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Abstract. Let G be a finite group and Ĝ be the set of all irreducible complex

characters of G. In this paper, we consider Ĝ as a polygroup. We call that Ĝ simple

if it has no proper normal subpolygroup and show that if Ĝ is a single power cyclic

polygroup, then Ĝ is a simple polygroup and hence the polygroups wich are indeuced

by symmetric group and alternating group are simple. Also, we prove that if G is a

non-abelian simple group, then Ĝ is a single power cyclic polygroup. Moreover, we

classify D̂2n for all n. Also, we investigate the same property for two other groups.

Key words and Phrases: Character of group, hypergroup, polygroup, cyclic hyper-

group, fundamental relation.

1. INTRODUCTION

Let G be a finite group and Irr(G) = {χ1, χ2, ..., χk} be the set of all irre-
ducible characters of G. Brauer [1] introduced the idea of studying character tables
considering them as square arrays of complex numbers satisfying certain condi-
tions. Afterwards, Comer [2] described several hypergroup constructions based on
assumptions which arise in the study of symmetry. In particular, he showed that
a natural hypergroup is associated with every character algebra. Hence the hyper-
group suggests itself as a tool for group theorists. These concepts provide a new
language in which groups and their character tables can be fruitfully discussed.

Roth in [11] studied canonical hypergroups < Ĝ, ∗, χ1,
−>, where Ĝ = Irr(G),

χ1 is the trivial character and the product χi ∗ χj is the set of those irreducible
constituents which appear in the element wise product χiχj . Furthermore, χ̄, the
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complex conjugate of χ, is the inverse of χ. Canonical hypergroups were introduced
by Mittas [10] and later, Corsini in [3] analyses a particular type of canonical
hypergroups and their homomorphisms. Afterwards, Comer introduced this class
of hypergroups independently, using the name of polygroups and pointed out that
polygroups have application in color schemes and combinatorics[2]. We call the

polygroup Ĝ the ”character polygroup”. The structure of polygroups is similar
to groups, since identity and inverse elements exist in polygroups. So, we say
P =< P, ·, e,−1>, is a polygroup if P is a non-empty set, e ∈ P, −1 is a unitary
operation on P, · maps P × P into the set of all non-empty subsets of P, and the
following axioms hold for all x, y, z ∈ P :

(1) (x · y) · z = x · (y · z);
(2) e · x = x · e = x;
(3) x ∈ y · z implies that y ∈ x · z−1 and z ∈ y−1 · x.

A non-empty subset K of a polygroup P is a subpolygroup of P if

(1) a, b ∈ K implies that a · b ⊆ K,
(2) a ∈ K implies that a−1 ∈ K.

Since polygroups have properties close to groups, concepts such as normal sub-
groups and isomorphism theorems are defined for them . A subpolygroup N of a
polygroup P is normal in P if a−1Na ⊆ N, for all a ∈ P see [4]. We say that the
polygroup P is simple if it does not have any proper normal subpolygroups. So if G
is a simple group, then Ĝ is a simple polygroup. It is clear that Ĝ is always a nor-
mal subpolygroup and the trivial subpolygroup {χ1} is not a normal subpolygroup

of Ĝ. The Classification of simple groups has been of interest to mathematicians
for many years.

Roth in [11], showed that the mapping K −→ Ĝ
K yields a one to one corre-

spondence between the set of all normal subgroups of G and the set of subpoly-
groups of Ĝ. In this paper, we investigate the simplicity of a character polygroup
Ĝ. In fact, we show that if Ĝ is a single power cyclic polygroup, then it is a simple
polygroup. The proof of this result is carried out using the fundamental relations
on hypergroups. Cyclic hypergroups are a certain subclass of hypergroups. Cyclic
hypergroups were first initiated by Wall [15] and afterwards have been studied by
Vougiouklis [13], Konguetsof et al. [6] and Leoreanu [8]. The hypergroup (H, ◦) is
called cyclic with finite period respect to h ∈ H if there exists a positive integer
s ∈ Z+, such that

H = h1 ∪ h2 ∪ ... ∪ hs,
where ht = h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸

t times

. The minimum of all such positive integers s is called the

period of the generator h. If there exists k ∈ Z+, such that

H = hk,

then H is called a single power cyclic hypergroup and h is a generator of H. The
minimum of all such positive integer k is called the period of the generator h.
In [12], we showed that Ŝn for n ≥ 3 and Ân for n ≥ 4 are single power cyclic



