ON β-PRIME SUBMODULES

Department of Mathematics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, 10520 Bangkok, Thailand
thawatchai.kh@kmitl.ac.th

Thawatchai Khumprapussorn

Abstract

We introduce the concepts of β-prime submodules and weakly β-prime submodules of unital left modules over a commutative ring with nonzero identity. Some properties of these concepts are investigated. We use the notion of the product of two submodules to characterize β-prime submodules of a multiplication module. Characterization of β-prime and weakly β-prime submodules of arbitary modules are also given.

Key words and Phrases: β-prime submodules, weakly β-prime submodules

Abstract

Abstrak. Pada paper ini diperkenalkan konsep submodul β-prima and submodul β-prima lemah dari modul kiri unital atas ring komutatif dengan unsur identitas tak-nol. Beberapa sifat dari konsep ini akan dikaji. Pada paper ini, digunakan notasi produk dari dua submodul untuk mengkarakterisasi submodul β-prima dari modul perkalian. Selain itu, akan dikarakterisasi juga submodul β-prima dan β prima lemah dari modul sebarang yang diberikan.

Kata kunci: submodul β-prima, submodul β-prima lemah

1. INTRODUCTION

Throughout this paper all rings are assumed to be commutative with nonzero identity and all left modules are unital. Let $(G,+)$ be a group and $H \subseteq G$. We denote the symbol $\beta(H)$ by $\{h+h \mid h \in H\}$ and $\alpha(H)$ by $\{h \mid h+h \in H\}$. It is clear that $\beta(H) \subseteq H \subseteq \alpha(H)$. Let M be a left R-module. If N is a submodule of an R-module M, by $(N: M)$ we mean $\{r \in R \mid r M \subseteq N\}$. For an element $x \in M$

[^0]and a submodule N of M, we will denote $\{r \in R \mid r x \in N\}$ with the short form ($N: x$).

The first Lemma obtains properties of $\alpha(H)$ and $\beta(H)$ where H are ideals and submodules, respectively. The proof of the following lemma is routine and so we omit it.

Lemma 1.1. Let I be an ideal of R and N be a submodule of an R-module M. Then
(i) $\beta(I)$ and $\alpha(I)$ are ideals of R.
(ii) $\beta(N)$ and $\alpha(N)$ are submodules of M.

Let R be a commutative ring with identity. A unitary left R-module M is a multiplication module if for each submodule N of M, there exists an ideal I of R such that $N=I M$. Recall that a proper submodule P of a module M over a commutative ring R is said to be prime submodule if whenever $r m \in P$ for some $r \in R$ and $m \in M$, then $r \in(P: M)$ or $m \in P$. Historically, Z. ElBast and P. Smith [3] introduced the notion of multiplication modules and gave a characterization of prime submodules of a unital module. The definition of a multiplication module leads to the product of two submodules which is showed by R. Ameri [1] that this product is well-defined and is used to characterize prime submodule of a multiplication module.
S. Atani and F. Farzalipour in [2] defined a weakly prime submodules, i.e., a proper submodule P of an R-module M with the property that for $r \in R$ and $m \in M, 0 \neq r m \in P$ implies $r \in(P: M)$ or $m \in P$. Every prime submodule of a module is a weakly prime submodule. However, a weakly prime submodule need not be prime. This result obtains that a weakly prime submodule is a generalization of a prime submodule. Various properties of prime submodules and weakly prime submodules are considered (see [1] and [2]).

The major objective of this paper is to study a generalization of prime submodules. Our idea is to shrink and stretch a submodule of a module by taking β and α, respectively. That is, we shrink a submodule N of a module M to a submodule $\beta(N)$ and we stretch a submodule N of a module M to a submodule $\alpha(N)$. By shrinking and stretching, we get another generalization of a prime submodule, namely, β-prime submodules.

2. β-PRIME SUBMODULES

The aim of this section is to introduce the generalization of prime submodules in a different way which is motivated by the literature.

Definition 2.1. Let P be a proper submodule of M. We call P is β-prime if for any element $r \in R$ and $m \in M$ such that $r m \in P$, we have $r+r \in(P: M)$ or $m+m \in P$.

