.

Lemma 2.4. Let R = R1 × R2 and M = M1 ×M2 and P be an R1-submodule
of M1. If r1 ∈ R1 and r2 ∈ R2 with r1 + r1 ∈ (P : M1), then (r1, r2) + (r1, r2) ∈
(P ×M2 : M1 ×M2).

Proof. It is evident. �
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Proposition 2.5. Let R = R1 × R2 and M = M1 × M2 and let P be an R1-
submodule of M1. Then P is a β-prime submodule of M1 if and only if P ×M2 is
a β-prime submodule of M1 ×M2.

Proof. (→) Assume that P is a β-prime submodule of M1. Let (r1, r2) ∈ R1 ×
R2 and (m1,m2) ∈ M1 × M2 be such that (r1, r2)(m1,m2) ∈ P × M2. Then
(r1m1, r2m2) ∈ P ×M2. This means r1m1 ∈ P and r2m2 ∈ M2. Since P is a
β-prime submodule of M1, r1 + r1 ∈ (P : M1) or m1 +m1 ∈ P . By Lemma 2.4, we
have (r1, r2) + (r1, r2) ∈ (P ×M2 : M1 ×M2) or (m1,m2) + (m1,m2) ∈ P ×M2.
Therefore P ×M2 is a β-prime submodule of M1 ×M2.

(←) Assume that P ×M2 is a β-prime submodule of M1×M2. Let r ∈ R and
m ∈M1 be such that rm ∈ P . Then (r, 0)(m, 0) = (rm, 0) ∈ P ×M2. This implies
that (r, 0) + (r, 0) ∈ (P ×M2 : M1 ×M2) or (m, 0) + (m, 0) ∈ P ×M2. Therefore
r + r ∈ (P : M1) or m + m ∈ P . This proves that P is a β-prime submodule of
M1. �

Similarly ways, we have

Proposition 2.6. Let R = R1 × R2 and M = M1 × M2 and let P be an R2-
submodule of M2. Then P is a β-prime submodule of M2 if and only if M1 × P is
a β-prime submodule of M1 ×M2.

Multiplication module play an important role in studying prime submodules.
In [3], Z. El-Bast and P. Smith proved that a module M is a multiplication module
if and only if N = (N : M)M for all submodule N of M .

The definition of the product of two submodules was given by R. Ameri [1]
as follows. Let N and K be submodules of a multiplication module M . Then
the product of N and K, denoted by NK, is defined by (N : M)(K : M)M . R.
Ameri cleverly used the concept of product of submodules to characterize prime
submodules in a multiplication module. Also, we use this notion to characterize
β-prime submodules. Before doing that, we give a useful Lemma.

Lemma 2.7. Let U and P be submodules of an R-module M and I be an ideal of
R such that U = IM . If {u+ u | u ∈ U} * P , then there are r ∈ I and y ∈M\P
such that ry + ry /∈ P .

Proof. Assume that {u + u | u ∈ U} * P . Then u + u /∈ P for some u ∈ U .

Since U = IM , u =

k∑
i=1

rimi for some ri ∈ I, mi ∈ M and integer k. Note that

u+ u =

k∑
i=1

(rimi + rimi). Since u+ u /∈ P , we get that rimi + rimi /∈ P for some

i ∈ {1, 2, . . . , k}. �
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Note that for all m,n ∈ M , we denote mn the product of the submodules
Rm and Rn of M .

Theorem 2.8. Let P be a proper submodule of a multiplication module M . Then

(i) P is a β-prime submodule of M .
(ii) For each submodules U and V of M , if UV ⊆ P , then β(U) ⊆ P or β(V ) ⊆ P .

(iii) For every m,n ∈M , if m · n ⊆ P , then m+m ∈ P or n+ n ∈ P .

Proof. (i) → (ii) Assume that P is a β-prime submodule of M . Let U and V be
submodules of M such that UV ⊆ P . Suppose that {u + u | u ∈ U} * P and
{v + v | v ∈ V } * P . Let I and J be ideals of R such that U = IM and V = JM .
There exist r ∈ I, s ∈ J and x, y ∈ M\P such that ry + ry /∈ P and sx + sx /∈ P .
Also, rsx ∈ IJM ⊆ P . Since P is a β-prime submodule of M and sx+ sx /∈ P , we
have (r + r)M ⊆ P which leads to a contradiction to ry + ry /∈ P .