24 S. Sekhavatizadeh, M.M. Zahedi and A. Iranmanesh

polygroups. An obvious conclusion of this result is that Ŝn for n ≥ 3 and Ân for
n ≥ 4 are simple polygroups. Also, we classify all subpolygroups of D̂2n and we
show that D̂2n for even n, has exactly one normal subpolygroup and for odd n, is
simple. This is a counter example that shows that the converse of our claim is not
true in general. Also, we show that the polygroups T̂4n and Û6n are cyclic with
finite period. Moreover, we prove that if G is a non-abelian simple group, then Ĝ is
a single power cyclic polygroup. Throughout this paper, χ1 is the trivial character
and for an irreducible character χi, we denote χi ∗ χi ∗ ... ∗ χi︸ ︷︷ ︸

t times

by χt
i, where the

hyperoperation ∗ is as above.

2. PRELIMINARIES

In this section, we recall some definitions and facts about hypergroups and
characters of finite groups, referring to [5, 4] and [11].

Let Irr(G) = {χ1, χ2, ..., χk}, where χi for 1 ≤ i ≤ k are all complex irre-
ducible characters of G. Then for any two characters χi, χj of G, (χi, χj) denotes
the usual inner product:

(χi, χj) =
1

|G|
∑
g∈G

χi(g)χj(g
−1)

Theorem 2.1 ([5], Theorem 16.4). (Orthogonality relations)

Let {χ1, χ2, ..., χk} be the set of all irreducible characters of G, and let g1, ..., gk
be representatives of the conjugacy classes of G. Then the following relations hold
for any r, s ∈ {1, ..., k}:

(1) The row orthogonality relations:

k∑
i=1

χr(gi)χs(gi)

|CG(gi)|
= δrs,

(2) The column orthogonality relations:

k∑
i=1

χi(gr)χi(gs) = δrs|CG(gr)|.

Theorem 2.2 ([5], Theorem 19.10). Let χ be a faithful character of G and suppose
χ(g) takes on exactly m different values for g ∈ G. Then every ψ ∈ Irr(G) is a
constituent of one of the characters (χ)j for 0 ≤ j < m.
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Theorem 2.3 ([5], Theorem 19.18). Let χ1, ..., χa be the distinct irreducible char-
acters of G and let ψ1, ..., ψb be the distinct irreducible characters of H. Then G×H
has precisely ab distinct irreducible characters, and these are

χi × ψj (1 ≤ i ≤ a, 1 ≤ j ≤ b)
and

χi × ψj(g, h) = χi(g)ψj(h) (g ∈ G, h ∈ H).

Theorem 2.4 ([5], 18.3). The character table of G = D2n =< a, b : an = 1, b2 =

1, b−1ab = a−1 > is as follows (where ε = e
2πi
n ):

Table 1. Character table of D2n for n = 2m (where 1 ≤ j ≤ m− 1)

Class 1 am ar(1 ≤ r ≤ m− 1) b ab
|CG(gi)| 2n 2n n 4 4
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 (−1)m (−1)r 1 −1
χ4 1 (−1)m (−1)r −1 1
ψj 2 2(−1)j εjr + ε−jr 0 0

Table 2. Character table of D2n for odd integer n (where 1 ≤ j ≤ n−1
2 )

Class 1 ar(1 ≤ r ≤ n−1
2 ) b

|CG(gi)| 2n n 2
χ1 1 1 1
χ2 1 1 −1
ψj 2 εjr + ε−jr 0

Theorem 2.5 ([5], Exercise 18.3). The character table of G = T4n =< a, b : a2n =

1, an = b2, b−1ab = a−1 > is as follows (where 1 ≤ j ≤ n− 1, ε = e
2πi
2n ):

Table 3. Table of non-linear characters of T4n

Class 1 an ar(1 ≤ r ≤ n− 1) b ab
|CG(gi)| 4n 4n 2n 4 4
ψj 2 2(−1)j εjr + ε−jr 0 0
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Table 4. Table of linear characters of T4n for even integer n

Class 1 an ar(1 ≤ r ≤ n− 1) b ab
|CG(gi)| 4n 4n 2n 4 4
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 (−1)r 1 −1
χ4 1 1 (−1)r −1 1

