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Abstract. The following metric dimension of join two paths Ps + P is determined
as follows. For every k = 1,2,3,... and t = 2 + 5k or t = 3 + 5k, the dimension
of Py + Py is 2 + 2k; whereas for t = 4 4+ 5k,t = 5(k+ 1) or t = 1+ 5(k + 1),
the dimension is 3 4+ 2k. In case t > 7, the dimension is determined by a chosen
(maximal) ordered basis for P2+ P, in which the integers 1, 2 are the two consecutive
vertices of P> and the next integers 3,4,...,t + 2 are the ¢ consecutive vertices of
P;. If t > 10, the ordered binary string contains repeated substrings of length 5.
For t < 7, the dimension is easily found using a computer search, or even just using
hand computations.
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Abstrak. Dimensi metrik dari graf gabungan dua lintasan P> + P; ditentukan
sebagai berikut. Untuk setiap k = 1,2,3,... dan t = 2+ 5k atau t = 34 5k, dimensi
dari P> + P; adalah 2 + 2k; sedangkan untuk ¢ = 4 + 5k,t = 5(k + 1) atau t =
1+5(k+1), dimensinya adalah 34 2k. Pada kasus ¢t > 7, ukuran dimensi ditentukan
dengan memilih sebuah basis (maksimal) terurut dari P + P;, di mana bilangan
1, 2 adalah titik-titik berurutan dari P, dan bilangan selanjutnya: 3,4,...,t + 2;
adalah titik-titik berurutan dari P;. Jika ¢ > 10, untaian biner terurut tersebut
memuat subuntaian periodik dengan perioda 5. Untuk ¢ < 7, dimensinya mudah
didapat dengan menggunakan komputer, atau bahkan hanya dengan menggunakan
komputasi manual.

Kata kunci: graf gabungan dua lintasan, dimensi (metrik), basis maksimal

1. INTRODUCTION

In the last two or three decades, there have been many and fast developments
of graph theory, including its related terminologies. The theoretical developments
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include many new concepts and notions such as various kinds of graphs and graph
labelings as surveyed by Gallian [1], and in particular the notion of metric dimen-
sion.

Metric dimension in graph theory was first introduced in the mid-1970s by
Harary and Melter [3] and independently by Slater [6]. With respect to terminology,
the authors tend to follow Kuziak, Rodrigues-Veldquez and Yero [4, 5] that use the
term ‘metric generator’ and ‘metric basis’ instead of ‘resolving set” and ‘minimum
resolving set’ used by many authors, for example by Chartrand, Eroh, Johnson and
Oellermann [1]. In this paper, the authors simplify the terms by using two shorter
terms: ‘generator’ and ‘basis’.

In Section 2, the preliminary definitions and notations are introduced, fol-
lowed by Section 3 containing a complete derivation of the metric dimension of the
join two paths Py and P, with ¢ > 7, based on an ordered binary string represen-
tation of a vertex set W. It is shown that for ¢ > 10, the string contains repeated
substrings of length 5. Section 4 provides the dimension of smaller join graphs
P> + P, with t < 7. The final section contains a brief conclusion of the results.

2. NOTATIONS AND DEFINITIONS

Let G = (V, E) be a connected graph of n vertices labeled by positive integers.
Let W = {w1,wa,...,wn}t €V be an ordered set with wy < wy < -+ < wy,
and let d(x,y) be the usual distance between two vertices xz,y € V. Then the
representation of w € V' with respect to W is defined to be the m-tuple r(u|W) =
[d(u,w1), d(u, w2), ..., d(u, wy,)]. The ordered set W is called a generator for G if
for every u,v € V,r(u|W) = r(v|W) implies v = v. The order of W will be denoted
by |W/|. The dimension dim(G) (commonly called metric dimension) of the graph
G is the minimum cardinality of a generator for G, and this generator is called a
basis for G. In the sequel, all the sets of integers are assumed to be ordered sets,
unless stated otherwise.