Clearly, every prime submodule of M is a β-prime submodule of M. In \mathbb{Z} as \mathbb{Z}-module, $8 \mathbb{Z}$ is a β-prime submodule of \mathbb{Z} and $8 \mathbb{Z}$ is not a prime submodule of \mathbb{Z}, (see Example 5.1), a β-prime submodule need not to be a prime submodule.

Theorem 2.2. Let P be a proper submodule of an R-module M. The following statements are equivalent.
(i) P is a β-prime submodule of M.
(ii) For each ideal I of R and for each submodule N of M,

$$
\text { if } I N \subseteq P \text {, then } \beta(I) \subseteq(P: M) \text { or } \beta(N) \subseteq P
$$

(iii) For each $a \in R$ and for each submodule N of M,

$$
\text { if } a N \subseteq P \text {, then } a+a \in(P: M) \text { or } \beta(N) \subseteq P \text {. }
$$

(iv) For each ideal I of R and for each $m \in M$,

$$
\text { if } I m \subseteq P \text {, then } \beta(I) \subseteq(P: M) \text { or } m+m \in P \text {. }
$$

(v) For each $a \in R$ and for each $m \in M$,

$$
\text { if } a R m \subseteq P \text {, then } a+a \in(P: M) \text { or } m+m \in P .
$$

(vi) For each $x \in M$, if $x+x \notin P$, then $(P: x) \subseteq \alpha((P: M))$.

Proof. The proof is straightforward.

Proposition 2.3. Let $\phi: M_{1} \rightarrow M_{2}$ be an R-module homomorphism. Then
(i) If ϕ is an epimorphism and P is a β-prime submodule of M_{1} containing $\operatorname{ker} \phi$, then $\phi(P)$ is a β-prime submodule of M_{2}.
(ii) If K is a β-prime submodule of M_{2}, then $\phi^{-1}(K)$ is a β-prime submodule of M_{1}.
(iii) If N is a β-prime submodule of M_{1} and K is a submodule of M_{1} contained in N, then N / K_{K} is a β-prime submodule of $\quad M_{1} /_{K}$.

Proof. These proof are trivial.

Let R_{1} and R_{2} be commutative rings with identity, M_{i} be a unital R_{i}-module where $i=1,2$. Then $M_{1} \times M_{2}$ is an $\left(R_{1} \times R_{2}\right)$-module under the operation $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{1}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right)$ for all $\left(r_{1}, r_{2}\right) \in R_{1} \times R_{2}$ and $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$. We have the following results.

Lemma 2.4. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ and P be an R_{1}-submodule of M_{1}. If $r_{1} \in R_{1}$ and $r_{2} \in R_{2}$ with $r_{1}+r_{1} \in\left(P: M_{1}\right)$, then $\left(r_{1}, r_{2}\right)+\left(r_{1}, r_{2}\right) \in$ $\left(P \times M_{2}: M_{1} \times M_{2}\right)$.

Proof. It is evident.

Proposition 2.5. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ and let P be an R_{1} submodule of M_{1}. Then P is a β-prime submodule of M_{1} if and only if $P \times M_{2}$ is a β-prime submodule of $M_{1} \times M_{2}$.

