# METRIC DIMENSION OF GRAPH JOIN TWO PATHS $P_2$ AND $P_t$

Loeky Haryanto $^1,\ \mathrm{Nurdin}\ ^2,\ \mathrm{And}\ \mathrm{Hasmawati}\ ^3$ 

<sup>1,2,3</sup>Hasanuddin University, Indonesia <sup>1</sup>l.haryanto@unhas.ac.id

**Abstract.** The following metric dimension of join two paths  $P_2 + P_t$  is determined as follows. For every k = 1, 2, 3, ... and t = 2 + 5k or t = 3 + 5k, the dimension of  $P_2 + P_t$  is 2 + 2k; whereas for t = 4 + 5k, t = 5(k + 1) or t = 1 + 5(k + 1), the dimension is 3 + 2k. In case  $t \geq 7$ , the dimension is determined by a chosen (maximal) ordered basis for  $P_2 + P_t$ , in which the integers 1, 2 are the two consecutive vertices of  $P_2$  and the next integers 3, 4, ..., t + 2 are the t consecutive vertices of  $P_t$ . If  $t \geq 10$ , the ordered binary string contains repeated substrings of length 5. For t < 7, the dimension is easily found using a computer search, or even just using hand computations.

Key words and Phrases: graph join of two paths, (metric) dimension, maximal basis

**Abstrak.** Dimensi metrik dari graf gabungan dua lintasan  $P_2 + P_t$  ditentukan sebagai berikut. Untuk setiap  $k = 1, 2, 3, \dots$  dan t = 2 + 5k atau t = 3 + 5k, dimensi dari  $P_2 + P_t$  adalah 2 + 2k; sedangkan untuk t = 4 + 5k, t = 5(k + 1) atau t = 1 + 5(k + 1), dimensinya adalah 3 + 2k. Pada kasus  $t \geq 7$ , ukuran dimensi ditentukan dengan memilih sebuah basis (maksimal) terurut dari  $P_2 + P_t$ , di mana bilangan 1, 2 adalah titik-titik berurutan dari  $P_2$  dan bilangan selanjutnya:  $3, 4, \dots, t + 2$ ; adalah titik-titik berurutan dari  $P_t$ . Jika  $t \geq 10$ , untaian biner terurut tersebut memuat subuntaian periodik dengan perioda 5. Untuk t < 7, dimensinya mudah didapat dengan menggunakan komputer, atau bahkan hanya dengan menggunakan komputasi manual.

Kata kunci: graf gabungan dua lintasan, dimensi (metrik), basis maksimal

## 1. INTRODUCTION

In the last two or three decades, there have been many and fast developments of graph theory, including its related terminologies. The theoretical developments

2010 Mathematics Subject Classification: 05C12; 05C76.

Received: 26-02-2018, accepted: 26-09-2018.

include many new concepts and notions such as various kinds of graphs and graph labelings as surveyed by Gallian [1], and in particular the notion of metric dimension.

Metric dimension in graph theory was first introduced in the mid-1970s by Harary and Melter [3] and independently by Slater [6]. With respect to terminology, the authors tend to follow Kuziak, Rodrígues-Veláquez and Yero [4, 5] that use the term 'metric generator' and 'metric basis' instead of 'resolving set' and 'minimum resolving set' used by many authors, for example by Chartrand, Eroh, Johnson and Oellermann [1]. In this paper, the authors simplify the terms by using two shorter terms: 'generator' and 'basis'.

In Section 2, the preliminary definitions and notations are introduced, followed by Section 3 containing a complete derivation of the metric dimension of the join two paths  $P_2$  and  $P_t$  with  $t \geq 7$ , based on an ordered binary string representation of a vertex set W. It is shown that for  $t \geq 10$ , the string contains repeated substrings of length 5. Section 4 provides the dimension of smaller join graphs  $P_2 + P_t$  with t < 7. The final section contains a brief conclusion of the results.

#### 2. NOTATIONS AND DEFINITIONS

Let G=(V,E) be a connected graph of n vertices labeled by positive integers. Let  $W=\{w_1,w_2,...,w_m\}\subseteq V$  be an ordered set with  $w_1< w_2< \cdots < w_m$  and let d(x,y) be the usual distance between two vertices  $x,y\in V$ . Then the representation of  $u\in V$  with respect to W is defined to be the m-tuple  $r(u|W)=[d(u,w_1),d(u,w_2),...,d(u,w_m)]$ . The ordered set W is called a generator for G if for every  $u,v\in V, r(u|W)=r(v|W)$  implies u=v. The order of W will be denoted by |W|. The dimension dim(G) (commonly called  $metric\ dimension$ ) of the graph G is the minimum cardinality of a generator for G, and this generator is called a basis for G. In the sequel, all the sets of integers are assumed to be ordered sets, unless stated otherwise.