Let t > 1,n =t+2 and let P, = (Va, E») and P, = (V;, E;) be two paths of
length 1 and ¢ — 1, respectively, where Vo = {1,2},V; = {3,4,...,n}, B> = {{1,2}}
and B, = {{3.4},{4,5},...,{n — 1,n}}, or E; = 0 in case ¢ = 1. The join graph
P, + P, = (Vau, E24) is the graph with vertex set Vo, = Vo U Vi and edge set
Esy = EyUE U {{u,v}u € V,v € V;}. The definition of dimension implies that,
if t < t', then dim(P, + P;) < dim(P, + Py). Clearly, |Vay| = t+2 = n and
|E2,| = 3t. It is easy to conclude that if u,v € V5 or u,v € V; then

d(u, v) 1, if jlu—v| <1,
u,v) =
’ 2, iflu—v|>1,

whereas, if u € Vo and v € V; then d(u,v) = 1.
Any ordered set W = {w1,wa, ..., wn } C Vo is of the form W = W[1]JUW[2],
where W[1] C Vo = {1,2} and W[2] C V;. More precisely, this set will be treated as
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a pair of ordered sets W[1] C V,, W[2] C V;, written W = W[1]|[W[2], and w; < w;
if and only if ¢ < j.

Definition 2.1. Let Po+ P = (Va4 Eoy) and W = W[1]|W 2] C Vo ;. The binary
representation of W is the split binary string by, = b1b2|bs...b,,, where.

b {1, ifieWw,

0, otherwise.

In this definition, the first and the second part of the split string by, are denoted
by bVV[l} = b1b2 and bw[z] = b3b4bn respectively, that is bW = bw[1]|bw[2]
The following definition using the fact that 0 < 1.

Definition 2.2. Let U = {uy, ug,...,um }, W = {wy,wa, ..., wn} C Vo be repre-
sented by by = b1ba|bs...b, and by = cica|cs3...cn, respectively. If by > ¢1 or there
exists a positive integer j with 1 < j < t 4 2 such that b; > c¢; and for every
1 < J,b; = ¢, then U is said lower than W, written U < W”. Equivalently, W is
said higher than U and this is denoted by "W > U”.

The above definition leads to the fact that there is one and only one subset
of V5, that higher than any other set of the same size.

Definition 2.3. A basis B C Vo is called the maximal basis for P> + P; if for
any basis B’ # B, B’ < B. This unique maximal basis will be denoted by Mazx;.

3. DIMENSION OF P, + P, FOR t > 7

The following lemma provides a necessary condition of a (maximal) basis.

Lemma 3.1. If B C V,; is a basis represented by bg = b1b2|b3bs...b, then 1 € B
or2 € B. If B is maximal, then 2 € B.

PROOF. Any representation bg = 00|bs...b, of B C V5, would imply r(1|B) =
(1,1,...,1) = r(2|B). Clearly, if B is maximal then 2 € B. O

Example 3.2. It is easy to show that Maxzg = {2,5,7,8}. In fact, the size of
Maxg cannot be smaller. By the preceding lemma, 2 cannot be deleted from .
If [W[2]| = 2, then W[2] would be represented by any of the following 15 binary
strings 110000, 101000, ..., 010100, ..., 000101, or 000011. The binary strings 010100
and 001010 cannot represent a generator because they lead to equations d(1|W) =
d(5|W) and d(1|W) = d(6|W), respectively. By applying the next theorem, which
is is still valid for ¢ = 6 (although its statement restricts only for ¢ > 7), any of the
remaining 13 binary strings does not represent a generator for P» + Fs.
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In this Example 3.2, and also in Example 4.2, it is shown that dim(Py+Ps) =
4. Therefore for ¢ > 7,dim(P> + P;) > 4. The following theorem provides all
the possibilities when a binary string by, = 01|bs...b, with at least four bit-1s,
accordingly with |W/| > 4; cannot represent a generator W C Vo, with ¢ > 7.