Proof. (\rightarrow) Assume that P is a β-prime submodule of M_{1}. Let $\left(r_{1}, r_{2}\right) \in R_{1} \times$ R_{2} and $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$ be such that $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in P \times M_{2}$. Then $\left(r_{1} m_{1}, r_{2} m_{2}\right) \in P \times M_{2}$. This means $r_{1} m_{1} \in P$ and $r_{2} m_{2} \in M_{2}$. Since P is a β-prime submodule of $M_{1}, r_{1}+r_{1} \in\left(P: M_{1}\right)$ or $m_{1}+m_{1} \in P$. By Lemma 2.4, we have $\left(r_{1}, r_{2}\right)+\left(r_{1}, r_{2}\right) \in\left(P \times M_{2}: M_{1} \times M_{2}\right)$ or $\left(m_{1}, m_{2}\right)+\left(m_{1}, m_{2}\right) \in P \times M_{2}$. Therefore $P \times M_{2}$ is a β-prime submodule of $M_{1} \times M_{2}$.
(\leftarrow) Assume that $P \times M_{2}$ is a β-prime submodule of $M_{1} \times M_{2}$. Let $r \in R$ and $m \in M_{1}$ be such that $r m \in P$. Then $(r, 0)(m, 0)=(r m, 0) \in P \times M_{2}$. This implies that $(r, 0)+(r, 0) \in\left(P \times M_{2}: M_{1} \times M_{2}\right)$ or $(m, 0)+(m, 0) \in P \times M_{2}$. Therefore $r+r \in\left(P: M_{1}\right)$ or $m+m \in P$. This proves that P is a β-prime submodule of M_{1}.

Similarly ways, we have
Proposition 2.6. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ and let P be an R_{2} submodule of M_{2}. Then P is a β-prime submodule of M_{2} if and only if $M_{1} \times P$ is a β-prime submodule of $M_{1} \times M_{2}$.

Multiplication module play an important role in studying prime submodules. In [3], Z. El-Bast and P. Smith proved that a module M is a multiplication module if and only if $N=(N: M) M$ for all submodule N of M.

The definition of the product of two submodules was given by R. Ameri [1] as follows. Let N and K be submodules of a multiplication module M. Then the product of N and K, denoted by $N K$, is defined by $(N: M)(K: M) M$. R. Ameri cleverly used the concept of product of submodules to characterize prime submodules in a multiplication module. Also, we use this notion to characterize β-prime submodules. Before doing that, we give a useful Lemma.

Lemma 2.7. Let U and P be submodules of an R-module M and I be an ideal of R such that $U=I M$. If $\{u+u \mid u \in U\} \nsubseteq P$, then there are $r \in I$ and $y \in M \backslash P$ such that ry $+r y \notin P$.

Proof. Assume that $\{u+u \mid u \in U\} \nsubseteq P$. Then $u+u \notin P$ for some $u \in U$. Since $U=I M, u=\sum_{i=1}^{k} r_{i} m_{i}$ for some $r_{i} \in I, m_{i} \in M$ and integer k. Note that $u+u=\sum_{i=1}^{k}\left(r_{i} m_{i}+r_{i} m_{i}\right)$. Since $u+u \notin P$, we get that $r_{i} m_{i}+r_{i} m_{i} \notin P$ for some $i \in\{1,2, \ldots, k\}$.

Note that for all $m, n \in M$, we denote $m n$ the product of the submodules $R m$ and $R n$ of M.

Theorem 2.8. Let P be a proper submodule of a multiplication module M. Then
(i) P is a β-prime submodule of M.
(ii) For each submodules U and V of M, if $U V \subseteq P$, then $\beta(U) \subseteq P$ or $\beta(V) \subseteq P$.
(iii) For every $m, n \in M$, if $m \cdot n \subseteq P$, then $m+m \in P$ or $n+n \in P$.

Proof. $(i) \rightarrow(i i)$ Assume that P is a β-prime submodule of M. Let U and V be submodules of M such that $U V \subseteq P$. Suppose that $\{u+u \mid u \in U\} \nsubseteq P$ and $\{v+v \mid v \in V\} \nsubseteq P$. Let I and J be ideals of R such that $U=I M$ and $V=J M$. There exist $r \in I, s \in J$ and $x, y \in M \backslash P$ such that $r y+r y \notin P$ and $s x+s x \notin P$. Also, $r s x \in I J M \subseteq P$. Since P is a β-prime submodule of M and $s x+s x \notin P$, we have $(r+r) M \subseteq P$ which leads to a contradiction to $r y+r y \notin P$.
(ii) \rightarrow (iii) Clearly.
(iii) \rightarrow (i) Assume that (iii) holds. Let $r \in R$ and $m \in M$ be such that $r m \in P$ and $m+m \notin P$. To show that $(r+r) M \subseteq P$, let $n \in M$. Then there are ideals I and J of R such that $R m=I M$ and $R n=J M$. This implies that $R r n=r J M$. Then $r n \cdot m=r J I M=J r R m=J R r m \subseteq J R P \subseteq P . B y(i i i)$ and $m+m \notin P$, we have $r n+r n \in P$. This shows that $(r+r) M \subseteq P$.