(ii)→ (iii) Clearly.

(iii) → (i) Assume that (iii) holds. Let r ∈ R and m ∈ M be such that
rm ∈ P and m + m /∈ P . To show that (r + r)M ⊆ P , let n ∈ M . Then there
are ideals I and J of R such that Rm = IM and Rn = JM . This implies that
Rrn = rJM . Then rn ·m = rJIM = JrRm = JRrm ⊆ JRP ⊆ P . By (iii) and
m+m /∈ P , we have rn+ rn ∈ P . This shows that (r + r)M ⊆ P . �

3. β-MULTIPLICATIVE SYSTEM

Definition 3.1. Let R be a ring and M be an R-module. A nonempty set S ⊆
M\{0} is called a β-multiplicative system if for all ideals I of R and for all

submodules K and N of M , if

(
K + β(I)M

)
∩ S 6= ∅ and

(
K + β(N)

)
∩ S 6= ∅,

then

(
K + IN

)
∩ S 6= ∅.

Proposition 3.2. Let P be a submodule of an R-module M . Then P is a β-prime
submodule of M if and only if M\P is a β-multiplicative system.

Proof. (→) Assume that P is a β-prime submodule of M . Let I be an ideal of R

and let K and N be submodules of M such that

(
K + IN

)
∩M\P = ∅. Then

K+ IN ⊆ P . It follows that K ⊆ P and IN ⊆ P . Since P is a β-prime submodule
of M , β(I)M ⊆ P or β(N) ⊆ P . Hence K + β(I)M ⊆ P or K + β(N) ⊆ P . This

leads to

(
K+β(I)M

)
∩M\P = ∅ or

(
K+β(N)

)
∩M\P = ∅. This obtains that

M\P is a β-multiplicative system.
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(←) Assume that M\P is a β-multiplicative system. Let I be an ideals of R

and N be a submodule of M such that IN ⊆ P . Hence

(
IN

)
∩M\P = ∅. Since

M\P is a β-multiplicative system,

(
β(I)M

)
∩M\P = ∅ or

(
β(N)

)
∩M\P = ∅.

That is, β(I)M ⊆ P or β(N) ⊆ P . Therefore P is a β-prime submodule of M . �

Proposition 3.3. Let P be a submodule of an R-module M . The following state-
ments are equivalent.

(i) P is a β-prime submodule of M .
(ii) M\P is a β-multiplicative system.

(iii) For every ideal I of R and for every m ∈M ,

if β(I)M ∩M\P 6= ∅ and m+m ∈M\P , then Im ∩M\P 6= ∅.
(iv) For every r ∈ R and for every m ∈M ,

if (r + r)M ∩M\P 6= ∅ and m+m ∈M\P , then rRm ∩M\P 6= ∅.

Proof. (i)↔ (ii) by Proposition 3.2.

(ii) → (iii) Assume that M\P is a β-multiplicative system. Let I be an
ideal of R and m ∈ M such that β(I)M ∩M\P 6= ∅ and m + m ∈ M\P . Since
m ∈ Rm, we have m + m ∈ β(Rm). This means β(Rm) ∩M\P 6= ∅. Since M\P
is a β-multiplicative system, Im ∩M\P = IRm ∩M\P 6= ∅.

(iii) → (iv) Assume that (iii) holds. Let r ∈ R and m ∈ M be such that
(r+ r)M ∩M\P 6= ∅ and m+m ∈M\P . Then β(Rr)M ∩M\P 6= ∅. By (iii), we
have rRm ∩M\P 6= ∅.

(iv)→ (i) Let r ∈ R and m ∈M be such that (r+r)M * P and m+m /∈ P .
This implies that (r + r)M ∩M\P 6= ∅. By (iv), we have rRm ∩M\P 6= ∅. If
rm ∈ P , then rRm ⊆ P which is a contradiction. Therefore rm /∈ P . This shows
that P is a β-prime submodule of M . �

Proposition 3.4. Let M be an R-module and X be a β-multiplicative system. If
P is a submodule of M maximal with respect to the property that P ∩X = ∅, then
P is a β-prime submodule of M .