Table 5. table of linear characters of T4n for odd integer n

Class 1 an ar(1 ≤ r ≤ n− 1) b ab
|CG(gi)| 4n 4n 2n 4 4
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 −1 (−1)r i −i
χ4 1 −1 (−1)r −i i

Table 6. Character table of U6n

Class a2r a2rb a2r+1

|CG(gi)| 6n 3n 2n

χj ε2jr ε2jr εj(2r+1)

0 ≤ j ≤ 2n− 1
ψk 2ε2kr −ε2kr 0

0 ≤ k ≤ n− 1

Theorem 2.6 ([5], Exercise 18.4). The character table of G = U6n =< a, b : a2n =

b3 = 1, a−1ba = b−1 > is as follows (where 0 ≤ r ≤ n− 1, ε = e
2πi
2n ):

Theorem 2.7 ([11], Theorem 2.3). Let M be a non-empty subset of Ĝ. Then M

is a subpolygroup of Ĝ if χ ∗ ψ ⊆M whenever χ, ψ ∈M.

Irreducible characters of G containing K in their kernel are easily identified

with the irreducible characters of G
K . Thus we regard Ĝ

K as a subset of Ĝ and it is
easily seen to be a subpolygroup.

Theorem 2.8 ([11], Theorem 2.2). The mapping K −→ Ĝ
K yields a one-one cor-

respondence between the set of normal subgroups of G and the set of subpolygroups
of Ĝ.
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Now we summarize some basic facts a bout equivalence relations. Let H be
a hypergroup and R ⊆ H × H be an equivalence relation on H. For non-empty
subsets A and B of H, we define

ARB ⇔ ∀a ∈ A, ∃b ∈ B such that aRb and ∀b
′
∈ B, ∃a

′
∈ A such that a

′
Rb
′
;

ARB ⇔ aRb, ∀a ∈ A, ∀b ∈ B.
The relation R is called:

(1) regular on the left (on the right) if

xRy ⇒ a ◦ xRa ◦ y (x ◦ aRy ◦ a, respectively), for all x, y, a ∈ H.
(2) strongly regular on the left (on the right) if

xRy ⇒ a ◦ xRa ◦ y (x ◦ aRy ◦ a, respectively), for all x, y, a ∈ H.
Moreover, R is called regular (strongly regular) if it is regular (strongly regular) on
the right and on the left.

Theorem 2.9 ([4], Theorem 2.5.2). Let (H, ◦) be a hypergroup and R be an equiv-
alence relation on H.

(1) If R is regular, then H
R is a hypergroup, with respect to the following oper-

ation: x̄⊗ ȳ = {z̄|z ∈ x ◦ y};
(2) If the above operation is well defined on H

R , then R is regular.

Theorem 2.10 ([4], Theorem 2.5.5). Let (H, ◦) be a hypergroup and R be an
equivalence relation on H.

(1) If R is strongly regular, then H
R is a group, with respect to the following

operation: x̄⊗ ȳ = {z̄|z ∈ x ◦ y};
(2) If the above operation is well defined on H

R , then R is strongly regular.

Let N be a normal subpolygroup of P . Then we define the relation x ≡
y(modN) if and only if xy−1 ∩N 6= φ. This relation is denoted by xNP y.

Lemma 2.11 ([4], Lemma 3.3.6). The relation NP is an equivalence relation.

Let NP (x) be the equivalence class of the element x ∈ P . Suppose that
[P : N ] = {NP (x)|x ∈ P}. On [P : N ] we consider the hyperoperation � defined
as follows:

NP (x)�NP (y) = {NP (z)|z ∈ NP (x)NP (y)}.
For a subpolygroup K of P and x ∈ P , denote the right coset of K by Kx and let
P
K be the set of all right cosets of K in P .

Lemma 2.12 ([4], Lemma 3.3.7). If N is a normal subpolygroup of P , then Nx =
NP (x).
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Theorem 2.13 ([4], Corollary 3.3.14). If N is a normal subpolygroup of P , then
< P

N ,�, N,
−I > is a polygroup, where Nx � Ny = {Nz|z ∈ xy} and (Nx)−I =

Nx−1.