3. β-MULTIPLICATIVE SYSTEM

Definition 3.1. Let R be a ring and M be an R-module. A nonempty set $S \subseteq$ $M \backslash\{0\}$ is called a β-multiplicative system if for all ideals I of R and for all submodules K and N of M, if $(K+\beta(I) M) \cap S \neq \emptyset$ and $(K+\beta(N)) \cap S \neq \emptyset$, then $(K+I N) \cap S \neq \emptyset$.

Proposition 3.2. Let P be a submodule of an R-module M. Then P is a β-prime submodule of M if and only if $M \backslash P$ is a β-multiplicative system.

Proof. (\rightarrow) Assume that P is a β-prime submodule of M. Let I be an ideal of R and let K and N be submodules of M such that $(K+I N) \cap M \backslash P=\emptyset$. Then $K+I N \subseteq P$. It follows that $K \subseteq P$ and $I N \subseteq P$. Since P is a β-prime submodule of $M, \beta(I) M \subseteq P$ or $\beta(N) \subseteq P$. Hence $K+\beta(I) M \subseteq P$ or $K+\beta(N) \subseteq P$. This leads to $(K+\beta(I) M) \cap M \backslash P=\emptyset$ or $(K+\beta(N)) \cap M \backslash P=\emptyset$. This obtains that $M \backslash P$ is a β-multiplicative system.
(\leftarrow) Assume that $M \backslash P$ is a β-multiplicative system. Let I be an ideals of R and N be a submodule of M such that $I N \subseteq P$. Hence $(I N) \cap M \backslash P=\emptyset$. Since $M \backslash P$ is a β-multiplicative system, $(\beta(I) M) \cap M \backslash P=\emptyset$ or $(\beta(N)) \cap M \backslash P=\emptyset$. That is, $\beta(I) M \subseteq P$ or $\beta(N) \subseteq P$. Therefore P is a β-prime submodule of M.

Proposition 3.3. Let P be a submodule of an R-module M. The following statements are equivalent.
(i) P is a β-prime submodule of M.
(ii) $M \backslash P$ is a β-multiplicative system.
(iii) For every ideal I of R and for every $m \in M$,

$$
\text { if } \beta(I) M \cap M \backslash P \neq \emptyset \text { and } m+m \in M \backslash P \text {, then } \operatorname{Im} \cap M \backslash P \neq \emptyset
$$

(iv) For every $r \in R$ and for every $m \in M$,

$$
\text { if }(r+r) M \cap M \backslash P \neq \emptyset \text { and } m+m \in M \backslash P \text {, then } r R m \cap M \backslash P \neq \emptyset \text {. }
$$

Proof. (i) \leftrightarrow (ii) by Proposition 3.2.
(ii) \rightarrow (iii) Assume that $M \backslash P$ is a β-multiplicative system. Let I be an ideal of R and $m \in M$ such that $\beta(I) M \cap M \backslash P \neq \emptyset$ and $m+m \in M \backslash P$. Since $m \in R m$, we have $m+m \in \beta(R m)$. This means $\beta(R m) \cap M \backslash P \neq \emptyset$. Since $M \backslash P$ is a β-multiplicative system, $\operatorname{Im} \cap M \backslash P=I R m \cap M \backslash P \neq \emptyset$.
(iii) \rightarrow (iv) Assume that (iii) holds. Let $r \in R$ and $m \in M$ be such that $(r+r) M \cap M \backslash P \neq \emptyset$ and $m+m \in M \backslash P$. Then $\beta(R r) M \cap M \backslash P \neq \emptyset$. By (iii), we have $r R m \cap M \backslash P \neq \emptyset$.
(iv) $\rightarrow(i)$ Let $r \in R$ and $m \in M$ be such that $(r+r) M \nsubseteq P$ and $m+m \notin P$. This implies that $(r+r) M \cap M \backslash P \neq \emptyset$. By (iv), we have $r R m \cap M \backslash P \neq \emptyset$. If $r m \in P$, then $r R m \subseteq P$ which is a contradiction. Therefore $r m \notin P$. This shows that P is a β-prime submodule of M.