Theorem 3.3. Lett > 7,W C V,; be represented by by = 01|bs...b,, and i1,iz €

Vi — W2] with i1 < ia. Then r(i1|W) = r(i2]W) if and only if by is of at least

one of the following forms in which the underline 0 (that is Q) refers to the position

of integer i1 and ig in W:

by, = 01|r0000s; by = 01]0001s; by = 01|r1000; by = 01|r00100s; by = 01]0100s; by =
01|r0010; by = 01|00r00; by = 01/00r10001sby, = 01|r10001s00by, = 01|r100010001s; 3(tsk[a]).
where r and s are binary strings, possibly empty, and the form (a) is the only form

containing four consecutive bit-0s.

The restriction i1,is ¢ W[2] is needed since if, say iz € W[2], then obviously

0 < d(i1,42) # d(ia,i2) = 0 and there is no possibility r(i1|W) = r(iz|W).

PROOF. Let m = |W]|. Firstly we prove that any of the ten forms stated in

the theorem is a sufficient condition for the existence of i1,io € W — W|[2] with

d(i1|W) = d(i2|]W). There are three cases:

o — iy = 1yig — i1 = 240 — i1 > 2.3(tsk[r])

(i) The case io — 43 = 1 can occur only when one of the first three forms of
binary string (a), (b) and (c) occurs. If the form (a) occurs then d(i1,2) =1
(or d(ie,2) = 1) is the only case that the integer i; (or i) at distant 1
with another integer. So, we have an equality of two m-sequences, r(i;|W) =
(1,2,2,2,...) = r(ig+1|W) with 3 < 43 < i1+1 = i3 < n. The same reasoning
applies to (b) and (c) because if i; = 3 (that can be obtained by shifting 000
in (a) to the most left of byyjg)), then (a) becomes (b) and similarly, if iz = n,
then (a) becomes (c).

(ii) The second case io — i3 = 2 holds only when one of the three forms (d), (e)
or (f) occurs. If (d) occurs with 3 < iy < i1 +2 =iy < n then d(i1,2) =1
and d(i1,i1 + 1) = 1 (or d(2,4i2) = 1 and d(iz — 1,i3) = 1) are the only two
cases that the integer i; (or ¢2) at distant 1 with another integer. There may
or may not exist an integer u < ¢; with d(u,i1) = 2 or an integer v > is
with d(v,i2) = 2. In this case, depending on the existence of such integer u
and v, this form (d) will result an equality of m-sequences r(i1|W) = r(iz|W)
of the form (1, 1, 2, ..., 2), (1, 2, ..., 1, ..., 2) or (1, 2, ..., 2,1), where
3<ip <i1+1<i+2=1dy <n. Asin the first case, if i; = 3, then (d)
becomes (e) with »(3|W) = r(5|W) = (1,1,2,...,2) and if i3 = n, (d) becomes
(f) with r(n — 2|W) =r(n|W) = (1,2, ...,2,1).

(iii) The third case iy — i3 > 2 occurs only in one of the forms (g) - (j) with
r(i1|W) = r(iz]W) = (1,2.2,...,2) where in (g), we have i1 = 3 and i, = n
and in (h),4 =3 and i1 +4<is <n—2,in (i),5<iy <n—4<iy=nand
in (j), 5 <i1; < i3 +4 < iy <n—2. The reasons are similar with those of the
previous cases.
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To prove the necessary condition, it must be shown that if there exist two integers

i1,i2 € W—=W][2] with 41 < i3 and d(i1|W) = d(ia|WW), then the set W must be one

of the forms (a) to (j), no other form is possible. For example, in case is — i3 > 2,

then there are exactly only four possible subcases d(i1|W) = d(iz|W):

1. 4y = 3,i3 = n. Since iy — iy > 2, we must have i1 = 3 <n —3 < n = iy, as
indicated by the form (g). In this subcase, the inequality 3 < n — 3 must be
satisfied. Otherwise 3 =mn — 3 or n = 6, contradicts the assumption n > 7.