3. SIMPLE CHARACTER POLYGROUPS

In this section, we classify all subpolygroups of D̂2n and we show that when
n is an even integer, D̂2n is not simple and for odd n it is simple. Also, we show
that if Ĝ is a single power cyclic polygroup, then Ĝ is simple and in consequence
Ŝn for n ≥ 3 and Ân for n ≥ 4 are simple.

Theorem 3.1. The polygroup D̂2n for even integer n = 2m has t+3 subpolygroups,
where t is the number of divisors of n.

Proof. By Theorem 2.8, the set of subpolygroups of D̂2n is in one to one cor-
respondence with the set of normal subgroups of D2n. We know that the proper
normal subgroups of D2n are < ai >, < a2, b > and < a2, ab > where i | n. Now
to obtain the subpolygroups Ni related to < ai > consider two cases according to
the parity of i and using Table 1:

a) Suppose that i is an even integer. Then

Ni = {χ1, χ2, χ3, χ4, ψkj} where ij = n, 1 ≤ kj ≤ m− 1.

b) Suppose that i is an odd integer. Then

Ni = {χ1, χ2, ψkj} where ij = n, 1 ≤ kj ≤ m− 1.

The two remained subpolygroups of D̂2n are {χ1, χ3}, {χ1, χ4}. Therefore, all proper

subpolygroups of D̂2n are obtained.

Theorem 3.2. The polygroup D̂2n for an even integer n has exactly one normal
subpolygroup.

Proof. We claim that Nm is the only normal subpolygroup of D̂2n. Let Ni 6= Nm

be a subpolygroup of D̂2n. By definition, Ni is normal if for every ψj , ψjNiψj ⊆
Ni. But the complex conjugate of ψj is equal to ψj and hence Ni is normal if,

ψj
2Ni ⊆ Ni. On the other hand, for each j according to Table 1 and using the

orthogonality relations we have

ψj
2 = χ1 + χ2 + ψk for some even integer k. (1)

Also, ψ1
2 = χ1 +χ2 +ψ2. Hence ψ2 is a constituent of ψ1

2. But ψ2 just belongs to
subpolygroup Nm, therefore Ni is not normal. Now we show that Nm is normal.
By (1), ψj

2 ⊆ Nm and hence by Theorem 2.7, ψj
2Nm ⊆ Nm. Therefore, Nm is

normal.

Theorem 3.3. The polygroup D̂2n for odd integer n has t proper subpolygroups
where t is the number of divisors of n.
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Proof. We know that the normal subgroups of D2n are < ai > where i | n. Hence

by Theorem 2.8 and Table 2, the subpolygroups of D̂2n are

Ni = {χ1, χ2, ψkj} where ij = n, 1 ≤ kj ≤ n− 1

2
.

Definition 3.4. We say that the polygroup P is simple if it does not have any
proper normal subpolygroups.

Theorem 3.5. The polygroup D̂2n for odd integer n is simple.

Proof. It is clear that ψ1 is faithful. So for every i, ψ1 /∈ Ni. On the other
hand, ψ1

2 = χ1 + χ2 + ψj for some ψj . Now let ψj be a non-faithful irreducible

character. Then ψ1
2(ar) = 1 + 1 + 2 = 4 for some r. Thus ψ1(ar) = ±2. It is

clear that ψ1(ar) 6= 2. If ψ1(ar) = −2, then ar ∈ Z(ψ1) = Z(D2n) = {1} and it
is a contradiction. Thus ψj is a faithful irreducible character. So ψ1

2 does not

lie in any subpolygroup. Therefore, the polygroup D̂2n does not have any normal
subpolygroups.

Definition 3.6. For all n ≥ 1, we define the relation βn on a semihypergroup H,
as follows:

aβnb⇔ ∃(x1, . . . , xn) ∈ Hn : {a, b} ⊆
n∏

i=1

xi, and β =
⋃
n≥1

βn,

where β1 = {(x, x)| x ∈ H} is the diagonal relation on H. Suppose that β∗ is
the transitive closure of β. Then β∗ is the smallest strongly regular relation on H
[3]. In this case β∗ is called the fundamental equivalence relation on H. If H is a
hypergroup, then β∗ = β.

Theorem 3.7. If Ĝ is a single power cyclic polygroup, then Ĝ is simple.

