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Abstract. In this paper, we discuss normal subalgebras in BI-algebras and ob-
tain the quotient BI-algebra which is useful for the study of structures of BI-
algebras. Moreover, we obtain several conditions for obtaining BI-algebras on the

non-negative real numbers by using an analytic methods.
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Abstrak. Dalam artikel ini, didiskusikan tentang sub-aljabar normal di aljabar-
BI dan dikonstruksi aljabar kuosien BI yang dapat digunakan untuk mempelajari
struktur dari aljabar-BI. Lebih jauh, diberikan beberapa kondisi untuk mendap-
atkan aljabar-BI pada bilangan real tak-negatif dengan menggunakan metode anal-
itik.

Kata kunci: Aljabar-BI, sub-aljabar (normal), ideal (normal).

1. INTRODUCTION.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCTI-algebras ([2]). It is known that the class of BCK-algebras is
a proper subclass of the class of BCT-algebras. J. Neggers and H. S. Kim ([7])
introduced the notion of d-algebras, which is another useful generalization of BC' K-
algebras, and investigated several relations between d-algebras and BC K-algebras,
and then investigated other relations between d-algebras and oriented digraphs.

It is known that several generalizations of a B-algebra were extensively in-
vestigated by many researchers and properties have been considered systematically.
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The notion of B-algebras was introduced by J. Neggers and H. S. Kim ([5]). They
defined a B-algebra as an algebra (X, x,0) of type (2,0) (i.e., a non-empty set with

[130%2

a binary operation “x” and a constant 0) satisfying the following axioms:

(B1) xxx =0,
(B2) 2 %0 ==,
(B) (xxy)*xz=xx[zx(0xy)],
for any z,y,z € X.
C. B. Kim and H. S. Kim ([4]) defined a BG-algebra, which is a generalization

of B-algebra. An algebra (X, *,0) of type (2,0) is called a BG-algebra if it satisfies
(B1),(B2), and

(BG) = (z*xy)*(0xy),
for any z,y € X.
Y. B. Jun, E. H. Roh and H. S. Kim ([3]) introduced the notion of a BH-

algebra which is a generalization of BCK/BC1I/BC H-algebras. An algebra (X, x,0)
of type (2,0) is called a BH-algebra if it satisfies (B1), (B2), and

(BH) zxy=yx*x =0 implies z = y,
for any z,y € X.
Moreover, A. Walendziak ([8]) introduced the notion of BF/ BF; / BF»-algebras.

An algebra (X, *,0) of type (2,0) is called a BF-algebra if it satisfies (B1), (B2)
and

(BF) 0 (xxy) =y=*uz,

for any x,y € X. A BF-algebra is called a BFj-algebra (resp., a BFy-algebra) if it
satisfies (BG) (resp., (BH)).

A. Borumand Saeid et al. ([1]) introduced a new algebra, called a BI-algebra,
which is a generalization of both a (dual) implication algebra and an implicative
BC K-algebra, and they discussed the basic properties of BI-algebras, and inves-
tigated some ideals and congruence relations. We will show that every implicative
BC K-algebra is a Bl-algebra, but the converse need not be true in general. See
Proposition 4.7 and Example 4.8.

J. Neggers and H. S. Kim ([7]) gave an analytic method for constructing
proper examples of a great variety of non-associative algebra of the BC K-type
and generalizations of these. They made several useful (counter-)examples using
analytic method.

In this paper, we discuss normal subalgebras in BI-algebras and obtain the
quotient Bl-algebra which is useful for the study of structures of BI-algebras.
Moreover, we obtain several conditions for obtaining BI-algebras on the non-
negative real numbers by using an analytic method.

2. PRELIMINARIES.

We recall some definitions and results discussed in [1, 9].
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An algebra (X;*,0) of type (2, 0) is called a BI-algebra ([1]) if
(Bl) xxx =0,
(B2) z* (y*z) ==,
for all z,y € X.

We introduce a relation “<” on a Bl-algebra X by z < y if and only if x xy = 0.
We note that the relation “ < ” is not a partial order, since it is only reflexive. A
non-empty subset S of a Bl-algebra X is said to be a subalgebra of X if it is closed
under the operation “x”. Since z x z = 0, for all x € X, it is clear that 0 € S.

Definition 2.1. ([1]) Let (X;*,0) be a BI-algebra and let I be a non-empty subset
of X. Then I is called an ideal of X if

(1) 0el,

(12) xxy €l andy € I imply x € I,
for any x,y € X.