Proposition 3.4. Let M be an R-module and X be a β-multiplicative system. If P is a submodule of M maximal with respect to the property that $P \cap X=\emptyset$, then P is a β-prime submodule of M.

Proof. Assume that P is a submodule of M maximal with respect to the property that $P \cap X=\emptyset$. Let I be an ideal of R and N be a submodule of M. Assume that $\beta(I) M \nsubseteq P$ and $\beta(N) \nsubseteq P$. Then $(P+\beta(I) M) \cap X \neq \emptyset$ and $(P+\beta(N)) \cap X \neq \emptyset$. Since X is a β-multiplicative system, $(P+I N) \cap X \neq \emptyset$. Since $P \cap X=\emptyset, I N \nsubseteq P$. This implies that P is a β-prime submodule of M.

Definition 3.5. Let M be an R-module and N be a submodule of M. If there is a β-prime submodule of M containing N, then we define

$$
\sqrt[\beta]{N}=\{x \in M \mid \text { every } \beta \text {-multiplicative system containing } x \text { meets } N\} .
$$

If there is no a β-prime submodule of M containing N, then we define $\sqrt[\beta]{N}=M$.

Theorem 3.6. Let M be an R-module and N be a submodule of M. Then either $\sqrt[\beta]{N}=M$ or $\sqrt[\beta]{N}$ is the intersection of all β-prime submodule of M containing N.
Proof. Assume that $\sqrt[\beta]{N} \neq M$. Let $x \in \sqrt[\beta]{N}$ and P be a β-prime submodule of M containing N. Then $M \backslash P$ is a β-multiplicative system and $N \cap(M \backslash P)=\emptyset$. Hence $x \in P$. Conversely, let $x \in M$ be such that $x \notin \sqrt[\beta]{N}$. Let S be a β-multiplicative system such that $x \in S$ and $S \cap N=\emptyset$. We apply Zorn's lemma on the set of submodule J of M containing N and $S \cap J=\emptyset$. Then we have a submodule K of M that is maximal with respect to the property $S \cap K=\emptyset$. By Proposition 3.4, K is a β-prime submodule of M. Hence $x \notin K$.

4. WEAKLY β-PRIME SUBMODULES

In 2007, E. Atani and F. Farzalipour [2] gave the notion of weakly prime submodules as the generalization of prime submodules. A proper submodule P of a module M over a commutative ring R is said to be weakly prime submodule if whenever $0 \neq r m \in P$ for some $r \in R$ and $m \in M$, then $r \in(P: M)$ or $m \in P$. In this section we extend weakly prime submodules to weakly β-prime submodules. Some of its properties are also investigated.

Definition 4.1. Let P be a proper submodule of M. We call P is weakly β-prime if for any $r \in R$ and $m \in M$ such that $r m \in P \backslash\{0\}$, we have $r+r \in(P: M)$ or $m+m \in P$.

It is clear that every β-prime submodule is a weakly β-prime submodule. Also, every weakly prime submodule is a weakly β-prime submodule. However, weakly β-prime submodules need not to be β-prime submodules or weakly prime submodules.

Theorem 4.2. If P is a weakly β-prime submodule of M and $(P: M) \beta(P) \neq 0$, then P is a β-prime submodule of M.

Proof. Assume that P is a weakly β-prime submodule of M and $(P: M) \beta(P) \neq 0$. Let $r \in R$ and $m \in M$ be such that $r m \in P$. If $r m \neq 0$, then $r+r \in(P: M)$ or $m+m \in P$. Assume that $r m=0$. We have the following two cases.