Proof. Let N be a normal subpolygroup of Ĝ. According to Lemma 2.11, NĜ is

an equivalence relation on Ĝ such that χNĜψ if and only if χψ ∩N 6= ∅.
By Lemma 2.12 and Theorem 2.13, the set of all equivalence classes is a

polygroup with hyperoperation � defined as follows:

NĜ(χ)�NĜ(ψ) = Nχ�Nψ = {Nϕ| ϕ ∈ χψ}.

Using Theorem 2.9, NĜ is a regular equivalence relation on Ĝ. Now we prove that

NĜ is a strongly regular equivalence relation on Ĝ. According to Theorem 2.10,
it is enough to show that Nχ � Nψ = Nϕ for all ϕ ∈ χψ. Let ϕ1, ϕ2 ∈ χψ. We
should prove that ϕ1NĜϕ2. Indeed, there exists ρ ∈ N such that ρ ∈ ϕ1ϕ̄2. Since

ϕ1, ϕ2 ∈ χψ, χ ∈ ϕ1ψ̄ and χ ∈ ϕ2ψ̄. Hence

χ̄ ∈ ϕ̄2ψ ⇒ χχ̄ ∈ ϕ1ϕ̄2ψψ̄ ⇒ χ1 ∈ ϕ1ϕ̄2ψψ̄.
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Since ψψ̄ ⊆ N, there exists σ ∈ N such that χ1 ∈ ϕ1ϕ̄2σ. Hence σ̄ ∈ ϕ1ϕ̄2. Now
we set ρ = σ̄. So NĜ is a strongly regular equivalence relation on Ĝ. On the other

hand, Ĝ is a single power cyclic polygroup. Thus, there exists χ ∈ Ĝ and t ∈ N
such that Ĝ = χt. For every ψ ∈ Ĝ, ψ ∈ χ ∗ χ ∗ ... ∗ χ︸ ︷︷ ︸

t times

, so β∗(ψ) = Ĝ. On the other

hand, β∗ is the smallest strongly regular relation on Ĝ. Thus Ĝ = β∗(ψ) ⊆ Nψ.

So N = Ĝ. Therefore, Ĝ is a simple polygroup.

Now we bring two theorems from [12].

Theorem 3.8 ([12], Theorem 3.4). For n ≥ 3, Ŝn is a single power cyclic polygroup

with respect to generator χ(g) =| fix(g) | −1. In fact, (Ŝn) = χn−1; for n ≥ 3.

Theorem 3.9 ([12], Theorem 3.5). For n ≥ 4, Ân is a single power cyclic polygroup

with respect to generator χ ↓An . In fact, Ân = (χ ↓An)n−2; for n ≥ 4.

Theorem 3.10. Let G = Sn × Sn × ...× Sn︸ ︷︷ ︸
t times

where t ∈ N and n ≥ 3. Then the

character polygroup Ĝ is a simple and single power cyclic polygroup.

Proof. According to Theorem 2.3, we know that the irreducible characters of G
are χi1 × χi2 × ...× χit , where χij ∈ Ŝn and

χi1 × χi2 × ...× χit(gi1 , gi2 , ..., git) = χi1(gi1)χi2(gi2)...χit(git).

Using Theorem 3.8, Ŝn is a single power cyclic polygroup with respect to χ where
χ(g) = |fix(g)| − 1 ∀ g ∈ Sn. So ∀χi ∈ Ŝn, χi ∈ χn−1. It follows that

χi1 × χi2 × ...× χit ⊆ χn−1 × χn−1 × ...× χn−1︸ ︷︷ ︸
t times

,

and
χn−1 × χn−1 × ...× χn−1︸ ︷︷ ︸

t times

= (χ× χ× ...× χ︸ ︷︷ ︸
t times

)n−1.

We denote (χ× χ× ...× χ︸ ︷︷ ︸
t times

)n−1 with ψ as an irreducible character of G.

Hence Ĝ = (ψ)n−1 is a single power cyclic polygroup. Now using Theorem

3.7, Ĝ is a simple polygroup and the proof is complete.

Theorem 3.11. Let G = An ×An × ...×An︸ ︷︷ ︸
t times

where t ∈ N and n ≥ 4. Then the

character polygroup Ĝ is a simple and single power cyclic polygroup.

