ON IDEALS OF BI-ALGEBRAS

Sun Shin Ahn ${ }^{1}$, Jung Mi Ko^{2}, and A. Borumand Saeid ${ }^{3 *}$
${ }^{1}$ Department of Mathematics Education, Dongguk University, Seoul 04620, Korea, sunshine@dongguk.edu
${ }^{2}$ Department of Mathematics, Gangneung-Wonju National University, Gangneung 25457, Korea, jmko@gwnu.ac.kr
${ }^{3}$ Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman Kerman, Iran, arsham@uk.ac.kr

Abstract

In this paper, we discuss normal subalgebras in $B I$-algebras and obtain the quotient $B I$-algebra which is useful for the study of structures of $B I$ algebras. Moreover, we obtain several conditions for obtaining $B I$-algebras on the non-negative real numbers by using an analytic methods.

Key words and Phrases: BI-algebra, (normal) subalgebra, (normal) ideal.

Abstract

Abstrak. Dalam artikel ini, didiskusikan tentang sub-aljabar normal di aljabar$B I$ dan dikonstruksi aljabar kuosien $B I$ yang dapat digunakan untuk mempelajari struktur dari aljabar- $B I$. Lebih jauh, diberikan beberapa kondisi untuk mendapatkan aljabar- $B I$ pada bilangan real tak-negatif dengan menggunakan metode analitik. Kata kunci: Aljabar-BI, sub-aljabar (normal), ideal (normal).

1. INTRODUCTION.

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$ algebras and $B C I$-algebras ([2]). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. J. Neggers and H. S. Kim ([7]) introduced the notion of d-algebras, which is another useful generalization of $B C K$ algebras, and investigated several relations between d-algebras and $B C K$-algebras, and then investigated other relations between d-algebras and oriented digraphs.

It is known that several generalizations of a B-algebra were extensively investigated by many researchers and properties have been considered systematically.

[^0]The notion of B-algebras was introduced by J. Neggers and H. S. Kim ([5]). They defined a B-algebra as an algebra $(X, *, 0)$ of type $(2,0)$ (i.e., a non-empty set with a binary operation "*" and a constant 0) satisfying the following axioms:

```
(B1) \(x * x=0\),
(B2) \(x * 0=x\),
    (B) \((x * y) * z=x *[z *(0 * y)]\),
```

for any $x, y, z \in X$.
C. B. Kim and H. S. Kim ([4]) defined a $B G$-algebra, which is a generalization of B-algebra. An algebra $(X, *, 0)$ of type $(2,0)$ is called a $B G$-algebra if it satisfies (B1), (B2), and

$$
(B G) x=(x * y) *(0 * y)
$$

for any $x, y \in X$.
Y. B. Jun, E. H. Roh and H. S. Kim ([3]) introduced the notion of a $B H$ algebra which is a generalization of $B C K / B C I / B C H$-algebras. An algebra $(X, *, 0)$ of type $(2,0)$ is called a $B H$-algebra if it satisfies $(B 1),(B 2)$, and
$(B H) x * y=y * x=0$ implies $x=y$,
for any $x, y \in X$.
Moreover, A. Walendziak ([8]) introduced the notion of $B F / B F_{1} / B F_{2}$-algebras. An algebra $(X, *, 0)$ of type $(2,0)$ is called a $B F$-algebra if it satisfies $(B 1),(B 2)$ and

$$
(B F) 0 *(x * y)=y * x
$$

for any $x, y \in X$. A $B F$-algebra is called a $B F_{1}$-algebra (resp., a $B F_{2}$-algebra) if it satisfies $(B G)$ (resp., $(B H)$).
A. Borumand Saeid et al. ([1]) introduced a new algebra, called a $B I$-algebra, which is a generalization of both a (dual) implication algebra and an implicative $B C K$-algebra, and they discussed the basic properties of $B I$-algebras, and investigated some ideals and congruence relations. We will show that every implicative $B C K$-algebra is a $B I$-algebra, but the converse need not be true in general. See Proposition 4.7 and Example 4.8.
J. Neggers and H. S. Kim ([7]) gave an analytic method for constructing proper examples of a great variety of non-associative algebra of the $B C K$-type and generalizations of these. They made several useful (counter-)examples using analytic method.