Case 1. $r \beta(P) \neq 0$.
Let $n_{0} \in P$ be such that $r\left(n_{0}+n_{0}\right) \neq 0$. Then $r\left(m+n_{0}+n_{0}\right)=r\left(n_{0}+n_{0}\right) \in P$. Since P is a weakly β-prime submodule of M and $n_{0} \in P$, we have $r+r \in(P: M)$ or $m+m \in P$.

Case 2. $r \beta(P)=0$. We divide this case into two subcases as follows.

Subcase 2.1. $(P: M) m \neq 0$.
Let $t \in(P: M)$ be such that $t m \neq 0$. Then $(r+t) m=r m+t m=t m \in P$. Since P is a weakly β-prime submodule of M and $t \in(P: M), r+r \in(P: M)$ or $m+m \in P$.

Subcase 2.2. $(P: M) m=0$.
Since $(P: M) \beta(P) \neq 0$, we have $k(n+n) \neq 0$ for some $k \in(P: M)$ and $n \in P$. Then $(r+k)(m+n+n)=k(n+n) \in P$. Since P is a weakly β-prime submodule of $M, r+k+r+k \in(P: M)$ or $m+n+n+m+n+n \in P$. Since $k \in(P: M)$ and $n \in P, r+r \in(P: M)$ or $m+m \in P$. This proves that P is a β-prime submodule of M.

Theorem 4.3. If P is a weakly β-prime submodule of a multiplication module M and P is not a β-prime submodule of M, then $\beta(P)^{2}=\{0\}$.

Proof. Assume that P is a weakly β-prime submodule of a multiplication module M and P is not a β-prime submodule of M. By Theorem 4.2, $(P: M) \beta(P)=\{0\}$. Then $\beta(P)^{2}=(\beta(P): M)(\beta(P): M) M=(\beta(P): M) \beta(P) \subseteq(P: M) \beta(P)=\{0\}$. Hence $\beta(P)^{2}=\{0\}$.

Theorem 4.4. Let M be an R-module and P be a submodule of M. The following statements are equivalent.
(i) P is a weakly β-prime submodule of M.
(ii) $(P: m) \subseteq \alpha((P: M)) \cup(0: m)$ for all $m \in M \backslash \alpha(P)$.
(iii) $(P: m) \subseteq \alpha((P: M))$ or $(P: m) \subseteq(0: m)$ for all $m \in M \backslash \alpha(P)$.

Proof. $(i) \rightarrow$ (ii) Assume that P is a weakly β-prime submodule of M. Let $m \in$ $M \backslash \alpha(P)$ and $r \in(P: m)$. Then $r m \in P$. If $r m=0$, then $r \in(0: m)$. Assume that $r m \neq 0$. Since P is a weakly β-prime submodule of M and $m+m \notin P$, $r+r \in(P: M)$. Hence $r \in \alpha((P: M))$.
$(i i) \rightarrow(i)$ Assume that $(P: m) \subseteq \alpha((P: M)) \cup(0: m)$ for all $m \in M \backslash \alpha(P)$. Let $r \in R$ and $m \in M$ be such that $r m \in P \backslash\{0\}$ and $m+m \notin P$. Then $(P: m) \subseteq$ $\alpha((P: M)) \cup(0: m)$. Since $r m \neq 0$ and $r \in(P: m)$, we have $r \in \alpha((P: M))$. Hence $r+r \in(P: M)$. That is P is a weakly β-prime submodule of M.

It is clear that $(i i) \leftrightarrow(i i i)$.
Let M_{1} and M_{2} be R-modules. Then $M_{1} \times M_{2}$ is an R-module under the operations $(a, b)+(c, d)=(a+c, b+d)$ and $r(a, b)=(r a, r b)$ for all $a, c \in M_{1}$, $b, d \in M_{2}$ and $r \in R$. We denote this module by $M_{1} \oplus M_{2}$.
Proposition 4.5. Let N_{1} be a submodule of M_{1} and N_{2} be a submodule of M_{2}. If $N_{1} \times N_{2}$ is a weakly β-prime submodule of $M_{1} \oplus M_{2}$, then N_{1} is a weakly β-prime submodule of M_{1} and N_{2} is a weakly β-prime submodule of M_{2}.