Proof. Using Theorem 3.9, in the same manner as in Theorem 3.10, we can see
that Ĝ = (ψ ↓G)n−2 is a simple and single power cyclic polygroup.
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4. CYCLIC CHARACTER POLYGROUPS

In this section, we prove that if G is a non-abelian simple group, then Ĝ is a
single power cyclic polygroup. Also, we show that the polygroups T̂4n and Û6n are
cyclic with finite period.

Proposition 4.1. If G is a non-abelian simple group, then Ĝ is a simple and single
power cyclic polygroup.

Proof. By Theorem 2.8, we observe that Ĝ is a simple polygroup. On the other
hand, all irreducible characters of G are faithful and the order of G is an even
integer. Thus G has a real class, and hence G has at least one real irreducible
character χ. Then

χ = χ̄ ⇒ 1 = (χ, χ) = (χ, χ̄) = (χ2, χ1)⇒ χ1 ∈ χ2.

So we have
χ1 ∈ χ2 ⊆ χ4 ⊆ χ6 ⊆ ....

Since G is simple, χ2 is faithful. Now suppose that χ2(g) takes on exactly m

different values for g ∈ G. Then by Theorem 2.2, Irr(G) = χ1 ∪ χ2 ∪ (χ2)
2 ∪ ... ∪

(χ2)
m−1

. So Ĝ = Irr(G) = (χ2)
m−1

for some m. Therefore, Ĝ is single power cyclic.

Theorem 4.2. Let G = T4n. Then Ĝ is a cyclic polygroup with finite period respect
to ψ1. In fact, Ĝ = ψn−1

1 ∪ ψn
1 .

Proof.

First, let n be an even integer. Using Tables 3 and ??, we prove that for
1 ≤ i ≤ 4, χi is a constituent of ψn

1 . Since n is an even integer, then ψ1
n is a

positive real character, and thus (ψn
1 , χj) > 0 for j = 1, 2. Therefore, χ1, χ2 ∈ ψn

1 .

Now for χ3 we have:

(ψn
1 , χ3) =

2n + 2n

4n
+
−(ε+ ε−1)

n
+ (ε2 + ε−2)n − · · · − (εn−1 + ε−(n−1))n

2n

=
2n −

∑n
k=0 ε

−n+2k +
∑n

k=0 ε
−2n+4k − · · · −

∑n
k=0 ε

−n2+n+2nk−2k

2n

= 1
2n

(
2n −ε−n −

(
n
1

)
ε−n+2 − · · · −

(
n

n − 1

)
εn−2 −εn

+ε−2n +

(
n
1

)
ε−2n+4 + · · · +

(
n

n − 1

)
ε2n−4 +ε2n

.

.

.

−ε−n
2+n −

(
n
1

)
ε−n

2+3n−2 − · · · -

(
n

n − 1

)
εn

2−3n+2 −εn
2−n

)
.

In the last equality we define numbers Ak and Bn−k for 0 ≤ k < n
2 as follow:

Ak = −ε−n+2k + ε−2n+4k − ...− ε−n2+2nk+n−2k,

Bn−k = −εn−2k + ε2n−4k − ...− εn2−2nk−n+2k.

So we have:
An

2
= Bn

2
= −1, A0 +Bn = 2(n− 1).
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For k = 1 we have:

A1 +Bn−1 = −ε−n+2 − εn−2 + ε−2n+4 + ε2n−4 − ...− ε(n−2)(n−1) − ε−(n−2)(n−1).
On the other hand, using column orthogonality relations for an, an−2 we have:

4− 2(ε−n+2 + εn−2) + 2(ε−2n+4 + ε2n−4)− ...− 2(ε(n−2)(n−1) + ε−(n−2)(n−1)) = 0.

So A1+Bn−1 = −2. We now apply this argument again, to obtain Ak +Bn−k = −2
for each 0 ≤ k < n

2 and k 6= 0. Hence

(ψn
1 , χ3) =

1

2n

(
2n + 2(n− 1)−

(
n
n
2

)
− 2

n
2−1∑
k=1

(
n
k

))
.

We can check that

−2

n
2−1∑
k=1

(
n
k

)
= −2n +

(
n
n
2

)
+ 2.

Thus
(ψn

1 , χ3) = 1.

Therefore, χ3 ∈ ψn
1 , and similarly χ4 ∈ ψn

1 .