Let  $t \geq 1, n = t + 2$  and let  $P_2 = (V_2, E_2)$  and  $P_t = (V_t, E_t)$  be two paths of length 1 and t - 1, respectively, where  $V_2 = \{1, 2\}, V_t = \{3, 4, ..., n\}, E_2 = \{\{1, 2\}\}$  and  $E_t = \{\{3, 4\}, \{4, 5\}, ..., \{n - 1, n\}\}$ , or  $E_t = \emptyset$  in case t = 1. The join graph  $P_2 + P_t = (V_{2,t}, E_{2,t})$  is the graph with vertex set  $V_{2,t} = V_2 \cup V_t$  and edge set  $E_{2,t} = E_2 \cup E_t \cup \{\{u, v\} | u \in V_2, v \in V_t\}$ . The definition of dimension implies that, if  $t \leq t'$ , then  $\dim(P_2 + P_t) \leq \dim(P_2 + P_{t'})$ . Clearly,  $|V_{2,t}| = t + 2 = n$  and  $|E_{2,t}| = 3t$ . It is easy to conclude that if  $u, v \in V_2$  or  $u, v \in V_t$  then

$$d(u,v) = \begin{cases} 1, & \text{if } |u-v| \le 1, \\ 2, & \text{if } |u-v| > 1, \end{cases}$$

whereas, if  $u \in V_2$  and  $v \in V_t$  then d(u, v) = 1.

Any ordered set  $W = \{w_1, w_2, ..., w_m\} \subseteq V_{2,t}$  is of the form  $W = W[1] \cup W[2]$ , where  $W[1] \subseteq V_2 = \{1, 2\}$  and  $W[2] \subseteq V_t$ . More precisely, this set will be treated as

a pair of ordered sets  $W[1] \subseteq V_2$ ,  $W[2] \subseteq V_t$ , written W = W[1]|W[2], and  $w_i < w_j$  if and only if i < j.

**Definition 2.1.** Let  $P_2 + P_t = (V_{2,t}, E_{2,t})$  and  $W = W[1]|W[2] \subseteq V_{2,t}$ . The binary representation of W is the split binary string  $\mathbf{b}_W = b_1b_2|b_3...b_n$ , where.

$$b_i = \begin{cases} 1, & \text{if } i \in W, \\ 0, & \text{otherwise.} \end{cases}$$

In this definition, the first and the second part of the split string  $\mathbf{b}_W$  are denoted by  $\mathbf{b}_{W[1]} = b_1 b_2$  and  $\mathbf{b}_{W[2]} = b_3 b_4 ... b_n$ , respectively, that is  $\mathbf{b}_W = \mathbf{b}_{W[1]} |\mathbf{b}_{W[2]}$ .

The following definition using the fact that 0 < 1.

**Definition 2.2.** Let  $U = \{u_1, u_2, ..., u_m\}, W = \{w_1, w_2, ..., w_m\} \subseteq V_{2,t}$  be represented by  $\mathbf{b}_U = b_1b_2|b_3...b_n$  and  $\mathbf{b}_W = c_1c_2|c_3...c_n$ , respectively. If  $b_1 > c_1$  or there exists a positive integer j with  $1 < j \le t+2$  such that  $b_j > c_j$  and for every  $i < j, b_i = c_i$ , then U is said lower than W, written "U < W". Equivalently, W is said higher than U and this is denoted by "W > U".

The above definition leads to the fact that there is one and only one subset of  $V_{2,t}$  that higher than any other set of the same size.

**Definition 2.3.** A basis  $B \subseteq V_{2,t}$  is called the maximal basis for  $P_2 + P_t$  if for any basis  $B' \neq B$ , B' < B. This unique maximal basis will be denoted by  $Max_t$ .

## 3. DIMENSION OF $P_2 + P_t$ FOR $t \ge 7$

The following lemma provides a necessary condition of a (maximal) basis.

**Lemma 3.1.** If  $B \subseteq V_{2,t}$  is a basis represented by  $\mathbf{b}_B = b_1b_2|b_3b_4...b_n$  then  $1 \in B$  or  $2 \in B$ . If B is maximal, then  $2 \in B$ .

PROOF. Any representation  $\mathbf{b}_B = 00|b_3...b_n$  of  $B \subseteq V_{2,t}$  would imply r(1|B) = (1, 1, ..., 1) = r(2|B). Clearly, if B is maximal then  $2 \in B$ .  $\square$ 

**Example 3.2.** It is easy to show that  $Max_6 = \{2, 5, 7, 8\}$ . In fact, the size of  $Max_6$  cannot be smaller. By the preceding lemma, 2 cannot be deleted from W. If |W[2]| = 2, then W[2] would be represented by any of the following 15 binary strings 110000, 101000, ..., 010100, ..., 000101, or 000011. The binary strings 010100 and 001010 cannot represent a generator because they lead to equations d(1|W) = d(5|W) and d(1|W) = d(6|W), respectively. By applying the next theorem, which is is still valid for t = 6 (although its statement restricts only for  $t \ge 7$ ), any of the remaining 13 binary strings does not represent a generator for  $P_2 + P_6$ .