2. i1 = 3,42 < n. The condition is — ¢; > 2 implies i1 = 3 < 5 < i3 < n, as shown
by the form (h).

3. 41 > 3,13 = m. Since is — i1 > 2, we also have 3 < iy < n —2 < n = iy, as
indicated by the form (i). It is not possible to have ¢; = n — 2 which implies
i1 =io — 2 and s0 79 — i1 = 2.

4. i1 > 3,io < n. From is —iy > 2, it can be deduced that 3 < iy < i1 +2 < iy < n,
as suggested by the form (j).

The remaining two cases 42 —i; = 1 and i — i1 = 2, can be proved analogously. [

We will call the explicit-displayed binary substrings of the form byy[5)s men-
tioned in Theorem 3.3 as improper strings. For example, the substring by =
r0000s of the form (c) is an improper string. In general, a binary string r is called
improper if for any vertex-set W represented by byy(ij|r (that is byyg = r), then
there always exist two distinct integers i1,i2 € W — W/[2] such that r(i1|W) =

r(i2|WW). Notice that in Theorem 3.3, the main reason why string of the form (a)

improper is because it contains four consecutive bit-0s.

Example 3.4. By inspection, B = {2,5,7,9} is a basis for P, + P;. This basis
cannot be higher since if 5 is replaced by 6, then the resulting set U = {2,6, 7,9} will
be represented by improper string by = 01/0001101 with »(3|U) = 1222 = r(4|U)
and if 7 is replaced by 8, then the resulting set V = {2,5, 8,9} will be represented
by the improper string by = 01|/0010011 with r(4|V) = 1122 = r(6|V'). Therefore,
B = Maxr.

Let b = b1bs...b;, and ¢ = c¢yc¢a...¢; be two binary strings. A concatenation
between b and c is the binary string bc = b1bs...bgc1¢9...¢;. In particular, k times
concatenations of b with itself, that is bb...b (b repeated k times), will be written
as b*. Let b be the empty string and bcbe, bebeb, bebebe,..., ete. be written
as (bc)?, (be)?b or b(cb)?, (be)?, ... and so on. Two particular binary strings
a =001 and B = 01 will play important roles.

Lemma 3.5. Let t > 7 and W = {w1, ..., wn} C Vo, be a basis represented by
by = 01|bsby...by,. If W is mazimal, then we = 5, ws = 7, and therefore by =
0l|aBbs..bn.. In particular, Maz; = {2,5,7,9}, Maxs = {2,5,7,10}, Maxyg =
{2,5,7,10,11} and Maz1o = {2,5,7,10,12}.

Proor. Each of the four sets is obviously a basis of their respective graph join.
If we > 5 then by = 01]000... contains improper substring of the form (a) stated
in Theorem 3.3. Suppose w3 > 7. Then, by, = 01/00100bs...b12 and r(4|W) =
r(6|W), as indicated by the form (f). Therefore, 5 and 7 are the only option for
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wy and ws. The four sets {2, 5, 7, 9}, {2, 5, 7, 10}, {2, 5, 7, 10, 11}, {2, 5,
7, 10, 12} are represented by 01/0010101,01]00101001,01|001010011,01](00101)2,
respectively, and any of these binary string does not contain improper string of the
form (a) - (j). This proves that the sets are bases for P, + P, Py + Ps, Po + Py and
P> + Py, respectively. It is easy to prove that the four sets are maximal bases by
showing every integer in each set cannot be made larger. For example, {2, 5, 7,
10, 12} cannot be replaced by higher set W = {2,5,7,11, 12} since there would be
equality r(3|W) = [2,2,...,2] = r(9|]W). O

Notice that Maxy = {2,5,7,9} is also a basis of P, + Pg but it is not maximal.

The most important role played by the binary string a3 is described by the
following two theorems.