In this paper, we discuss normal subalgebras in $B I$-algebras and obtain the quotient $B I$-algebra which is useful for the study of structures of $B I$-algebras. Moreover, we obtain several conditions for obtaining $B I$-algebras on the nonnegative real numbers by using an analytic method.

2. PRELIMINARIES.

We recall some definitions and results discussed in $[1,9]$.

An algebra $(X ; *, 0)$ of type $(2,0)$ is called a BI-algebra ([1]) if
(B1) $x * x=0$,
(B2) $x *(y * x)=x$,
for all $x, y \in X$.
We introduce a relation " \leq " on a $B I$-algebra X by $x \leq y$ if and only if $x * y=0$. We note that the relation " \leq " is not a partial order, since it is only reflexive. A non-empty subset S of a $B I$-algebra X is said to be a subalgebra of X if it is closed under the operation "*". Since $x * x=0$, for all $x \in X$, it is clear that $0 \in S$.

Definition 2.1. ([1]) Let $(X ; *, 0)$ be a BI-algebra and let I be a non-empty subset of X. Then I is called an ideal of X if
(I1) $0 \in I$,
(I2) $x * y \in I$ and $y \in I$ imply $x \in I$,
for any $x, y \in X$.
Obviously, $\{0\}$ and X are ideals of X. We call $\{0\}$ and X a zero ideal and a trivial ideal, respectively. An ideal I is said to be proper if $I \neq X$.

Proposition 2.2. ([1]) Let I be an ideal of a BI-algebra X. If $y \in I$ and $x \leq y$, then $x \in I$.

Proposition 2.3. ([1]) Let X be a $B I$-algebra. Then
(i) $x * 0=x$,
(ii) $0 * x=0$,
(iii) $x * y=(x * y) * y$,
(iv) if $y * x=x$, then $X=\{0\}$,
(v) if $x *(y * z)=y *(x * z)$, then $X=\{0\}$,
(vi) if $x * y=z$, then $z * y=z$ and $y * z=y$,
(vii) if $(x * y) *(z * u)=(x * z) *(y * u)$, then $X=\{0\}$,
for all $x, y, z, u \in X$.
A BI-algebra $(X ; *, 0)$ is said to be right distributive ([1]) (or left distributive, resp.) if $(x * y) * z=(x * z) *(y * z)(z *(x * y)=(z * x) *(z * y)$, resp.) for all $x, y, z \in X$.

Proposition 2.4. ([1]) Let X be a right distributive BI-algebra. Then
(i) $y * x \leq y$,
(ii) $(y * x) * x \leq y$,
(iii) $(x * z) *(y * z) \leq x * y$,
(iv) if $x \leq y$, then $x * z \leq y * z$,
(v) if $(x * y) * z \leq x *(y * z)$,
(vi) if $x * y=z * y$, then $(x * z) * y=0$,
for all $x, y, z \in X$.

Proposition 2.5. ([1]) Let X be a right distributive $B I$-algebra. Then the induced relation " \leq " is a transitive relation.
Example 2.6. ([1]) Let $X:=\{0, a, b, c\}$ be a BI-algebra with the following table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	b
b	b	b	0	b
c	c	b	c	0

Then it is easy to check that $I_{1}:=\{0, a, c\}$ is an ideal of X, but $I_{2}:=\{0, a, b\}$ is not an ideal of X, since $c * a=b \in I_{2}$ and $a \in I_{2}$, but $c \notin I_{2}$.

Theorem 2.7. ([9]) Let X be a $B C K$-algebra. Then X is implicative if and only if it is commutative and positive implicative.

Theorem 2.8. ([9]) Let X be a $B C K$-algebra. Then the following are equivalent:
(i) X is commutative,
(ii) $x \leq y \Rightarrow x=y *(y * x)$, for all $x, y \in X$.

3. NORMAL SUBALGEBRAS

In what follows, let X be a $B I$-algebra unless otherwise specified.
Definition 3.1. A non-empty subset N of X is said to be normal (or a normal subalgebra) if $(x * a) *(y * b) \in N$, for any $x * y, a * b \in N$.