Obviously, {0} and X are ideals of X. We call {0} and X a zero ideal and a
trivial ideal, respectively. An ideal I is said to be proper if I # X.

Proposition 2.2. ([1]) Let I be an ideal of a BI-algebra X. If y € I and z < y,
then x € I.

Proposition 2.3. ([1]) Let X be a BI-algebra. Then

(i) zx0 =z,

(ii) 0*xxz =0,

(i) zxy = (z*xy) *y,

iv) if y *x =z, then X = {0},

v

)
|

V; ifz*(y*z)=1yx(zx*z), then X = {0},
)

—~
—~

(vi) ifxxy =z, then z+y =z and y *x z = y,
(vii) if (x xy) * (zxu) = (x * 2) * (y xu), then X = {0},

for all x,y,z,u € X.

A Bl-algebra (X;*,0) is said to be right distributive ([1]) (or left distributive,
resp.) if (xxy)xz= (r*x2)*x(y*xz) (zx(x*xy) = (zxx)*(2*y), resp.) for all
z,y,z € X.

Proposition 2.4. ([1]) Let X be a right distributive BI-algebra. Then
(i) y*xz<y,

(ii) (y*a)*z <y,

(i) (z*2)*(yx2) <z=*y,

(iv) ifx <y, then x x z < y * 2,

(v) if (z*xy)*x2z <xx*(yx*z),

(vi) ifxxy=z=%y, then (x % z) xy = 0,

for all z,y,z € X.
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Proposition 2.5. ([1]) Let X be a right distributive BI-algebra. Then the induced
relation “ <7 is a transitive relation.

Example 2.6. ([1]) Let X :={0,a,b,c} be a BI-algebra with the following table:

SR OO
o Q@ O
o OO

*
0
a
b
c

>N O O

c 0
Then it is easy to check that I := {0,a,c} is an ideal of X, but I := {0,a,b} is
not an ideal of X, since cxa=0b¢€ Iy and a € I3, but ¢ € I5.

Theorem 2.7. ([9]) Let X be a BCK-algebra. Then X is implicative if and only
if it is commutative and positive implicative.

C

Theorem 2.8. (/9/) Let X be a BCK-algebra. Then the following are equivalent:

(i) X is commutative,
(i) s<y=z=yx(y*z), forallz,y € X.

3. NORMAL SUBALGEBRAS

In what follows, let X be a BIl-algebra unless otherwise specified.
Definition 3.1. A non-empty subset N of X is said to be normal (or a normal
subalgebra) if (x x a) x (y*b) € N, for any x xy,a*xb € N.

Proposition 3.2. Let N be a normal subalgebra of X. Then N is a subalgebra of
X.

Proof. Let x,y € N. Then 0,y *0 € N. Since N is a normal subalgebra of X,
we have (zxy) * (0% 0) =z *xy € N. Hence N is a subalgebra of X.
d

The converse of Proposition 3.2 need not be true in general.

Example 3.3. ([1]) (1) Let X := {0,a,b,c} be a BIl-algebra with the following
table:

*‘Oab c
0|0 0 0 O
ala 0 0 O
blb 0 0 b
cle 0 ¢ O

Then {0,a,b} is a subalgebra of X, but not normal, since ¢ xc = 0,bxc = b €
{0,a,b}, (cxb)*x(cxc)=c*x0=c¢ {0,a,b}.
(2) Let X :={0,1,2,3} be a set with the following table:
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*‘01 2 3
0({0 0 O O
111 0 1 1
212 2 0 2
313 3 3 0

Then X is a Bl-algebra. It is easy to check that I := {0,1} is a normal subalgebra
of X. If we consider J :={0,1,2}, then J is a subalgebra of X, but is not a normal
subalgebra of X, since 3x3=0,2x3=2¢€ J and (3%2)*x(3x3)=3%x0=3¢ J.

Lemma 3.4. Let N be a normal subalgebra of X. If x xy € N, for all z,y € X,
then yxx € N.

Proof. Let x xy € N, for any z,y € X. Since y*y =0 € N, we have y sz =
(y*z)*0=(y=*x)*(y*+y) € N. This completes the proof.
O

“

Let N be a normal subalgebra of X. Define a relation
x ~py y if and only if x xy € N, for any z,y € X.

~yny 7 on X by

Proposition 3.5. Let N be a normal subalgebra of X. Then ~y is a congruence
relation on X.