In this Example 3.2, and also in Example 4.2, it is shown that  $dim(P_2+P_6) = 4$ . Therefore for  $t \geq 7$ ,  $dim(P_2+P_t) \geq 4$ . The following theorem provides all the possibilities when a binary string  $\mathbf{b}_W = 01|b_3...b_n$  with at least four bit-1s, accordingly with  $|W| \geq 4$ ; cannot represent a generator  $W \subseteq V_{2,t}$  with  $t \geq 7$ .

**Theorem 3.3.** Let  $t \geq 7, W \subseteq V_{2,t}$  be represented by  $\mathbf{b}_W = 01|b_3...b_n$  and  $i_1, i_2 \in V_t - W[2]$  with  $i_1 < i_2$ . Then  $r(i_1|W) = r(i_2|W)$  if and only if  $\mathbf{b}_W$  is of at least one of the following forms in which the underline 0 (that is  $\underline{0}$ ) refers to the position of integer  $i_1$  and  $i_2$  in W:

 $\begin{aligned} \mathbf{b}_W &= 01 | \mathbf{r} 0\underline{0} 00\mathbf{s}; \, \mathbf{b}_W &= 01 | \underline{0} 001\mathbf{s}; \, \mathbf{b}_W &= 01 | \mathbf{r} 10\underline{0}\underline{0}; \, \mathbf{b}_W &= 01 | \mathbf{r} 0\underline{0}\underline{1}\underline{0}\mathbf{o}\mathbf{s}; \, \mathbf{b}_W &= 01 | \underline{0}\underline{1}\underline{0}\mathbf{o}\mathbf{s}; \, \mathbf{b}_W &= 01 | \underline{0}\underline{1}\underline{0}\mathbf{o}\mathbf{s}; \, \mathbf{b}_W &= 01 | \underline{0}\underline{0}\mathbf{o}\mathbf{1}\underline{0}\underline{0}\mathbf{s}; \, \mathbf{b}_W &= 01 | \underline{0}\underline{0}\mathbf{o}\mathbf{1}\underline{0}\underline{0}\mathbf{0}\mathbf{1}\mathbf{s}\mathbf{b}_W &= 01 | \mathbf{r}\underline{1}\underline{0}\underline{0}\mathbf{0}\mathbf{1}\mathbf{s}\underline{0}\underline{0}\mathbf{b}_W &= 01 | \mathbf{r}\underline{1}\underline{0}\underline{0}\mathbf{0}\mathbf{1}\underline{0}\underline{0}\mathbf{0}\mathbf{1}\mathbf{s}; \, 3(tsk[a]). \end{aligned}$  where  $\mathbf{r}$  and  $\mathbf{s}$  are binary strings, possibly empty, and the form (a) is the only form containing four consecutive bit-0s.

The restriction  $i_1, i_2 \notin W[2]$  is needed since if, say  $i_2 \in W[2]$ , then obviously  $0 < d(i_1, i_2) \neq d(i_2, i_2) = 0$  and there is no possibility  $r(i_1|W) = r(i_2|W)$ .

PROOF. Let m = |W|. Firstly we prove that any of the ten forms stated in the theorem is a sufficient condition for the existence of  $i_1, i_2 \in W - W[2]$  with  $d(i_1|W) = d(i_2|W)$ . There are three cases:

 $i_2 - i_1 = 1; i_2 - i_1 = 2; i_2 - i_1 > 2.3(tsk[r])$ 

- (i) The case  $i_2 i_1 = 1$  can occur only when one of the first three forms of binary string (a), (b) and (c) occurs. If the form (a) occurs then  $d(i_1, 2) = 1$  (or  $d(i_2, 2) = 1$ ) is the only case that the integer  $i_1$  (or  $i_2$ ) at distant 1 with another integer. So, we have an equality of two m-sequences,  $r(i_1|W) = (1, 2, 2, 2, ...) = r(i_2 + 1|W)$  with  $3 < i_1 < i_1 + 1 = i_2 < n$ . The same reasoning applies to (b) and (c) because if  $i_1 = 3$  (that can be obtained by shifting  $\underline{000}$  in (a) to the most left of  $\mathbf{b}_{W[2]}$ ), then (a) becomes (b) and similarly, if  $i_2 = n$ , then (a) becomes (c).
- (ii) The second case  $i_2-i_1=2$  holds only when one of the three forms (d), (e) or (f) occurs. If (d) occurs with  $3< i_1< i_1+2=i_2< n$  then  $d(i_1,2)=1$  and  $d(i_1,i_1+1)=1$  (or  $d(2,i_2)=1$  and  $d(i_2-1,i_2)=1$ ) are the only two cases that the integer  $i_1$  (or  $i_2$ ) at distant 1 with another integer. There may or may not exist an integer  $u< i_1$  with  $d(u,i_1)=2$  or an integer  $v>i_2$  with  $d(v,i_2)=2$ . In this case, depending on the existence of such integer u and v, this form (d) will result an equality of m-sequences  $r(i_1|W)=r(i_2|W)$  of the form  $(1,\ 1,\ 2,\ ...,\ 2),\ (1,\ 2,\ ...,\ 1,\ ...,\ 2)$  or  $(1,\ 2,\ ...,\ 2,1),$  where  $3< i_1< i_1+1< i_1+2=i_2< n$ . As in the first case, if  $i_1=3$ , then (d) becomes (e) with r(3|W)=r(5|W)=(1,1,2,...,2) and if  $i_2=n$ , (d) becomes (f) with r(n-2|W)=r(n|W)=(1,2,...,2,1).
- (iii) The third case  $i_2 i_1 > 2$  occurs only in one of the forms (g) (j) with  $r(i_1|W) = r(i_2|W) = (1, 2, 2, ..., 2)$  where in (g), we have  $i_1 = 3$  and  $i_2 = n$  and in (h),  $i_1 = 3$  and  $i_1 + 4 \le i_2 \le n 2$ , in (i),  $5 \le i_1 \le n 4 < i_2 = n$  and in (j),  $5 \le i_1 < i_1 + 4 \le i_2 \le n 2$ . The reasons are similar with those of the previous cases.