Proposition 3.2. Let N be a normal subalgebra of X. Then N is a subalgebra of X.

Proof. Let $x, y \in N$. Then $x * 0, y * 0 \in N$. Since N is a normal subalgebra of X, we have $(x * y) *(0 * 0)=x * y \in N$. Hence N is a subalgebra of X.

The converse of Proposition 3.2 need not be true in general.
Example 3.3. ([1]) (1) Let $X:=\{0, a, b, c\}$ be a BI-algebra with the following table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	0	0	b
c	c	0	c	0

Then $\{0, a, b\}$ is a subalgebra of X, but not normal, since $c * c=0, b * c=b \in$ $\{0, a, b\},(c * b) *(c * c)=c * 0=c \notin\{0, a, b\}$.
(2) Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Then X is a $B I$-algebra. It is easy to check that $I:=\{0,1\}$ is a normal subalgebra of X. If we consider $J:=\{0,1,2\}$, then J is a subalgebra of X, but is not a normal subalgebra of X, since $3 * 3=0,2 * 3=2 \in J$ and $(3 * 2) *(3 * 3)=3 * 0=3 \notin J$.
Lemma 3.4. Let N be a normal subalgebra of X. If $x * y \in N$, for all $x, y \in X$, then $y * x \in N$.

Proof. Let $x * y \in N$, for any $x, y \in X$. Since $y * y=0 \in N$, we have $y * x=$ $(y * x) * 0=(y * x) *(y * y) \in N$. This completes the proof.

Let N be a normal subalgebra of X. Define a relation " $\sim_{N} "$ on X by $x \sim_{N} y$ if and only if $x * y \in N$, for any $x, y \in X$.

Proposition 3.5. Let N be a normal subalgebra of X. Then \sim_{N} is a congruence relation on X.

Proof. By (B1), \sim_{N} is reflexive. It follows from Lemma 3.4 that \sim_{N} is symmetric. Let $x \sim_{N} y$ and $y \sim_{N} z$, for any $x, y, z \in X$. Then $x * y, y * z \in N$. Using Lemma 3.4, we have $z * y \in N$. Since N is normal, we have $x * z=(x * z) *(y * y) \in N$. Hence \sim_{N} is an equivalence relation.

Let $x \sim_{N} y$ and $p \sim_{N} q$ for any $x, y, p, q \in X$. Then $x * y, p * q \in N$. Since N is normal, we have $(x * p) *(y * q) \in N$. Hence $x * p \sim_{N} y * q$. Thus \sim_{N} is a congruence relation on X.

Denote $X / N:=\left\{[x]_{N} \mid x \in X\right\}$, where $[x]_{N}:=\left\{y \in X \mid x \sim_{N} y\right\}$. If we define $[x]_{N} *^{\prime}[y]_{N}:=[x * y]_{N}$, then " $*^{\prime \prime}$ " is well-defined, since \sim_{N} is a congruence relation.

Theorem 3.6. Let N be a normal subalgebra of X. Then $\left(X / N ; *^{\prime},[0]_{N}\right)$ is a BI-algebra.

Proof. Note that $[0]_{N}=\left\{x \in X \mid x \sim_{N} 0\right\}=\{x \in X \mid x * 0 \in N\}=\{x \in X \mid x \in$ $N\}=N$. Checking two axioms are trivial and we omit the proof.

The $B I$-algebra X / N discussed in Theorem 3.6 is called the quotient $B I$ algebra of X by N. Let X, Y be $B I$-algebras. A map $f: X \rightarrow Y$ is called a homomorphism if $f(x * y)=f(x) * f(y)$, for any $x, y \in X$.

Proposition 3.7. Let N be a normal subalgebra of X. Then the mapping γ : $X \rightarrow X / N$, given by $\gamma(x)=[x]_{N}$, is a surjective homomorphism and $\operatorname{Ker} \gamma=N$.