Proof. By (B1), ~y is reflexive. It follows from Lemma 3.4 that ~ is symmetric.
Let x ~y y and y ~y 2, for any x,y,z € X. Then x xy,y * 2 € N. Using Lemma
3.4, we have z*y € N. Since N is normal, we have z %z = (x* 2) * (yxy) € N.
Hence ~p is an equivalence relation.
Let x ~ny y and p ~n ¢ for any z,y,p,qg € X. Then z xy,pxq € N. Since
N is normal, we have (z *p) * (y*q) € N. Hence x xp ~y y *xq. Thus ~y is a
congruence relation on X.
O

Denote X/N := {[z]n]z € X}, where [z]ny = {y € X|z ~y y}. If we define
[z]n * [y]n = [x*y]n, then “x’” is well-defined, since ~ is a congruence relation.

Theorem 3.6. Let N be a normal subalgebra of X. Then (X/N;*' /[0]n) is a
BlI-algebra.

Proof. Note that [0y = {z € X|z ~y 0} = {z € X|zx0 € N} = {z € X|z €
N} = N. Checking two axioms are trivial and we omit the proof.
O

The BI-algebra X/N discussed in Theorem 3.6 is called the quotient BI-
algebra of X by N. Let XY be Bl-algebras. A map f : X — Y is called a
homomorphism if f(x xy) = f(x) * f(y), for any x,y € X.

Proposition 3.7. Let N be a normal subalgebra of X. Then the mapping y :
X — X/N, given by v(x) = [z]n, is a surjective homomorphism and Kery = N.
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Proof. Since ~py is a congruence relation, the operation “x’” on X/N defined
by [z]n *" [y]n = [x * y]n is well defined. For all z,y € X, we have y(z xy) =
[z xyln = [z]n ' [yln = v(x) ¥ v(y). Hence v is a BI-homomorphism. Since
Y(X) = {y(@)|r € X} = {[z]n]zr € X} = X/N, 7 is surjective. Furthermore
Kery ={z € X|y(z) =N}

= {z € X|[z]y = N}

= {z € X|[z]x = [0]n}

={reX|zre N} =N,
proving the proposition. O

The mapping « discussed in Proposition 3.7 is called the canonical homomor-
phism of X onto X/N.

Proposition 3.8. Let f : X — Y be a homomorphism of Bl-algebras. If f is
injective, then Kerf = {0x}.

Proposition 3.9. Let f : X — Y be a homomorphism of Bl-algebras. Then
Kerf is a subalgebra of X.

Proof. Let x,y € Kerf. Then f(z) =0y = f(y) and so f(z*xy) = f(z) * f(y) =
Oy * 0y = 0y. Hence z xy € Kerf. O [l

Note that Ker¢ need not be a normal subalgebra of a BI-algebra (see below
example).

Example 3.10. Consider a BI-algebra X = {0, a,b,c} as in Example 3.3(1). We
define ¢(x) =0, for all x € X. Then Ker¢g = {0,a,b,c} is a normal subalgebra of
X. If we define ¢(x) = x, for all x € X, then Ker¢ = {0} is a subalgebra of X,

but is not a normal subalgebra of X, since cxc=0,bxa =0 and (c*b)x (c*xa) =
cx0=c¢{0}.
Definition 3.11. A Bl-algebra X is called a BI;-algebra if

B3) zxy=0=y*xzx=>x=y, foralzyecX.

Example 3.12. Consider a BI-algebra X = {0,a,b,c} as in Example 2.6. Then
(X,%,0) is a BI;-algebra.

Proposition 3.13. Let X be a Bl -algebra andY be a BI-algebra. Let ¢ : X — Y
be a homomorphism. Then ¢ is injective if and only if Ker¢ = {0x}.

Proof. Suppose Ker¢g = {0x}. If ¢(x) = ¢(y), for any z,y € X, then ¢(z xy) =
¢(x) * ¢p(y) = Oy and so x xy € Kerd = {Ox}. Hence z xy = Ox. Similarly,
y*x = 0x. Since X is a Blj-algebra, we obtain z = y. Thus ¢ is injective.
The converse is trivial. This completes the proof.
O

Proposition 3.14. Let A and I be normal subalgebras of X with I C A. Then
A/I is a normal subalgebra of a BI-algebra X/I.
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Proof. Let [z1]r " [x2]1, [y1]r *" [y2]r € A/, for any [21]7, [x2]r, (1)1, [y2]r € A/I.
Then [x1*22]7, [y1*y=2]r € A/I and so x1*T2,y1*y2 € A. Hence (1 %y )*(x2xy2) €
A. Tt follows that [(z1 * y1) * (z2 * y2)|r and [(z1 * x2); * (v1 * y2)1] € A/, i.e.,

([1] #" [ya]r) " ([z2] *' [y2]1) € A/T and ([x1] *" [22]1) * ([y1] *' [y2]1) € A/I. Thus
A/I is a normal subalgebra of a BI-algebra X/I.