Theorem 3.6. For every k =1,2.3,..., we have

k
Mazsrry = {2} U ({5 +1),2+ 5(i + 1)} (1)
i=0
This mazimal basis is represented by the split binary string
bMHfl’s(k+1) = 01|(aﬂ)k+l' (2)

Consequently,

Proor. We will show that W = {2,5,7,10,12,15,17, ..., 4+5(k+1),2+5(k+1)} =
{2} u{5,7}U{10,12} U{15,17}U...U{5(k+1),2+5(k + 1)} is the maximal bases
for Py 4 P5(41). Clearly, W is represented by the binary string (2) and deleting
any integer in W would result one of the forms (a) - (j) stated in Theorem 3.3.
Furthermore, the string (2), which does not contain three consecutive bit-0s, cannot
be of the form (a), (b), (¢), (h) or (i). Observe that W is of the form (1), consists
of 2k + 3 integers initialized by 2 and 5. Morecover, the last 3-bit of its binary
representation (2) is 101 (because the last two integers 5(k + 1) and 2 + 5(k + 1)
of W differ by 2). Consequently, any of the forms (e), (f) and (g) cannot be the
form of the string (2), because neither initialized by 2 and 5 nor the last 3-bit of its
binary representation is 101. Each of forms (d) and (j) cannot be the form of the
string (2) because it contains a substring a00, contradicts the fact that o in (2) is
always followed by B = 01. This proves that W is a basis. The proof that this basis
is maximal can be done with the same way as the proof that Maxzy = {2,5,7,9}
given in Example 3.4. OJ

The advantage of the binary representation can be seen from the fact that
although Maz19 = {2,5,7,10,12} is the same as Max11, they have different rep-
resentations. In fact, Max is represented by 01|aBaB3 whereas Maxq; is repre-
sented by 01|aBaB0 as stated by the next theorem. Notice that {2,5,7,10,12,13}
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is a basis for Py + Py2, but Mazis = {2, 5, 7, 10, 12, 14}. This situation occurs for
every t = 2 + 5k, where k =1,2,3, ....

Theorem 3.7. For every k=1,2,3,... and j = 1,2,3,4, we have
k
Maz; 51y = {22 U {56 +1),2+ 5 + 1)} U U;, (4)
i=0
where Uy = 0,Us = {4+ 5(k+1)},Us = {5(k+2)},Us = {6(k+2),1+5(k+2)},
respectively. Fach of these mazximal bases is represented by the split binary string

k
bMaacj+5<k+1) = 01|(aﬁ) +1u7 (5)
where uy = 0,uy = B,u3 = a,uy = al, respectively. Consequently,

2k+2, ift=2+5kor 3+ 5k;

6
2% +3, ift=4+45k5(k+1)or145(k+1). ©)

dim(Py + P;) = {

PrOOF. Using the notations and results from Theorem 3.6, equation (4) can be
rewritten as Maw;ysu41) = Maxsgpey UU;. If Up = (0, then Maziysi+1) =
Maxs(j41). However, the binary representation of Max1y5(x4+1) has an additional
bit-0 at the end of the expression (2). The proof that this set is a basis for P +
P y5(k41) almost exactly the same as the proof of Theorem 3.6, except in using the
fact that the last 4-bit of this set is 1010. In proving that this basis is maximal, it
is enough to prove that if the last bit 2 + 5(k + 1) be made larger to 3 4+ 5(k + 1),
then the resulting binary representation would be the improper string (d) stated
in Theorem 3.3. Analogously, the case j = 2, 3 or 4 can be proved using the facts
that the last 4-bit binary representation of the set Maxs 1) U U; are 0101, 1001,
0011, respectively, and any of the last 4 integers in this set cannot be made larger.
|