Now let j be an even integer. Then we have

(ψn
1 , ψj) =

2n+1 + 2n+1

4n
+

(ε+ ε−1)
n
(εj + ε−j) + · · ·+ (ε(n−1) + ε−(n−1))n(ε(n−1)j + ε−(n−1)j)

2n

=
2n+1

2n
+

∑n
k=0 ε

−n+2k+j

2n
+

∑n
k=0 ε

−n+2k−j

2n
+ · · ·+∑n

k=0 ε
−n2+n(1+j)−j+2k(n−1)

2n
+

∑n
k=0 ε

−n2+n(1−j)+j+2k(n−1)

2n
Last part of the above equality can be written as follows:

1
2n

(
2n+1 +ε−n+j +

(
n
1

)
ε−n+2+j + · · · +

(
n

n − 1

)
εn−2+j +εn+j

+ε−2n+2j +

(
n
1

)
ε−2n+4+2j + · · · +

(
n

n − 1

)
ε2n−4+2j +ε2n+2j

.

.

.

+ε(n−1)(−n+j) +

(
n
1

)
ε(n−1)(−n+2+j) + · · · +

(
n

n − 1

)
ε(n−1)(n−2+j) +ε(n−1)(n+j)

+ε−n−j +

(
n
1

)
ε−n+2−j + · · · +

(
n

n − 1

)
εn−2−j +εn−j

+ε−2n−2j +

(
n
1

)
ε−2n+4−2j + · · · +

(
n

n − 1

)
ε2n−4−2j +ε2n−2j

.

.

.

+ε(n−1)(−n−j) +

(
n
1

)
ε(n−1)(−n+2−j) + · · · +

(
n

n − 1

)
ε(n−1)(n−2−j) +ε(n−1)(n−j)

)
.

For all 0 ≤ k ≤ n
2 and k 6= n−j

2 we define numbers Ak, A
′

k, Bn−k and B
′

n−k
as follow:

Ak = ε−n+2k+j + ε−2n+4k+2j + ...+ ε−n
2+2nk+n−2k+nj−j ,

A
′

k = ε−n+2k−j + ε−2n+4k−2j + ...+ ε−n
2+2nk+n−2k−nj+j ,

Bn−k = εn−2k+j + ε2n−4k+2j + ...+ εn
2−2nk−n+2k+nj−j ,
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B
′

n−k = εn−2k−j + ε2n−4k−2j + ...+ εn
2−2nk−n−2k−nj+j .

Analysis similar to the case of even n, shows that for each k,

Ak +B
′

n−k = −2

(
n
k

)
, A
′

k +Bn−k = −2

(
n
k

)
, k 6= n− j

2
.

And for k = n−j
2 , we have that each component of Ak and Bn−k is equal to one.

Hence,

(ψn
1 , ψj) =

1

2n

(
2n+1 + 2(n− 1)

(
n

n−j
2

)
− 2

n∑
k=0

(
n
k

)
+ 2

(
n

n−j
2

))
.

Also, we have

−2

n∑
k=0

(
n
k

)
= −2(1 + 1)n = −2(2n) = −2n+1.

So

(ψn
1 , ψj) =

1

2n
.2n

(
n

n−j
2

)
=

(
n

n−j
2

)
.

For odd integer j, similarly, we can check that ψj ∈ ψ1
n−1. Now let n be an odd

integer. Using Tables 3 and 5, similar to above, we can show that χ1, χ2 and ψj

for even integer j are constituents of ψ1
n−1 and χ3, χ4 and ψj for odd integer j are

constituents of ψ1
n and the proof is complete.

Theorem 4.3. Let G = S3 × Cn for odd integer n. Then Ĝ is a cyclic polygroup
with finite period respect to ψ3,1. In fact, Ĝ = (ψ3,1)2 ∪ (ψ3,1)3 ∪ ... ∪ (ψ3,1)n+1,
where ψ3,1 is the direct product of χ3 and ϕ1.