Proof. Since \sim_{N} is a congruence relation, the operation " $*^{\prime}$ " on X / N defined by $[x]_{N} *^{\prime}[y]_{N}:=[x * y]_{N}$ is well defined. For all $x, y \in X$, we have $\gamma(x * y)=$ $[x * y]_{N}=[x]_{N} *^{\prime}[y]_{N}=\gamma(x) *^{\prime} \gamma(y)$. Hence γ is a $B I$-homomorphism. Since $\gamma(X)=\{\gamma(x) \mid x \in X\}=\left\{[x]_{N} \mid x \in X\right\}=X / N, \gamma$ is surjective. Furthermore

$$
\begin{aligned}
\operatorname{Ker} \gamma & =\{x \in X \mid \gamma(x)=N\} \\
& =\left\{x \in X \mid[x]_{N}=N\right\} \\
& =\left\{x \in X \mid[x]_{N}=[0]_{N}\right\} \\
& =\{x \in X \mid x \in N\}=N
\end{aligned}
$$

proving the proposition.
The mapping γ discussed in Proposition 3.7 is called the canonical homomorphism of X onto X / N.

Proposition 3.8. Let $f: X \rightarrow Y$ be a homomorphism of $B I$-algebras. If f is injective, then $\operatorname{Kerf}=\left\{0_{X}\right\}$.
Proposition 3.9. Let $f: X \rightarrow Y$ be a homomorphism of $B I$-algebras. Then Kerf is a subalgebra of X.

Proof. Let $x, y \in \operatorname{Kerf}$. Then $f(x)=0_{Y}=f(y)$ and so $f(x * y)=f(x) * f(y)=$ $0_{Y} * 0_{Y}=0_{Y}$. Hence $x * y \in \operatorname{Kerf}$.

Note that $\operatorname{Ker} \phi$ need not be a normal subalgebra of a $B I$-algebra (see below example).
Example 3.10. Consider a $B I$-algebra $X=\{0, a, b, c\}$ as in Example 3.3(1). We define $\phi(x)=0$, for all $x \in X$. Then $\operatorname{Ker} \phi=\{0, a, b, c\}$ is a normal subalgebra of X. If we define $\phi(x)=x$, for all $x \in X$, then $\operatorname{Ker} \phi=\{0\}$ is a subalgebra of X, but is not a normal subalgebra of X, since $c * c=0, b * a=0$ and $(c * b) *(c * a)=$ $c * 0=c \notin\{0\}$.
Definition 3.11. A $B I$-algebra X is called a $B I_{1}$-algebra if
(B3) $x * y=0=y * x \Rightarrow x=y$, for all $x, y \in X$.
Example 3.12. Consider a BI-algebra $X=\{0, a, b, c\}$ as in Example 2.6. Then $(X, *, 0)$ is a $B I_{1}$-algebra.

Proposition 3.13. Let X be a $B I_{1}$-algebra and Y be a $B I$-algebra. Let $\phi: X \rightarrow Y$ be a homomorphism. Then ϕ is injective if and only if $\operatorname{Ker} \phi=\left\{0_{X}\right\}$.

Proof. Suppose $\operatorname{Ker} \phi=\left\{0_{X}\right\}$. If $\phi(x)=\phi(y)$, for any $x, y \in X$, then $\phi(x * y)=$ $\phi(x) * \phi(y)=0_{Y}$ and so $x * y \in \operatorname{Ker} \phi=\left\{0_{X}\right\}$. Hence $x * y=0_{X}$. Similarly, $y * x=0_{X}$. Since X is a $B I_{1}$-algebra, we obtain $x=y$. Thus ϕ is injective.

The converse is trivial. This completes the proof.

Proposition 3.14. Let A and I be normal subalgebras of X with $I \subseteq A$. Then A / I is a normal subalgebra of a $B I$-algebra X / I.