To prove the necessary condition, it must be shown that if there exist two integers  $i_1, i_2 \in W - W[2]$  with  $i_1 < i_2$  and  $d(i_1|W) = d(i_2|W)$ , then the set W must be one of the forms (a) to (j), no other form is possible. For example, in case  $i_2 - i_1 > 2$ , then there are exactly only four possible subcases  $d(i_1|W) = d(i_2|W)$ :

- 1.  $i_1 = 3, i_2 = n$ . Since  $i_2 i_1 > 2$ , we must have  $i_1 = 3 < n 3 < n = i_2$ , as indicated by the form (g). In this subcase, the inequality 3 < n 3 must be satisfied. Otherwise 3 = n 3 or n = 6, contradicts the assumption  $n \ge 7$ .
- 2.  $i_1 = 3, i_2 < n$ . The condition  $i_2 i_1 > 2$  implies  $i_1 = 3 < 5 < i_2 < n$ , as shown by the form (h).
- 3.  $i_1 > 3$ ,  $i_2 = n$ . Since  $i_2 i_1 > 2$ , we also have  $3 < i_1 < n 2 < n = i_2$ , as indicated by the form (i). It is not possible to have  $i_1 = n 2$  which implies  $i_1 = i_2 2$  and so  $i_2 i_1 = 2$ .
- 4.  $i_1 > 3$ ,  $i_2 < n$ . From  $i_2 i_1 > 2$ , it can be deduced that  $3 < i_1 < i_1 + 2 < i_2 < n$ , as suggested by the form (j).

The remaining two cases  $i_2 - i_1 = 1$  and  $i_2 - i_1 = 2$ , can be proved analogously.  $\square$ 

We will call the explicit-displayed binary substrings of the form  $\mathbf{b}_{W[2]}$ s mentioned in Theorem 3.3 as *improper strings*. For example, the substring  $\mathbf{b}_{W[2]} = \mathbf{r}0000$ s of the form (c) is an improper string. In general, a binary string  $\mathbf{r}$  is called improper if for any vertex-set W represented by  $\mathbf{b}_{W[1]}|\mathbf{r}$  (that is  $\mathbf{b}_{W[2]}=\mathbf{r}$ ), then there always exist two distinct integers  $i_1, i_2 \in W - W[2]$  such that  $r(i_1|W) = r(i_2|W)$ . Notice that in Theorem 3.3, the main reason why string of the form (a) improper is because it contains four consecutive bit-0s.

**Example 3.4.** By inspection,  $B = \{2, 5, 7, 9\}$  is a basis for  $P_2 + P_t$ . This basis cannot be higher since if 5 is replaced by 6, then the resulting set  $U = \{2, 6, 7, 9\}$  will be represented by improper string  $\mathbf{b}_U = 01|\underline{00}01101$  with r(3|U) = 1222 = r(4|U) and if 7 is replaced by 8, then the resulting set  $V = \{2, 5, 8, 9\}$  will be represented by the improper string  $\mathbf{b}_V = 01|\underline{00}1\underline{0}011$  with r(4|V) = 1122 = r(6|V). Therefore,  $B = Max_7$ .

Let  $\mathbf{b} = b_1 b_2 ... b_k$  and  $\mathbf{c} = c_1 c_2 ... c_l$  be two binary strings. A concatenation between  $\mathbf{b}$  and  $\mathbf{c}$  is the binary string  $\mathbf{bc} = b_1 b_2 ... b_k c_1 c_2 ... c_l$ . In particular, k times concatenations of  $\mathbf{b}$  with itself, that is  $\mathbf{bb} ... \mathbf{b}$  ( $\mathbf{b}$  repeated k times), will be written as  $\mathbf{b}^k$ . Let  $\mathbf{b}^0$  be the empty string and  $\mathbf{bcbc}$ ,  $\mathbf{bcbcb}$ ,  $\mathbf{bcbcbc}$ ,..., etc. be written as  $(\mathbf{bc})^2$ ,  $(\mathbf{bc})^2 \mathbf{b}$  or  $\mathbf{b(cb)}^2$ ,  $(\mathbf{bc})^3$ , ... and so on. Two particular binary strings  $\boldsymbol{\alpha} = 001$  and  $\boldsymbol{\beta} = 01$  will play important roles.