O

Definition 3.15. Let I be an ideal of X. Then I is called a normal ideal of X if
it 1s normal.

Example 3.16. Consider a BI-algebra X = {0,1,2,3} as in Example 3.8(2). It
is easy to show that I = {0,1} is a normal ideal of X, and J = {0,1,2} is an ideal,
but is not a normal ideal of X .

Proposition 3.17. Let I be a normal ideal of X. Then I is a subalgebra of X.

Proof. Let x,y € I. Then z*x =0 € [ and y *0 = y. Since [ is a normal ideal,
then (z*y)* (x%0) = (x*y)*x € I. Since x € I and I is an ideal, we have
xxy € I. This completes the proof. O

Theorem 3.18. S is a normal subalgebra of X if and only if S is a normal ideal
of X.

Proof. Let S be a normal subalgebra of X. Clearly, 0 € S. Suppose that zxy € S
and y € S. By Proposition 2.3(ii), 0 = 0 * y. Since S is normal, we have x =
(xx0)x0=(xx0)*(y*xy) €S. Hence S is an ideal of X.

The converse follows from Proposition 3.17. O

Proposition 3.19. Let f : X — Y be a homomorphism of BI-algebras. Then
Kerf is an ideal of X.

Proof. Obviously, 0x € Kerf, i.e.,, (I1) holds. Let x xy € Kerf and y € Kerf.
Then Oy = f(z*xy) = f(z) * f(y) = f(x) *0y = f(x) and so x € Kerf. Therefore
(I2) is satisfied. Thus Kerf is an ideal of X. O

Definition 3.20. A homomorphism f : X — Y, where X,Y are BI-algebras, is
said to be normal if Kerf is a normal ideal of X .

Example 3.21. Let X := {0,1,2,3,4} and Y := {0,1,2,3} be sets with the fol-
lowing Cayley tables:

«|0 1 2 3
4 10 1 2 3

00 0 0 0 0
0[0 0 0 0

11101 0 1
1010 1 1

202 2 00 2
212 2 0 2
3% 2 1 0 3 P

414 4 4 40
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It is easy to show that (X;*,0) and (Y;%',0) are BI-algebras. Define func-
tions f,g: X =Y by

f:0-20,1-0,2—-23—24—1.

g:0—-0,1—-+0,2—0,3—0,4—=3.
It is easy to check that g is a normal homomorphism. Also f is a homomorphism,
but not a normal homomorphism. In fact, let Kerf := N. Then N = {0,1}.
2%3=0,1x2=1€ N and (2x1)*x(3x2)=2x1=2¢ N. Hence Kerf is not a
normal ideal.

Theorem 3.22. Let X,Y be Bl-algebras. If f : X — Y is a normal homomor-
phism from X onto Y, then X/Kerf is isomorphic to Y.

Proof. By the definition of a normal homomorphism, N := Kerf is a normal ideal
of X and so N is a normal subalgebra of X. Define a mapping ¢ : X/N — Y by
o([z]n) = f(z), for all x € X. Let [z]y = [y]n. Then z ~n y, ie., xxy € N and
yxx € N. Hence f(z) * f(y) = Oy = f(y) * f(z). Since Y is a Bl -algebra, we
have f(z) = f(y). Therefore ¢([x]n) = ¢([y]n). This means that ¢ is well defined.
It is easy to check that ¢ is a homomorphism from X/N onto Y. Observe that
Ker¢ = [0]n. In fact, [z]y € Ker¢ < ¢([z]ny) =0y & f(z) =0y &2z € N &
[z]ny = [O]n. It follows from Proposition 3.13 that ¢ is one-to-one. Thus ¢ is an
isomorphism from X/Kerf onto Y. O