Proof. Let $\left[x_{1}\right]_{I} *^{\prime}\left[x_{2}\right]_{I},\left[y_{1}\right]_{I} *^{\prime}\left[y_{2}\right]_{I} \in A / I$, for any $\left[x_{1}\right]_{I},\left[x_{2}\right]_{I},\left[y_{1}\right]_{I},\left[y_{2}\right]_{I} \in A / I$. Then $\left[x_{1} * x_{2}\right]_{I},\left[y_{1} * y_{2}\right]_{I} \in A / I$ and so $x_{1} * x_{2}, y_{1} * y_{2} \in A$. Hence $\left(x_{1} * y_{1}\right) *\left(x_{2} * y_{2}\right) \in$ A. It follows that $\left[\left(x_{1} * y_{1}\right) *\left(x_{2} * y_{2}\right)\right]_{I}$ and $\left[\left(x_{1} * x_{2}\right)_{I} *\left(y_{1} * y_{2}\right)_{I}\right] \in A / I$, i.e., $\left(\left[x_{1}\right] *^{\prime}\left[y_{1}\right]_{I}\right) *^{\prime}\left(\left[x_{2}\right] *^{\prime}\left[y_{2}\right]_{I}\right) \in A / I$ and $\left(\left[x_{1}\right] *^{\prime}\left[x_{2}\right]_{I}\right) *^{\prime}\left(\left[y_{1}\right] *^{\prime}\left[y_{2}\right]_{I}\right) \in A / I$. Thus A / I is a normal subalgebra of a $B I$-algebra X / I.

Definition 3.15. Let I be an ideal of X. Then I is called a normal ideal of X if it is normal.

Example 3.16. Consider a BI-algebra $X=\{0,1,2,3\}$ as in Example 3.3(2). It is easy to show that $I=\{0,1\}$ is a normal ideal of X, and $J=\{0,1,2\}$ is an ideal, but is not a normal ideal of X.

Proposition 3.17. Let I be a normal ideal of X. Then I is a subalgebra of X.
Proof. Let $x, y \in I$. Then $x * x=0 \in I$ and $y * 0=y$. Since I is a normal ideal, then $(x * y) *(x * 0)=(x * y) * x \in I$. Since $x \in I$ and I is an ideal, we have $x * y \in I$. This completes the proof.

Theorem 3.18. S is a normal subalgebra of X if and only if S is a normal ideal of X.

Proof. Let S be a normal subalgebra of X. Clearly, $0 \in S$. Suppose that $x * y \in S$ and $y \in S$. By Proposition 2.3(ii), $0=0 * y$. Since S is normal, we have $x=$ $(x * 0) * 0=(x * 0) *(y * y) \in S$. Hence S is an ideal of X.

The converse follows from Proposition 3.17.
Proposition 3.19. Let $f: X \rightarrow Y$ be a homomorphism of $B I$-algebras. Then Kerf is an ideal of X.

Proof. Obviously, $0_{X} \in \operatorname{Kerf}$, i.e., (I1) holds. Let $x * y \in \operatorname{Kerf}$ and $y \in \operatorname{Kerf}$. Then $0_{Y}=f(x * y)=f(x) * f(y)=f(x) * 0_{Y}=f(x)$ and so $x \in \operatorname{Kerf}$. Therefore (I2) is satisfied. Thus Kerf is an ideal of X.

Definition 3.20. A homomorphism $f: X \rightarrow Y$, where X, Y are BI-algebras, is said to be normal if Kerf is a normal ideal of X.

Example 3.21. Let $X:=\{0,1,2,3,4\}$ and $Y:=\{0,1,2,3\}$ be sets with the following Cayley tables:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	0	2
3	3	2	1	0	3
4	4	4	4	4	0

$\boldsymbol{*}^{\prime}$	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

It is easy to show that $(X ; *, 0)$ and $\left(Y ; *^{\prime}, 0\right)$ are BI-algebras. Define functions $f, g: X \rightarrow Y$ by

$$
\begin{aligned}
& f: 0 \rightarrow 0,1 \rightarrow 0,2 \rightarrow 2,3 \rightarrow 2,4 \rightarrow 1 . \\
& g: 0 \rightarrow 0,1 \rightarrow 0,2 \rightarrow 0,3 \rightarrow 0,4 \rightarrow 3 .
\end{aligned}
$$

It is easy to check that g is a normal homomorphism. Also f is a homomorphism, but not a normal homomorphism. In fact, let $\operatorname{Kerf}:=N$. Then $N=\{0,1\}$. $2 * 3=0,1 * 2=1 \in N$ and $(2 * 1) *(3 * 2)=2 * 1=2 \notin N$. Hence Kerf is not a normal ideal.

Theorem 3.22. Let X, Y be $B I_{1}$-algebras. If $f: X \rightarrow Y$ is a normal homomorphism from X onto Y, then X / Kerf is isomorphic to Y.