**Lemma 3.5.** Let  $t \ge 7$  and  $W = \{w_1, ..., w_m\} \subseteq V_{2,t}$  be a basis represented by  $\mathbf{b}_W = 01 | b_3 b_4 ... b_n$ . If W is maximal, then  $w_2 = 5$ ,  $w_3 = 7$ , and therefore  $\mathbf{b}_W = 01 | \boldsymbol{\alpha} \boldsymbol{\beta} b_8 ... b_n$ . In particular,  $Max_7 = \{2, 5, 7, 9\}$ ,  $Max_8 = \{2, 5, 7, 10\}$ ,  $Max_9 = \{2, 5, 7, 10, 11\}$  and  $Max_{10} = \{2, 5, 7, 10, 12\}$ .

PROOF. Each of the four sets is obviously a basis of their respective graph join. If  $w_2 > 5$  then  $\mathbf{b}_W = 01|\underline{00}0...$  contains improper substring of the form (a) stated in Theorem 3.3. Suppose  $w_3 > 7$ . Then,  $\mathbf{b}_W = 01|\underline{00}1\underline{00}b_8...b_{12}$  and r(4|W) = r(6|W), as indicated by the form (f). Therefore, 5 and 7 are the only option for

 $w_2$  and  $w_3$ . The four sets  $\{2, 5, 7, 9\}$ ,  $\{2, 5, 7, 10\}$ ,  $\{2, 5, 7, 10, 11\}$ ,  $\{2, 5, 7, 10, 12\}$  are represented by  $01|0010101, 01|00101001, 01|001010011, 01|(00101)^2$ , respectively, and any of these binary string does not contain improper string of the form (a) - (j). This proves that the sets are bases for  $P_2 + P_7$ ,  $P_2 + P_8$ ,  $P_2 + P_9$  and  $P_2 + P_{10}$ , respectively. It is easy to prove that the four sets are maximal bases by showing every integer in each set cannot be made larger. For example,  $\{2, 5, 7, 10, 12\}$  cannot be replaced by higher set  $W = \{2, 5, 7, 11, 12\}$  since there would be equality r(3|W) = [2, 2, ..., 2] = r(9|W).  $\square$ 

Notice that  $Max_7 = \{2, 5, 7, 9\}$  is also a basis of  $P_2 + P_8$  but it is not maximal.

The most important role played by the binary string  $\alpha\beta$  is described by the following two theorems.

**Theorem 3.6.** For every k = 1, 2, 3, ..., we have

$$Max_{5(k+1)} = \{2\} \cup \bigcup_{i=0}^{k} \{5(i+1), 2+5(i+1)\}.$$
 (1)

This maximal basis is represented by the split binary string

$$\mathbf{b}_{Max_{5(k+1)}} = 01 |(\alpha \beta)^{k+1}.$$
 (2)

Consequently,

$$dim(P_2 + P_{5(k+1)}) = 2(k+1). (3)$$

PROOF. We will show that  $W = \{2, 5, 7, 10, 12, 15, 17, ..., 4+5(k+1), 2+5(k+1)\} = \{2\} \cup \{5, 7\} \cup \{10, 12\} \cup \{15, 17\} \cup ... \cup \{5(k+1), 2+5(k+1)\}$  is the maximal bases for  $P_2 + P_{5(k+1)}$ . Clearly, W is represented by the binary string (2) and deleting any integer in W would result one of the forms (a) - (j) stated in Theorem 3.3. Furthermore, the string (2), which does not contain three consecutive bit-0s, cannot be of the form (a), (b), (c), (h) or (i). Observe that W is of the form (1), consists of 2k+3 integers initialized by 2 and 5. Moreover, the last 3-bit of its binary representation (2) is 101 (because the last two integers 5(k+1) and 2+5(k+1) of W differ by 2). Consequently, any of the forms (e), (f) and (g) cannot be the form of the string (2), because neither initialized by 2 and 5 nor the last 3-bit of its binary representation is 101. Each of forms (d) and (j) cannot be the form of the string (2) because it contains a substring  $\alpha$ 00, contradicts the fact that  $\alpha$  in (2) is always followed by  $\beta = 01$ . This proves that W is a basis. The proof that this basis is maximal can be done with the same way as the proof that  $Max_7 = \{2, 5, 7, 9\}$  given in Example 3.4.  $\square$ 

The advantage of the binary representation can be seen from the fact that although  $Max_{10} = \{2, 5, 7, 10, 12\}$  is the same as  $Max_{11}$ , they have different representations. In fact,  $Max_{10}$  is represented by  $01|\alpha\beta\alpha\beta$  whereas  $Max_{11}$  is represented by  $01|\alpha\beta\alpha\beta0$  as stated by the next theorem. Notice that  $\{2, 5, 7, 10, 12, 13\}$ 

is a basis for  $P_2 + P_{12}$ , but  $Max_{12} = \{2, 5, 7, 10, 12, 14\}$ . This situation occurs for every t = 2 + 5k, where k = 1, 2, 3, ...