Proof. The proof is straightforward.

Let R_{1} and R_{2} be commutative rings with identity and M_{i} be a unital $R_{i^{-}}$ module where $i=1,2$. Then $M_{1} \times M_{2}$ is an $\left(R_{1} \times R_{2}\right)$-module under the operation $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{1}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right)$ for all $\left(r_{1}, r_{2}\right) \in R_{1} \times R_{2}$ and $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$. We have the following results.

Proposition 4.6. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ and let P be an R_{1} submodule of M_{1}. Consider the following statements.
(i) P is a β-prime submodule of M_{1}.
(ii) $P \times M_{2}$ is a β-prime prime submodule of $M_{1} \times M_{2}$.
(iii) $P \times M_{2}$ is a weakly β-prime submodule of $M_{1} \times M_{2}$.

Then $(i) \rightarrow(i i) \rightarrow(i i i)$. Moreover, if $M_{2} \neq\{0\}$, then $(i),(i i)$ and (iii) are equivalent.

Proof. We have $(i) \leftrightarrow$ (ii) from proposition 2.5 and the part $(i i) \rightarrow(i i i)$ and (iii) \rightarrow (i) are obvious.

5. EXAMPLES

Example 5.1. To show that $8 \mathbb{Z}$ is a β-prime submodule of \mathbb{Z}, let r and m be integers such that $8 \mid r m$ and $8 \nmid r+r$. Then $8 k=r m$ for some integer k and $4 \nmid r$. We have the following two cases.

Case 1. $2 \mid r$ and $4 \nmid r$.
Then $2 t=r$ for some odd integers t. Hence $8 k=r m=2 t m$. Therefore $4 k=t m$. This implies that $2 g=m$ for some integer g. Thus $4 k=t m=2 g t$. So $2 k=g$. Hence $2 h=g$ for some integers h. That is $4 \mid m$. This shows that $8 \mid m+m$.

Case 2. $2 \mid m$ and $4 \nmid r$.
Then $2 t=m$ for some integers t. We have $4 k=r t$. If $2 \mid t$, then $4 \mid m$. Assume that $2 \mid r$. Then $2 x=r$ for some odd integers x. Thus $2 k=x t$. This implies that $2 \mid t$. Therefore $8 \mid m+m$.

Example 5.2. Consider \mathbb{Z} as an \mathbb{Z}-module and let $p \in \mathbb{Z}$. Then $p \mathbb{Z}$ is a β-prime submodule of \mathbb{Z} if and only if $p=0$ or $p=8$ or p is a prime number or $p=2 q$ where q is a prime number.

Proof. (\rightarrow) Assume that $p \mathbb{Z}$ is a β-prime submodule of \mathbb{Z}. Suppose that $p \neq 0$ and $p \neq 8$ and p is not prime number. Then $p=a b$ for some integers a and b with $1<a, b<p$. Then $p \mid a b$. This implies that $p \mid a+a$ or $p \mid b+b$. If $p \mid a+a$, then $a b=p \leq 2 a$. Hence $b=2$. Assume that a is not a prime integer. Then $a=c d$ for some integers c and d with $1<c, d<a$. Hence $p=2 a=2 c d$ and $p>8$. This means $p \mid 4 c$ or $p \mid d+d$. If $p \mid 2 d$, then $a \mid d$ which is a contradiction. Assume that
$p \mid 4 c$. Then $p \mid 8$ or $p \mid 2 c$ which is a contradiction with the fact that $p>8$ and $a>c$. Hence $p=2 q$ for some prime integers q.
(\leftarrow) It is easy to see that if $p=0$ or $p=8$ or p is a prime number or $p=2 q$ where q is a prime number, then $p \mathbb{Z}$ is a β-prime submodule of \mathbb{Z}.