Proof. By the definition of a normal homomorphism, $N:=\operatorname{Kerf}$ is a normal ideal of X and so N is a normal subalgebra of X. Define a mapping $\phi: X / N \rightarrow Y$ by $\phi\left([x]_{N}\right)=f(x)$, for all $x \in X$. Let $[x]_{N}=[y]_{N}$. Then $x \sim_{N} y$, i.e., $x * y \in N$ and $y * x \in N$. Hence $f(x) * f(y)=0_{Y}=f(y) * f(x)$. Since Y is a $B I_{1}$-algebra, we have $f(x)=f(y)$. Therefore $\phi\left([x]_{N}\right)=\phi\left([y]_{N}\right)$. This means that ϕ is well defined. It is easy to check that ϕ is a homomorphism from X / N onto Y. Observe that $\operatorname{Ker} \phi=[0]_{N}$. In fact, $[x]_{N} \in \operatorname{Ker} \phi \Leftrightarrow \phi\left([x]_{N}\right)=0_{Y} \Leftrightarrow f(x)=0_{Y} \Leftrightarrow x \in N \Leftrightarrow$ $[x]_{N}=[0]_{N}$. It follows from Proposition 3.13 that ϕ is one-to-one. Thus ϕ is an isomorphism from X / Kerf onto Y.

4. ANALYTIC CONSTRUCTION FOR $B I$-ALGEBRAS

We apply the analytic method deviced by J. Neggers and H. S. Kim ([6]) for obtaining an example of a $B I$-algebra. Note that the $B I$-algebra $(X, *, 0)$ in Example 4.6 is not an implicative $B C K$-algebra. This shows that the notion of $B I$-algebra is a generalization of an implicative $B C K$-algebra. Let $X:=[0, \infty)$ be the set of all non-negative real numbers unless otherwise specified. Define a binary operation "*" on X as follows:
(a) $x * y=\max \{0, f(x, y)(x-y)\}=\max \{0, \lambda(x, y) x\}$
where $f(x, y)$ and $\lambda(x, y)$ are non-negative real valued functions with
(b) $\lambda(0, y)=0$.

Proposition 4.1. If $x, y \in X$ with $x>0$, then

$$
x * y=0 \Leftrightarrow x \leq y \Leftrightarrow \lambda(x, y)=0 .
$$

Proof. It follows immediately from (a).

Proposition 4.2. The function $\lambda(x, y)$ can be described as follows:

$$
\lambda(x, y)= \begin{cases}0 & \text { if } x \leq y \\ \frac{x-y}{x} f(x, y)>0 & \text { otherwise }\end{cases}
$$

Proof. If $x>y$, then, by Proposition 4.1, $\lambda(x, y)>0$. Since $x>y$, we obtain $x>0$. By applying (a), we have $x * y=f(x, y)(x-y)=\lambda(x, y) x>0$, and so we obtain $\lambda(x, y)=\frac{x-y}{x} f(x, y)$. If $x \leq y$ and $x>0$, then, by Proposition 4.1, we have $\lambda(x, y)=0$. If $x \leq y$ and $x=0$, then $\lambda(x, y)=0$ by the assumption (a).

Proposition 4.3. If the function $\lambda(x, y)$ satisfies the condition
(c) $\lambda(x, x)=0$,
then the axiom (B1) holds.
Proposition 4.4. If the function $\lambda(x, y)$ satisfies the condition
(d) $\lambda(x, 0)=1$,
then $x * 0=x$, for all $x \in X$.
Proof. $x * 0=\max \{0, \lambda(x, 0) x\}=\lambda(x, 0) x=x$.

Theorem 4.5. If the function $\lambda(x, y)$ satisfies the conditions (b)~(d) and
(e) $\lambda(x, y)<\frac{y}{x}$, when $y \leq x$
and
(f) $\lambda(x, \lambda(y, x) y)=1$, for all $x, y \in X$,
then the axiom (B2) holds.
Proof. Consider $x *(y * x)=x$. If $y<x$, then $y * x=0$. By Proposition 4.1, we obtain $x *(y * x)=x * 0=x$.