Proof. Assume that P is a submodule of M maximal with respect to the property
that P ∩X = ∅. Let I be an ideal of R and N be a submodule of M . Assume that

β(I)M * P and β(N) * P . Then

(
P+β(I)M

)
∩X 6= ∅ and

(
P+β(N)

)
∩X 6= ∅.

Since X is a β-multiplicative system,

(
P+IN

)
∩X 6= ∅. Since P∩X = ∅, IN * P .

This implies that P is a β-prime submodule of M . �

Definition 3.5. Let M be an R-module and N be a submodule of M . If there is a
β-prime submodule of M containing N , then we define
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β
√
N = {x ∈M | every β-multiplicative system containing x meets N}.

If there is no a β-prime submodule of M containing N , then we define β
√
N = M .

Theorem 3.6. Let M be an R-module and N be a submodule of M . Then either
β
√
N = M or β

√
N is the intersection of all β-prime submodule of M containing N .

Proof. Assume that β
√
N 6= M . Let x ∈ β

√
N and P be a β-prime submodule of M

containing N . Then M\P is a β-multiplicative system and N ∩ (M\P ) = ∅. Hence

x ∈ P . Conversely, let x ∈ M be such that x /∈ β
√
N . Let S be a β-multiplicative

system such that x ∈ S and S ∩ N = ∅. We apply Zorn’s lemma on the set of
submodule J of M containing N and S ∩ J = ∅. Then we have a submodule K of
M that is maximal with respect to the property S ∩K = ∅. By Proposition 3.4, K
is a β-prime submodule of M . Hence x /∈ K. �

4. WEAKLY β-PRIME SUBMODULES

In 2007, E. Atani and F. Farzalipour [2] gave the notion of weakly prime
submodules as the generalization of prime submodules. A proper submodule P of
a module M over a commutative ring R is said to be weakly prime submodule if
whenever 0 6= rm ∈ P for some r ∈ R and m ∈M , then r ∈ (P : M) or m ∈ P . In
this section we extend weakly prime submodules to weakly β-prime submodules.
Some of its properties are also investigated.

Definition 4.1. Let P be a proper submodule of M . We call P is weakly β-prime
if for any r ∈ R and m ∈ M such that rm ∈ P\{0}, we have r + r ∈ (P : M) or
m+m ∈ P .

It is clear that every β-prime submodule is a weakly β-prime submodule.
Also, every weakly prime submodule is a weakly β-prime submodule. However,
weakly β-prime submodules need not to be β-prime submodules or weakly prime
submodules.

Theorem 4.2. If P is a weakly β-prime submodule of M and (P : M)β(P ) 6= 0,
then P is a β-prime submodule of M .

Proof. Assume that P is a weakly β-prime submodule of M and (P : M)β(P ) 6= 0.
Let r ∈ R and m ∈ M be such that rm ∈ P . If rm 6= 0, then r + r ∈ (P : M) or
m+m ∈ P . Assume that rm = 0. We have the following two cases.

Case 1. rβ(P ) 6= 0.

Let n0 ∈ P be such that r(n0+n0) 6= 0. Then r(m+n0+n0) = r(n0+n0) ∈ P .
Since P is a weakly β-prime submodule of M and n0 ∈ P , we have r+ r ∈ (P : M)
or m+m ∈ P .

Case 2. rβ(P ) = 0. We divide this case into two subcases as follows.
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Subcase 2.1. (P : M)m 6= 0.

Let t ∈ (P : M) be such that tm 6= 0. Then (r + t)m = rm+ tm = tm ∈ P .
Since P is a weakly β-prime submodule of M and t ∈ (P : M), r + r ∈ (P : M) or
m+m ∈ P .

Subcase 2.2. (P : M)m = 0.