In the following, $M_{2}(\mathbb{Z})$ denotes the ring of 2×2 matrices over \mathbb{Z}.
Example 5.3. We have that $\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$ is a weakly β-prime submodule of $M_{2}(\mathbb{Z})$ as $M_{2}(\mathbb{Z})$-module. However, $\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$ is not a β-prime submodule of $M_{2}(\mathbb{Z})$ because of $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \neq$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Example 5.4. (i) This follows from Example 5.2 that $8 \mathbb{Z}$ is a β-prime submodule of \mathbb{Z} and $8 \mathbb{Z}$ is not a prime submodule of \mathbb{Z}.
(ii) This follows from Proposition 4.6 that $8 \mathbb{Z} \times \mathbb{Z}$ is a weakly β-prime submodule of $\mathbb{Z} \times \mathbb{Z}$ but $8 \mathbb{Z} \times \mathbb{Z}$ is not a weakly prime submodule of $\mathbb{Z} \times \mathbb{Z}$ as $\mathbb{Z} \times \mathbb{Z}$-module because of $(0,0) \neq(2,1)(4,1)=(8,1) \in 8 \mathbb{Z} \times \mathbb{Z}$ and $(2,1)(\mathbb{Z} \times \mathbb{Z}) \nsubseteq 8 \mathbb{Z} \times \mathbb{Z}$ and $(4,1) \notin 8 \mathbb{Z} \times \mathbb{Z}$.

The following implication directly follows from Definition 2.1 and 4.1.

$$
\begin{array}{ccc}
\underset{\text { prime }}{\Downarrow} & \Rightarrow & \beta-\text { prime } \\
\Downarrow \\
\text { weakly prime } & \Rightarrow & \beta-\text { weakly prime }
\end{array}
$$

However, Example 5.3 and 5.4 obtain that the converse of each part is not true. The following Example shows that the condition $M_{2} \neq\{0\}$ is necessary for Proposition 4.6 .

Example 5.5. Consider $M_{2}(\mathbb{Z})$ as a $M_{2}(\mathbb{Z})$-module and \mathbb{Z} as a \mathbb{Z}-module. Then $M_{2}(\mathbb{Z}) \times \mathbb{Z}$ is a $\left(M_{2}(\mathbb{Z}) \times \mathbb{Z}\right)$-module under the operation in Proposition 4.6. We have $\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\} \times\{0\}$ is a weakly β-prime submodule of $M_{2}(\mathbb{Z}) \times \mathbb{Z}$. However, $\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$ is not a β-prime submodule of $M_{2}(\mathbb{Z})$.

Example 5.6. Let \mathbb{Z} be an \mathbb{Z}-module. Then
(i) We have that $6 \mathbb{Z}$ is a β-prime submodule of \mathbb{Z} and $\beta(6 \mathbb{Z})=12 \mathbb{Z}$ is not a β-prime submodule of \mathbb{Z}. Next, we have $\beta(\mathbb{Z})=2 \mathbb{Z}$ is a β-prime submodule of \mathbb{Z} and \mathbb{Z} is not a β-prime submodule of \mathbb{Z}. This example shows that the β-prime submodule condition between P and $\beta(P)$ do not depent on others.
(ii) We know that $\beta(3 \mathbb{Z})=6 \mathbb{Z}$ is not a prime submodule of \mathbb{Z} and $3 \mathbb{Z}$ is a prime submodule of \mathbb{Z}. On the other hand, $\beta(\mathbb{Z})=2 \mathbb{Z}$ is a prime submodule of \mathbb{Z} and \mathbb{Z} is not a prime submodule of \mathbb{Z}. This obtains that the prime submodule condition between P and $\beta(P)$ do not depent on others.

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

REFERENCES

[1] Ameri, R., "On the prime submodules of multiplication modules", International Journal of Mathematics and Mathematical Sciences, 27 (2003), 1715-1724.
[2] Atani, S.E., Farzalipour, F., "On weakly prime submodules", Tamkang Journal of Mathematics, 38(3) (2007), 247-252.
[3] El-Bast, Z., Smith, P.F., "Multiplication modules", Communications in Algebra, 16(4) (1988), 755-779.

[^0]: 2010 Mathematics Subject Classification: 16D99.
 Received: 24-04-2018, accepted: 10-10-2018.