Example 3.8. Applying (1) and (2) of Theorem 3.6 with k = 2 gives t = 15,
Mazys = {2,5,7,10,12,15,17} = Mazys and bysee,, = 01/001010010100101 =
01|(aB)? whereas applying (4) and (5) of Theorem 3.7 with k = 2 and j = 4 results

t =19 with Maz19 = {2,5,7,10,12,15,17,20,21} and basgs,, = 01/(aB3)30011 =
01/0010100101001010011. Therefore, dim(Ps + Pi5) = 2(3) + 1 = 7 and dim(P> +
Pyg) = dim(Pa + Pyy) = 9. In general for every t > 7, dim(Ps + Pyy5) = dim(Py +
P,) +2 and for every k = 2,3,4, ..., dim(Py + Psp—1) = dim(Py + Ps,) = dim(Py +
Psj.11) is an odd number whereas dim(Pz + Pspt2) = dim (P2 + Psiy3) is an even
number. The binary representations of Max; with 15 <t < 29 are
01—(B3)3,01|(aB)30,01|(B)301, 01|(3)3001, 01|(3)30011, 01|(aB)*, 01|(e/3)*0,
01|(aB)%01,01|(3)*001, 01|(3)*0011,01|(a3)°, 01|(3)?0, 01|(3)°01, 01| (x3)®001,
01|(3)®0011; 5(tsk[a])

and this list can be extended indefinitely for larger values of t.
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4. DIMENSION OF P, + P, FOR t < 7.

The reverse of a binary string s = $185...8,, is defined as the string s =

SmSm—1...51. For any set W = W[1]|W[2] C Vi, represented by by = b1bobs...b,,
we define W1]%, the reverse of W[1] C V5, as the set with binary representation
byyjr = beby and similarly the reverse of WI2] C V; is defined as the set W[2]%
represented by the binary string by jgjr = bpbn—1,,, b2b1.
Consequently, if W[1] = {x1,z2} C Vo and W[2] = {y1,%2,-..,yx} C Vi, then
W)™ = {225 mod 3,221 mod 3}, W[2]" = {3+n—yr, 3+n—yr_1,.., 3+n—y1}
and WE = W[1)" UW[2)®. That is if W C Vi (or W C V;) then WE is the
‘mirror’ of W in opposite direction with respect to the set V2 (or V;). We define
WR = W[l]R|W[2]R and b‘}}/ = bW[l]R|bVV[2]R. SO, b‘I/%V = bVVR.

A set B is called the proper minimal basis for Py + Py if for any basis B', B <
B’ and will be denoted by min;. We also define Min; = M a:(:f", which is also a
basis as justified by the following proposition.

Proposition 4.1. Let B C V5, be a basis of Po + P,. Then B% is also a basis. In
particular, Min; is a basis.

PROOF. Let the ordered set B = {x1,22,23,...,2Tm} = (B[1]|B[2]) C Vs be the
basis. Without loss of generality, we may assume that B[1] = {z1}. By using the
fact that (i —z) # (j —z) if and only if (i — (L —z)) # (j — (L — x)), then for every
i,j € Vay, inequality d(i|{z1,z2,x3,...,2m}) # d(jl{z1,z2. z3,...,2:,}) is true if
and only if d(i[{3—z1,n+3—Zm,n+3—Tm—-1,...,n+3—x2}) #Zd(F{3—z1,n+
3—Zm,n+3— Tm_1,...,n + 3 —x2}) is also true. That is, d(i|(B[1]|B[2])) #
A (BL)|BI2)) i and only if dGl(BR[1|BR2]) # d((B"[1)|BT[2])). Equive-
lently, B is a basis if and only if B® is a basis. In particular, since Max; is a basis,
then Min, = MazF is also a basis. O

Min, is called the improper minimal basis. Clearly, min; < Min,.

Example 4.2. By a computer search, there are 34 bases W; < Wy < ... < Way
for Py + Ps. The following is the list of eight of these bases including their binary
representations.