If $x<y$, then $y * x=\lambda(y, x) y$. Let $q:=y * x$. If $x<q$, then $\lambda(x, q)=0$ and hence $x *(y * x)=x * q=\lambda(x, q) x=0 \neq x$, i.e., (B2) does not hold. If $x>q$, then

$$
\begin{aligned}
x>q & \Leftrightarrow x>y * x \\
& \Leftrightarrow x>\lambda(y, x) y \\
& \Leftrightarrow \frac{x}{y}>\lambda(y, x) .
\end{aligned}
$$

By using the condition (f), we obtain

$$
\begin{aligned}
x *(y * x) & =x * q \\
& =\lambda(x, q) x \\
& =\lambda(x, y * x) x \\
& =\lambda(x, \lambda(y, x) y) x \\
& =x .
\end{aligned}
$$

This proves the theorem.

Example 4.6. If we define a binary operation "*" on $X=[0, \infty)$ by $x * y:=$ $\max \{0, \lambda(x, y) x\}$ where

$$
\lambda(x, y)= \begin{cases}1 & \text { if } y=0 \\ 0 & \text { if } y \neq 0\end{cases}
$$

then

$$
x * y= \begin{cases}x & \text { if } y=0 \\ 0 & \text { if } y \neq 0\end{cases}
$$

If $x \neq 0$, then $y * x=0$ and hence $x *(y * x)=x * 0=x$. If $x=0$, then $y * x=y * 0=y$ and hence $x *(y * x)=x * y=0 * y=0=x$. Hence $(X, *, 0)$ is a $B I$-algebra. Note that $\lambda(x, y)$ satisfies the conditions (a) $\sim(f)$.

Proposition 4.7. Every implicative BCK-algebra is a BI-algebra.
The converse of Proposition 4.7 may not be true in general as the following example.

Example 4.8. Consider the BI-algebra $(X, *, 0)$ discussed in Example 4.6. Assume that $(X ; *, 0)$ is an implicative $B C K$-algebra. By Theorem 2.7, X should be a commutative BCK-algebra. By Theorem 2.8, X satisfies the following property: $x \leq y \Rightarrow x=y *(y * x)$, for all $x, y \in X$. Let $x:=3, y:=5$. Then $5 *(5 * 3)=5 * 0=5 \neq 3$, which is a contradiction. Hence X is a $B I$-algebra which is not an implicative BCK-algebra.

A $B I$-algebra X is said to be medial if $(a * b) *(c * d)=(a * c) *(b * d)$, for any $a, b, c, d \in X$.

Theorem 4.9. There is no non-trivial medial normal $B I$-algebras.
Proof. Assume that $(X ; *, 0)$ is a medial $B I$-algebra with $|X| \geq 2$. Then we have

$$
\begin{aligned}
x & =x *(y * x) \\
& =(x * 0) *(y * x) \\
& =(x * y) *(0 * x) \\
& =(x * y) * 0 \\
& =x * y,
\end{aligned}
$$

for any $x, y \in X$. It follows that $x=x * x=0$, i.e., $X=\{0\}$, which is a contradiction. This completes the proof.

5. Acknowledgment

We would like to warmly thank the referees for their helpful comments and suggestions for the improvement of this paper.

REFERENCES

[1] A. Borumand Saeid, H. S. Kim and A. Razaei, On BI-algebras, An. Şt. Univ. Ovidius Constanţa 25 (2017), 177-194.
[2] K. Iséki, On BCI-algebras, Math. Sem. Notes, Kobe Univ. 8(1980), 125-130.
[3] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. 1(1998), 347-354.
[4] C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Math. 41(2008), 497-505.
[5] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54(2002), 21-29.
[6] J. Neggers and H. S. Kim, On analytic T-algebras, Sci. Math. Japo. Online 4 (2001), 157-163.
[7] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49(1999), 19-26.
[8] A. Walendziak, On BF-algebras, Math. Slovaca 57(2007), 119-128.
[9] H. Yisheng, BCI-algebra, Science Press, Beijing, 2006.

[^0]: 2000 Mathematics Subject Classification: Primary 06F35, 03G25;
 Received: 03-01-2018, revised : 10-10-2018, accepted: 10-10-2018.