4. ANALYTIC CONSTRUCTION FOR BI-ALGEBRAS

We apply the analytic method deviced by J. Neggers and H. S. Kim ([6])
for obtaining an example of a BIl-algebra. Note that the BIl-algebra (X, x,0) in
Example 4.6 is not an implicative BC K-algebra. This shows that the notion of
Bl-algebra is a generalization of an implicative BC'K-algebra. Let X := [0, 00) be
the set of all non-negative real numbers unless otherwise specified. Define a binary
operation “x” on X as follows:

(a) @ xy =max{0, f(z,y)(z —y)} = max{0, A(z, y)=}
where f(z,y) and A\(x,y) are non-negative real valued functions with
(b) A(0,y) = 0.
Proposition 4.1. If x,y € X with x > 0, then
xxy=0 < <y & Aa,y)=0.

Proof. It follows immediately from (a).

Proposition 4.2. The function \(x,y) can be described as follows:

0 ife <y
Mz, y) =4 z—y

f(z,y) >0 otherwise
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Proof. If © > y, then, by Proposition 4.1, A(x,y) > 0. Since & > y, we obtain
x > 0. By applying (a), we have z xy = f(z,y)(x —y) = Mz,y)x > 0, and so we

obtain \(z,y) = ?f(x,y) If z <y and = > 0, then, by Proposition 4.1, we
have A(z,y) = 0. If x <y and x = 0, then A(z,y) = 0 by the assumption (a).
O

Proposition 4.3. If the function A\(x,y) satisfies the condition

(c) A@,z) =0,
then the axiom (B1) holds.
Proposition 4.4. If the function A(x,y) satisfies the condition

(d) A(z,0) =1,
then x x0 =z, for all x € X.

Proof. x %0 = max{0, A\(z,0)z} = A(z,0)z = .

Theorem 4.5. If the function \(x,y) satisfies the conditions (b)~(d) and
(e) Mzx,y) < %, when y < x
and
(f) Mz, A(y,x)y) =1, for all z,y € X,
then the axiom (B2) holds.
Proof. Consider =  (y * x) = . If y < z, then y *x = 0. By Proposition 4.1, we
obtain x x (y*x) =z *0 = x.

If x <y, then y xx = A(y,x)y. Let g :=y*x. If © < ¢, then A(z,q) =0 and
hence z % (y*xz) = v xq = A(z,q)xr = 0 # z, i.e., (B2) does not hold. If x > ¢, then

T>q ST >Y*T
x> My, 2)y

X
S — > My, o).
" (y, )

By using the condition (f), we obtain
xx(yxx) =x*xq
= Az, q)x
= Mz, y*xx)zx
= Az, Ay, x)y)x

= X.

This proves the theorem. (I
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Example 4.6. If we define a binary operation “*” on X = [0,00) by x xy =
max{0, A(z,y)x} where
1 ify=0
M%w—{

0 ify#0,
then
x ify=0
THRY = ‘
0 ify+#0.

If © #£ 0, then yxx = 0 and hence x x (yxx) = c*x0 = x. If x = 0, then
yxx=y*x0=1y and hence x x (y+xx) =x*xy=0%y =0=2x. Hence (X,*,0) is a
BI-algebra. Note that A(x,y) satisfies the conditions (a)~(f).

Proposition 4.7. Every implicative BC' K -algebra is a BI-algebra.

The converse of Proposition 4.7 may not be true in general as the following
example.

Example 4.8. Consider the BI-algebra (X, *,0) discussed in Example 4.6. As-
sume that (X;*,0) is an implicative BCK -algebra. By Theorem 2.7, X should
be a commutative BCK -algebra. By Theorem 2.8, X satisfies the following prop-
erty: * <y =>x =yx(yxx), forall z,y € X. Let x := 3,y := 5. Then
5% (5%3) =5%0=>5# 3, which is a contradiction. Hence X is a BI-algebra which
is mot an implicative BC'K -algebra.

A Bl-algebra X is said to be medial if (a *b) * (¢ xd) = (a*c¢) x (b= d), for
any a,b,c,d € X.

Theorem 4.9. There is no non-trivial medial normal BI-algebras.

Proof. Assume that (X;x,0) is a medial BI-algebra with |X| > 2. Then we have
x =xzx*(y*x)
= (zx0)x (y=*x)
= (zxy)*(0xx)
= (z*y) 0
=z *y,
for any z,y € X. It follows that « = zxz = 0, i.e., X = {0}, which is a

contradiction. This completes the proof.
O
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