Since (P : M)β(P ) 6= 0, we have k(n + n) 6= 0 for some k ∈ (P : M) and
n ∈ P . Then (r + k)(m + n + n) = k(n + n) ∈ P . Since P is a weakly β-prime
submodule of M , r + k + r + k ∈ (P : M) or m + n + n + m + n + n ∈ P . Since
k ∈ (P : M) and n ∈ P , r + r ∈ (P : M) or m + m ∈ P . This proves that P is a
β-prime submodule of M . �

Theorem 4.3. If P is a weakly β-prime submodule of a multiplication module M
and P is not a β-prime submodule of M , then β(P )2 = {0}.

Proof. Assume that P is a weakly β-prime submodule of a multiplication module
M and P is not a β-prime submodule of M . By Theorem 4.2, (P : M)β(P ) = {0}.
Then β(P )2 = (β(P ) : M)(β(P ) : M)M = (β(P ) : M)β(P ) ⊆ (P : M)β(P ) = {0}.
Hence β(P )2 = {0}. �

Theorem 4.4. Let M be an R-module and P be a submodule of M . The following
statements are equivalent.

(i) P is a weakly β-prime submodule of M .
(ii) (P : m) ⊆ α((P : M)) ∪ (0 : m) for all m ∈M\α(P ).

(iii) (P : m) ⊆ α((P : M)) or (P : m) ⊆ (0 : m) for all m ∈M\α(P ).

Proof. (i) → (ii) Assume that P is a weakly β-prime submodule of M . Let m ∈
M\α(P ) and r ∈ (P : m). Then rm ∈ P . If rm = 0, then r ∈ (0 : m). Assume
that rm 6= 0. Since P is a weakly β-prime submodule of M and m + m /∈ P ,
r + r ∈ (P : M). Hence r ∈ α((P : M)).

(ii)→ (i) Assume that (P : m) ⊆ α((P : M)) ∪ (0 : m) for all m ∈M\α(P ).
Let r ∈ R and m ∈M be such that rm ∈ P\{0} and m+m /∈ P . Then (P : m) ⊆
α((P : M)) ∪ (0 : m). Since rm 6= 0 and r ∈ (P : m), we have r ∈ α((P : M)).
Hence r + r ∈ (P : M). That is P is a weakly β-prime submodule of M .

It is clear that (ii)↔ (iii). �

Let M1 and M2 be R-modules. Then M1 ×M2 is an R-module under the
operations (a, b) + (c, d) = (a + c, b + d) and r(a, b) = (ra, rb) for all a, c ∈ M1,
b, d ∈M2 and r ∈ R. We denote this module by M1 ⊕M2.

Proposition 4.5. Let N1 be a submodule of M1 and N2 be a submodule of M2. If
N1 ×N2 is a weakly β-prime submodule of M1 ⊕M2, then N1 is a weakly β-prime
submodule of M1 and N2 is a weakly β-prime submodule of M2.

Proof. The proof is straightforward. �
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Let R1 and R2 be commutative rings with identity and Mi be a unital Ri-
module where i = 1, 2. Then M1×M2 is an (R1×R2)-module under the operation
(r1, r2)(m1,m1) = (r1m1, r2m2) for all (r1, r2) ∈ R1×R2 and (m1,m2) ∈M1×M2.
We have the following results.

Proposition 4.6. Let R = R1 × R2 and M = M1 × M2 and let P be an R1-
submodule of M1. Consider the following statements.

(i) P is a β-prime submodule of M1.
(ii) P ×M2 is a β-prime prime submodule of M1 ×M2.

(iii) P ×M2 is a weakly β-prime submodule of M1 ×M2.

Then (i) → (ii) → (iii). Moreover, if M2 6= {0}, then (i), (ii) and (iii) are
equivalent.

Proof. We have (i) ↔ (ii) from proposition 2.5 and the part (ii) → (iii) and
(iii)→ (i) are obvious. �

5. EXAMPLES

Example 5.1. To show that 8Z is a β-prime submodule of Z, let r and m be
integers such that 8 | rm and 8 - r+ r. Then 8k = rm for some integer k and 4 - r.
We have the following two cases.