**Theorem 3.7.** For every k = 1, 2, 3, ... and j = 1, 2, 3, 4, we have

$$Max_{j+5(k+1)} = \{2\} \cup \bigcup_{i=0}^{k} \{5(i+1), 2+5(i+1)\} \cup U_j,$$
 (4)

where  $U_1 = \emptyset$ ,  $U_2 = \{4 + 5(k + 1)\}$ ,  $U_3 = \{5(k + 2)\}$ ,  $U_4 = \{5(k + 2), 1 + 5(k + 2)\}$ , respectively. Each of these maximal bases is represented by the split binary string

$$\mathbf{b}_{Max_{j+5(k+1)}} = 01 |(\boldsymbol{\alpha}\boldsymbol{\beta})^{k+1} \mathbf{u}_{j}. \tag{5}$$

where  $\mathbf{u}_1 = 0, \mathbf{u}_2 = \boldsymbol{\beta}, \mathbf{u}_3 = \boldsymbol{\alpha}, \mathbf{u}_4 = \boldsymbol{\alpha}1$ , respectively. Consequently,

$$dim(P_2 + P_t) = \begin{cases} 2k + 2, & if \ t = 2 + 5k \ or \ 3 + 5k; \\ 2k + 3, & if \ t = 4 + 5k, 5(k + 1) \ or \ 1 + 5(k + 1). \end{cases}$$
 (6)

PROOF. Using the notations and results from Theorem 3.6, equation (4) can be rewritten as  $Max_{j+5(k+1)} = Max_{5(k+1)} \cup U_j$ . If  $U_1 = \emptyset$ , then  $Max_{1+5(k+1)} = Max_{5(k+1)}$ . However, the binary representation of  $Max_{1+5(k+1)}$  has an additional bit-0 at the end of the expression (2). The proof that this set is a basis for  $P_2 + P_{1+5(k+1)}$  almost exactly the same as the proof of Theorem 3.6, except in using the fact that the last 4-bit of this set is 1010. In proving that this basis is maximal, it is enough to prove that if the last bit 2+5(k+1) be made larger to 3+5(k+1), then the resulting binary representation would be the improper string (d) stated in Theorem 3.3. Analogously, the case j=2, 3 or 4 can be proved using the facts that the last 4-bit binary representation of the set  $Max_{5(k+1)} \cup U_j$  are 0101, 1001, 0011, respectively, and any of the last 4 integers in this set cannot be made larger.  $\square$ 

**Example 3.8.** Applying (1) and (2) of Theorem 3.6 with k=2 gives t=15,  $Max_{15}=\{2,5,7,10,12,15,17\}=Max_{14}$  and  $\mathbf{b}_{Max_{15}}=01|001010010100101=01|(\alpha\boldsymbol{\beta})^3$  whereas applying (4) and (5) of Theorem 3.7 with k=2 and j=4 results t=19 with  $Max_{19}=\{2,5,7,10,12,15,17,20,21\}$  and  $\mathbf{b}_{Max_{19}}=01|(\alpha\boldsymbol{\beta})^30011=01|00101001010101011$ . Therefore,  $dim(P_2+P_{15})=2(3)+1=7$  and  $dim(P_2+P_{19})=dim(P_2+P_{20})=9$ . In general for every  $t\geq 7$ ,  $dim(P_2+P_{t+5})=dim(P_2+P_t)+2$  and for every  $k=2,3,4,...,dim(P_2+P_{5k-1})=dim(P_2+P_{5k})=dim(P_2+P_{5k+1})$  is an odd number whereas  $dim(P_2+P_{5k+2})=dim(P_2+P_{5k+3})$  is an even number. The binary representations of  $Max_t$  with  $15\leq t\leq 29$  are

 $01-(\alpha\beta)^3, 01|(\alpha\beta)^30, 01|(\alpha\beta)^301, 01|(\alpha\beta)^3001, 01|(\alpha\beta)^30011, 01|(\alpha\beta)^4, 01|(\alpha\beta)^40, 01|(\alpha\beta)^401, 01|(\alpha\beta)^4001, 01|(\alpha\beta)^40011, 01|(\alpha\beta)^5, 01|(\alpha\beta)^50, 01|(\alpha\beta)^501, 01|(\alpha\beta)^5001, 01|(\alpha\beta)^50011; 5(tsk[a])$ 

and this list can be extended indefinitely for larger values of t.

# 4. DIMENSION OF $P_2 + P_t$ FOR t < 7.

The reverse of a binary string  $\mathbf{s} = s_1 s_2 ... s_m$  is defined as the string  $s = s_m s_{m-1} ... s_1$ . For any set  $W = W[1]|W[2] \subseteq V_{2,t}$  represented by  $\mathbf{b}_W = b_1 b_2 b_3 ... b_n$ , we define  $W[1]^R$ , the reverse of  $W[1] \subseteq V_2$ , as the set with binary representation  $\mathbf{b}_{W[1]^R} = b_2 b_1$  and similarly the reverse of  $W[2] \subseteq V_t$  is defined as the set  $W[2]^R$  represented by the binary string  $\mathbf{b}_{W[2]^R} = b_n b_{n-1}, , , b_2 b_1$ .