Proof. We know that the character tables of S3 and Cn are as follow:

Table 7. character table of S3

Class 1 (12) (123)
|CS3

(gi)| 6 2 3
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Table 8. character table of Cn

Class ar(0 ≤ r ≤ n− 1)
|CCn(gi)| n

ϕj(1 ≤ j ≤ n) wrj
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Table 9. character table of G = S3 × Cn

Class (1, ar) ((12), ar) ((123), ar)
|CG(gi)| 6n 2n 3n

ψ1,j = χ1 × ϕj wrj wrj wrj

ψ2,j = χ2 × ϕj wrj −wrj wrj

ψ3,j = χ3 × ϕj 2wrj 0 −wrj

Where w is a primitive nth root of unity. So the character table of G is as
follows:

Now we prove that for 1 ≤ t ≤ 3 and 2 ≤ j ≤ n, ψt,j and ψt,1 are some
constituents of (ψ3,1)j and (ψ3,1)n+1, respectively.
First, let t = 1 and j be an even integer. Then

((ψ3,1)j , ψ1,j) =
2j

6n
(1 + w2j + w4j + ...+ w2(n−1)j)+

1

3n
(1 + w2j + w4j + ...+ w2(n−1)j).

But (ϕj , ϕj) = 1. So 1 + w2j + w4j + ...+ w2(n−1)j = n.

Then

((ψ3,1)j , ψ1,j) =
2j−1 + 1

3
.

Similarly for odd integer j we have

((ψ3,1)j , ψ1,j) =
2j−1 − 1

3
.

Also,

((ψ3,1)n+1, ψ1,1) =
2n+1

6n
(1 + wn+2 + w2n+4 + ...+ w(n−1)(n+2))+

1

3n
(1 + wn+2 + w2n+4 + ...+ w(n−1)(n+2))

=
2n+1n

6n
+

n

3n
=

2n + 1

3
.

For other cases, the proof is the same as t = 1.

Corollary 4.4. Let n be an odd integer. Then U6n
∼= S3 × Cn, and thus Û6n is a

cyclic polygroup with finite period.

Proof. It is clear that the mapping a 7→ ((12), w) and b 7→ ((123), 1) is an
isomorphism between U6n and S3 × Cn and the proof is complete.

Theorem 4.5. Let n be an even integer. Then Û6n is a cyclic polygroup with finite
period respect to ψ1. In fact, Û6n = ψ2

1 ∪ ψ3
1 ∪ ... ∪ ψn+1

1 .
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Proof. According to Table 2.6, we see that U6n has n irreducible characters
ψk of degree 2. It is clear that ψ0 ∈ ψ1

n and ψ1 ∈ ψ1
n+1. We show that for

1 < k ≤ n− 1, ψk ∈ ψ1
k. Let k be an even integer. Then

(ψk, ψ1
k) =

2k+1

6n
(1 + w2k+2k + w2(2k+2k) + ...+ w(n−1)(2k+2k))−

1

3n
(1 + w2k+2k + w2(2k+2k) + ...+ w(n−1)(2k+2k)).

But (ψk, ψk) = 1. Hence

1 + w2k+2k + w2(2k+2k) + ...+ w(n−1)(2k+2k) = n.

Then

(ψk, ψ1
k) =

2k+1n

6n
− n

3n
=

2k − 1

3
.

When k is an odd integer, similar to above, we can prove that

(ψk, ψ1
k) =

2k + 1

3
.

Also, U6n has 2n linear irreducible characters χj . It is easy to show that

(χ0, ψ1
n) = 2n−1+1

3 and (χ1, ψ1
n+1) = 2n+1−2

3 . So χ0 ∈ ψ1
n and χ1 ∈ ψ1

n+1. Now
We show that for 1 < j ≤ 2n− 1, χj ∈ ψ1

s where s is the smallest positive integer
that n|j + s. First, let j be an even integer. Then

(χj , ψ1
s) =

2s

6n
(1 + w2j+2s + w2(2j+2s) + ...+ w(n−1)(2j+2s))+

1

3n
(1 + w2j+2s + w2(2j+2s) + ...+ w(n−1)(2j+2s))

=
2sn

6n
+

n

3n
=

2s−1 + 1

3
.

When j is an odd integer, similarly, we can check that

(χj , ψ1
s) =

2s−1 − 1

3
.

The proof is complete.

5. CONCLUSION

In this paper, we investigate some special polygroups in terms of simplicity
and circularity and study the relation between single power cyclic polygroups and
simple polygroups. These results raise the following problems:

”Under what conditions a simple polygroup is going to be a single power
cyclic polygroup? Is there a special class of finite groups for which the character
polygroups are simple?”
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