Wy ={1,2,4,6} ~ 11|010100, Wy ={1,2,5,7} ~ 11|001010,

W5 ={1,3,4,6} ~ 10/110100, W, ={1,3,4,8} ~ 10]110001,

Wsy = {2,4,6,8} ~ 01]010101, Wiy = {2,5,6,7} ~ 01]001110,

Wss = {2,5,6,8} ~ 01|001101, Wi = {2,5,7,8} ~ 01|001011.
Since byy,, = 01|001011 represents the maximal basis Maxg = Way, its reverse
W ® = Ming = Wy is the improper minimal basis represented by bﬁ,m =

10/110100 = by,. Here, Ming > Wi = min;, the proper minimal basis for
Py + Ps, and by, = bWZ,R. The string by, = 10/110001 represents the ba-
sis Wy, so does by, = 01100011 = by, r, which actually represents the basis
Wae = {2,3,7,8} = W, .
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Theorem 4.3. Ift < 6 then dim(Py + P;) < 4. Fort > 7, any binary string of
the form 11]bs...b,, cannot be a representation of a generator and any binary string
of the form 10|bs...b,, cannot be a representation of a maximal basis.

PrOOF. By the preceding example, the first statement is obvious. The second
statement obviously derived from Theorem 3.3 [.

Some bases for P, + P; with ¢t < 7 are provided in the following example and
written using the notations defined at the beginning of this section.

Example 4.4. miny; = {1,2} < Miny = {1,3} < Maz; = {2,3} = {2}|{3} =
{1IE|{3}F = {1,3}F = Min® represented by 11|10, basi,, = 101 = (01)F|(1)F =
(01]1)%, which is the reverse of 01|1 = brer; whereas ming = {1,2,3} < Miny =
{1,3,4} < Maxy = {2,3,4} = {1,3,4}F represented by 11]10,10/11,01|11 =
(10]11)% respectively. Likewise, ming = {1,2,3} < Mins = {1,3,4} < Mazz =
{2,4,5} = {2}{4,5} = {1}%{3,4}7 = {1,3,4} % = Min3" represented by 11]100,
barin, = 10110, brre, = 01011 = (10)%(110)% = (10110)* = b, .
For t = 4,miny, = Ming = {1,3,4} < Mazs = {2,5,6} are represented by
10]1100,01]0011 respectively. Observe that any set of the form W = {1,2,z}
cannot be a basis for P, + Py since in this case there always exist 7,5 € {3,4,5,6}
with r(¢|W) = r(j|W). For example if © = 3 then r(5|W) = [1,1,2] = r(6|W) and
if =4 then r(3|W) = [1,1,1] = r(5|W). For t = 5, mins = {1,3,7} < Mins =
{1,4,5} < Mazs = {2,5,6} are represented by 10/10001, 10[01100,01|00110. The
minimal and maximal bases for P, + Py are already given in Example 4.2.

5. CONCLUSION

In the case of t > 7 large enough, the binary representations of Max; have
(repeated) substrings of length 5 that ease the search for their dimension. In
particular when ¢ = 5(k + 1), the binary representation of Maz, is of the form
01|(aB)¥*!, where a = 001,8 = 01 and k = 1,2,3,.... Furthermore, for three
consecutive t-values 5k — 1,5k, 5k + 1, the dimensions of P, 4+ P; are the same odd
number 2k + 1 and for two t-values 5k 4+ 2 and 5k + 3, the dimensions of P, + P,
are the same even number 2(k + 1).

When t = 1+ 5k, the binary representation of Max, is 01|(3)*0 and this is
only valid when k > 1. The case k = 1 results in ¢t = 6, with Maxg represented by
01|aB1. In general, the regular pattern of the dim(P+P;) begins at t = 2+5-1 =7
with Maxz7; = 01|aB01. From ¢ = 7, the dimension of P, + P; increases by 2 as ¢
increases by 5. This regular behavior for ¢ > 7 is due to the fact that the binary
representation of maximal bases for P, + P; contains a substring a3 of length 5
which is repeated at least k times when t > 2 + 5k.

In the case of t < 7, there is no regular pattern to describe the basis and
dimension of P, + P;. Moreover, the graph P, + P, does not have minimal, proper
basis whereas for t = 1,2,3,5 or 6; the graph P, + P, does.
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