Case 1. 2 | r and 4 - r.
Then 2t = r for some odd integers t. Hence 8k = rm = 2tm. Therefore

4k = tm. This implies that 2g = m for some integer g. Thus 4k = tm = 2gt.
So 2k = gt. Hence 2h = g for some integers h. That is 4 | m. This shows that
8 | m+m.

Case 2. 2 | m and 4 - r.
Then 2t = m for some integers t. We have 4k = rt. If 2 | t, then 4 | m.

Assume that 2 | r. Then 2x = r for some odd integers x. Thus 2k = xt. This
implies that 2 | t. Therefore 8 | m+m.

Example 5.2. Consider Z as an Z-module and let p ∈ Z. Then pZ is a β-prime
submodule of Z if and only if p = 0 or p = 8 or p is a prime number or p = 2q
where q is a prime number.

Proof. (→) Assume that pZ is a β-prime submodule of Z. Suppose that p 6= 0 and
p 6= 8 and p is not prime number. Then p = ab for some integers a and b with
1 < a, b < p. Then p | ab. This implies that p | a+ a or p | b+ b. If p | a+ a, then
ab = p ≤ 2a. Hence b = 2. Assume that a is not a prime integer. Then a = cd
for some integers c and d with 1 < c, d < a. Hence p = 2a = 2cd and p > 8. This
means p | 4c or p | d+ d. If p | 2d, then a | d which is a contradiction. Assume that
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p | 4c. Then p | 8 or p | 2c which is a contradiction with the fact that p > 8 and
a > c. Hence p = 2q for some prime integers q.

(←) It is easy to see that if p = 0 or p = 8 or p is a prime number or p = 2q
where q is a prime number, then pZ is a β-prime submodule of Z. �

In the following, M2(Z) denotes the ring of 2× 2 matrices over Z.

Example 5.3. We have that
{[

0 0
0 0

]}
is a weakly β-prime submodule of M2(Z) as

M2(Z)-module. However,
{[

0 0
0 0

]}
is not a β-prime submodule of M2(Z) because

of

[
1 0
0 0

] [
0 0
1 0

]
=

[
0 0
0 0

]
and

[
1 0
0 0

]
+

[
1 0
0 0

]
6=
[
0 0
0 0

]
and

[
0 0
1 0

]
+

[
0 0
1 0

]
6=[

0 0
0 0

]
.

Example 5.4. (i) This follows from Example 5.2 that 8Z is a β-prime submodule
of Z and 8Z is not a prime submodule of Z.

(ii) This follows from Proposition 4.6 that 8Z×Z is a weakly β-prime submodule
of Z×Z but 8Z×Z is not a weakly prime submodule of Z×Z as Z×Z-module
because of (0, 0) 6= (2, 1)(4, 1) = (8, 1) ∈ 8Z × Z and (2, 1)(Z × Z) * 8Z × Z
and (4, 1) /∈ 8Z× Z.

The following implication directly follows from Definition 2.1 and 4.1.

prime ⇒ β − prime
⇓ ⇓

weakly prime ⇒ β − weakly prime

However, Example 5.3 and 5.4 obtain that the converse of each part is not true. The

following Example shows that the condition M2 6= {0} is necessary for Proposition
4.6.

Example 5.5. Consider M2(Z) as a M2(Z)-module and Z as a Z-module. Then
M2(Z) × Z is a (M2(Z) × Z)-module under the operation in Proposition 4.6. We

have
{[0 0

0 0

]}
× {0} is a weakly β-prime submodule of M2(Z) × Z. However,{[0 0

0 0

]}
is not a β-prime submodule of M2(Z).

Example 5.6. Let Z be an Z-module. Then

(i) We have that 6Z is a β-prime submodule of Z and β(6Z) = 12Z is not a
β-prime submodule of Z. Next, we have β(Z) = 2Z is a β-prime submodule
of Z and Z is not a β-prime submodule of Z. This example shows that the
β-prime submodule condition between P and β(P ) do not depent on others.
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(ii) We know that β(3Z) = 6Z is not a prime submodule of Z and 3Z is a prime
submodule of Z. On the other hand, β(Z) = 2Z is a prime submodule of Z
and Z is not a prime submodule of Z. This obtains that the prime submodule
condition between P and β(P ) do not depent on others.
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