Consequently, if  $W[1] = \{x_1, x_2\} \subseteq V_2$  and  $W[2] = \{y_1, y_2, ..., y_k\} \subseteq V_t$ , then  $W[1]^R = \{2x_2 \mod 3, 2x_1 \mod 3\}, W[2]^R = \{3 + n - y_k, 3 + n - y_{k-1}, ..., 3 + n - y_1\}$  and  $W^R = W[1]^R \cup W[2]^R$ . That is if  $W \subseteq V_2$  (or  $W \subseteq V_t$ ) then  $W^R$  is the 'mirror' of W in opposite direction with respect to the set  $V_2$  (or  $V_t$ ). We define  $W^R = W[1]^R |W[2]^R$  and  $\mathbf{b}_W^R = \mathbf{b}_{W[1]^R} |\mathbf{b}_{W[2]^R}$ . So,  $\mathbf{b}_W^R = \mathbf{b}_{W^R}$ .

A set B is called the proper minimal basis for  $P_2 + P_t$  if for any basis  $B', B \leq B'$  and will be denoted by  $min_t$ . We also define  $Min_t = Max_t^R$ , which is also a basis as justified by the following proposition.

**Proposition 4.1.** Let  $B \subseteq V_{2,t}$  be a basis of  $P_2 + P_t$ . Then  $B^R$  is also a basis. In particular,  $Min_t$  is a basis.

PROOF. Let the ordered set  $B=\{x_1,x_2,x_3,\ldots,x_m\}=(B[1]|B[2])\subseteq V_{2,t}$  be the basis. Without loss of generality, we may assume that  $B[1]=\{x_1\}$ . By using the fact that  $(i-x)\neq (j-x)$  if and only if  $(i-(L-x))\neq (j-(L-x))$ , then for every  $i,j\in V_{2,t}$ , inequality  $d(i|\{x_1,x_2,x_3,\ldots,x_m\})\neq d(j|\{x_1,x_2,x_3,\ldots,x_m\})$  is true if and only if  $d(i|\{3-x_1,n+3-x_m,n+3-x_{m-1},\ldots,n+3-x_2\})\neq d(j|\{3-x_1,n+3-x_m,n+3-x_2\})$  is also true. That is,  $d(i|(B[1]|B[2]))\neq d(j|(B[1]|B[2]))$  if and only if  $d(i|(B^R[1]|B^R[2]))\neq d(j|(B^R[1]|B^R[2]))$ . Equivalently, B is a basis if and only if  $B^R$  is a basis. In particular, since  $Max_t$  is a basis, then  $Min_t=Max_t^R$  is also a basis.  $\Box$ 

 $Min_t$  is called the improper minimal basis. Clearly,  $min_t \leq Min_t$ .

**Example 4.2.** By a computer search, there are 34 bases  $W_1 < W_2 < ... < W_{34}$  for  $P_2 + P_6$ . The following is the list of eight of these bases including their binary representations.

```
\begin{array}{lll} W_1 &= \{1,2,4,6\} \approx 11|010100, & W_2 &= \{1,2,5,7\} \approx 11|001010, \\ W_3 &= \{1,3,4,6\} \approx 10|110100, & W_4 &= \{1,3,4,8\} \approx 10|110001, \\ W_{31} &= \{2,4,6,8\} \approx 01|010101, & W_{32} &= \{2,5,6,7\} \approx 01|001110, \\ W_{33} &= \{2,5,6,8\} \approx 01|001101, & W_{34} &= \{2,5,7,8\} \approx 01|001011. \end{array}
```

Since  $\mathbf{b}_{W_{34}} = 01|001011$  represents the maximal basis  $Max_6 = W_{34}$ , its reverse  $W_{34}{}^R = Min_6 = W_3$  is the improper minimal basis represented by  $\mathbf{b}_{W_{34}}^R = 10|110100 = \mathbf{b}_{W_3}$ . Here,  $Min_6 > W_1 = min_t$ , the proper minimal basis for  $P_2 + P_6$ , and  $\mathbf{b}_{W_1} = \mathbf{b}_{W_2}{}^R$ . The string  $\mathbf{b}_{W_4} = 10|110001$  represents the basis  $W_4$ , so does  $\mathbf{b}_{W_4}{}^R = 01|100011 = \mathbf{b}_{W_4}{}^R$ , which actually represents the basis  $W_{26} = \{2, 3, 7, 8\} = W_4{}^R$ .

**Theorem 4.3.** If  $t \le 6$  then  $dim(P_2 + P_t) \le 4$ . For  $t \ge 7$ , any binary string of the form  $11|b_3...b_n$  cannot be a representation of a generator and any binary string of the form  $10|b_3...b_n$  cannot be a representation of a maximal basis.

PROOF. By the preceding example, the first statement is obvious. The second statement obviously derived from Theorem  $3.3 \square$ .

Some bases for  $P_2 + P_t$  with t < 7 are provided in the following example and written using the notations defined at the beginning of this section.

**Example 4.4.**  $min_1 = \{1,2\} < Min_1 = \{1,3\} < Max_1 = \{2,3\} = \{2\} | \{3\} = \{1\}^R | \{3\}^R = \{1,3\}^R = Min_1^R \text{ represented by } 11 | 0, \mathbf{b}_{Min_1} = 10 | 1 = (01)^R | (1)^R = (01|1)^R, \text{ which is the reverse of } 01 | 1 = \mathbf{b}_{Max_1^R}; \text{ whereas } min_2 = \{1,2,3\} < Min_2 = \{1,3,4\} < Max_2 = \{2,3,4\} = \{1,3,4\}^R \text{ represented by } 11 | 10,10 | 11,01 | 11 = (10|11)^R \text{ respectively.}$  Likewise,  $min_3 = \{1,2,3\} < Min_3 = \{1,3,4\} < Max_3 = \{2,4,5\} = \{2\} | \{4,5\} = \{1\}^R | \{3,4\}^R = \{1,3,4\}^R = Min_3^R \text{ represented by } 11 | 100, \mathbf{b}_{Min_3} = 10 | 110, \mathbf{b}_{Max_3} = 01 | 011 = (10)^R | (110)^R = (10110)^R = \mathbf{b}_{Min_3}^R.$  For  $t = 4, min_4 = Min_4 = \{1,3,4\} < Max_4 = \{2,5,6\} \text{ are represented by } 10 | 1100,01 | 0011 \text{ respectively.}$  Observe that any set of the form  $W = \{1,2,x\}$  cannot be a basis for  $P_2 + P_4$  since in this case there always exist  $i,j \in \{3,4,5,6\}$  with r(i|W) = r(j|W). For example if x = 3 then r(5|W) = [1,1,2] = r(6|W) and if x = 4 then r(3|W) = [1,1,1] = r(5|W). For  $t = 5, min_5 = \{1,3,7\} < Min_5 = \{1,4,5\} < Max_5 = \{2,5,6\}$  are represented by 10 | 10001, 10 | 01100, 01 | 00110. The minimal and maximal bases for  $P_2 + P_6$  are already given in Example 4.2.

#### 5. Conclusion

In the case of  $t \geq 7$  large enough, the binary representations of  $Max_t$  have (repeated) substrings of length 5 that ease the search for their dimension. In particular when t = 5(k+1), the binary representation of  $Max_t$  is of the form  $01|(\alpha\beta)^{k+1}$ , where  $\alpha = 001, \beta = 01$  and  $k = 1, 2, 3, \ldots$  Furthermore, for three consecutive t-values 5k - 1, 5k, 5k + 1, the dimensions of  $P_2 + P_t$  are the same odd number 2k + 1 and for two t-values 5k + 2 and 5k + 3, the dimensions of  $P_2 + P_t$  are the same even number 2(k+1).

When t = 1 + 5k, the binary representation of  $Max_t$  is  $01|(\boldsymbol{\alpha}\boldsymbol{\beta})^k0$  and this is only valid when k > 1. The case k = 1 results in t = 6, with  $Max_6$  represented by  $01|\boldsymbol{\alpha}\boldsymbol{\beta}1$ . In general, the regular pattern of the  $dim(P_2 + P_t)$  begins at  $t = 2 + 5 \cdot 1 = 7$  with  $Max_7 = 01|\boldsymbol{\alpha}\boldsymbol{\beta}01$ . From t = 7, the dimension of  $P_2 + P_t$  increases by 2 as t increases by 5. This regular behavior for  $t \geq 7$  is due to the fact that the binary representation of maximal bases for  $P_2 + P_t$  contains a substring  $\boldsymbol{\alpha}\boldsymbol{\beta}$  of length 5 which is repeated at least k times when  $t \geq 2 + 5k$ .

In the case of t < 7, there is no regular pattern to describe the basis and dimension of  $P_2 + P_t$ . Moreover, the graph  $P_2 + P_4$  does not have minimal, proper basis whereas for t = 1, 2, 3, 5 or 6; the graph  $P_2 + P_t$  does.

### REFERENCES

- [1] Chartrand, G., Eroh, L., Johnson, M.A., and Oellermann, O.R., "Resolvability in graphs and the metric dimension of a graph", *Discrete Appl. Math.*, **105** (2000), 99-113.
- [2] Gallian, J.A., "A dynamic survey of graph labeling", Electron J Comb., 19 (2016), 1-408.
- [3] Harary, F. and Melter, R.A., "On the metric dimension of a graph", Ars Combin., 2 (1976), 191-195.
- [4] Kuziak, D., Rodrígues-Veláquez, J.A., and Yero, I.G., "Computing the metric dimension of a graph from primary subgraphs", *Discuss. Math.*, **37** (2017), 273-293.
- [5] Kuziak, D., Yero, I.G., and Rodrígues-Veláquez, J.A., "On the strong metric dimension of corona product graphs and join graphs", Discrete Appl. Math., 161 (2013), 1022-1027.
- [6] Slater, P.J., "Leaves of trees", Congr. Numer., 14 (1975), 549-559.