ON IDEALS OF BI-ALGEBRAS

SUN SHIN AHN¹, JUNG MI KO², AND A. BORUMAND SAEID^{3*}

¹Department of Mathematics Education, Dongguk University, Seoul 04620, Korea, sunshine@dongguk.edu

²Department of Mathematics, Gangneung-Wonju National University, Gangneung 25457, Korea, jmko@gwnu.ac.kr

³Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman Kerman, Iran, arsham@uk.ac.kr

Abstract. In this paper, we discuss normal subalgebras in BI-algebras and obtain the quotient BI-algebra which is useful for the study of structures of BI-algebras. Moreover, we obtain several conditions for obtaining BI-algebras on the non-negative real numbers by using an analytic methods.

Key words and Phrases: BI-algebra, (normal) subalgebra, (normal) ideal.

Abstrak. Dalam artikel ini, didiskusikan tentang sub-aljabar normal di aljabar-BI dan dikonstruksi aljabar kuosien BI yang dapat digunakan untuk mempelajari struktur dari aljabar-BI. Lebih jauh, diberikan beberapa kondisi untuk mendapatkan aljabar-BI pada bilangan real tak-negatif dengan menggunakan metode analitik.

Kata kunci: Aljabar-BI, sub-aljabar (normal), ideal (normal).

1. INTRODUCTION.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([2]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. J. Neggers and H. S. Kim ([7]) introduced the notion of d-algebras, which is another useful generalization of BCK-algebras, and investigated several relations between d-algebras and BCK-algebras, and then investigated other relations between d-algebras and oriented digraphs.

It is known that several generalizations of a *B*-algebra were extensively investigated by many researchers and properties have been considered systematically.

²⁰⁰⁰ Mathematics Subject Classification: Primary 06F35, 03G25;

Received: 03-01-2018, revised : 10-10-2018, accepted: 10-10-2018.

²⁴

The notion of *B*-algebras was introduced by J. Neggers and H. S. Kim ([5]). They defined a *B*-algebra as an algebra (X, *, 0) of type (2,0) (i.e., a non-empty set with a binary operation "*" and a constant 0) satisfying the following axioms:

(B1) x * x = 0,(B2) x * 0 = x,(B) (x * y) * z = x * [z * (0 * y)],

for any $x, y, z \in X$.

C. B. Kim and H. S. Kim ([4]) defined a *BG*-algebra, which is a generalization of *B*-algebra. An algebra (X, *, 0) of type (2,0) is called a *BG*-algebra if it satisfies (B1), (B2), and

$$(BG) \ x = (x * y) * (0 * y),$$

for any $x, y \in X$.

Y. B. Jun, E. H. Roh and H. S. Kim ([3]) introduced the notion of a *BH*-algebra which is a generalization of BCK/BCI/BCH-algebras. An algebra (X, *, 0) of type (2,0) is called a *BH*-algebra if it satisfies (*B*1), (*B*2), and

(BH) x * y = y * x = 0 implies x = y,

for any $x, y \in X$.

Moreover, A. Walendziak ([8]) introduced the notion of $BF/BF_1/BF_2$ -algebras. An algebra (X, *, 0) of type (2,0) is called a *BF*-algebra if it satisfies (*B*1), (*B*2) and

 $(BF) \quad 0*(x*y) = y*x,$

for any $x, y \in X$. A *BF*-algebra is called a *BF*₁-algebra (resp., a *BF*₂-algebra) if it satisfies (*BG*) (resp., (*BH*)).

A. Borumand Saeid et al. ([1]) introduced a new algebra, called a BI-algebra, which is a generalization of both a (dual) implication algebra and an implicative BCK-algebra, and they discussed the basic properties of BI-algebras, and investigated some ideals and congruence relations. We will show that every implicative BCK-algebra is a BI-algebra, but the converse need not be true in general. See Proposition 4.7 and Example 4.8.

J. Neggers and H. S. Kim ([7]) gave an analytic method for constructing proper examples of a great variety of non-associative algebra of the BCK-type and generalizations of these. They made several useful (counter-)examples using analytic method.

In this paper, we discuss normal subalgebras in BI-algebras and obtain the quotient BI-algebra which is useful for the study of structures of BI-algebras. Moreover, we obtain several conditions for obtaining BI-algebras on the non-negative real numbers by using an analytic method.

2. PRELIMINARIES.

We recall some definitions and results discussed in [1, 9].

An algebra (X; *, 0) of type (2, 0) is called a *BI*-algebra ([1]) if

(B1) x * x = 0, (B2) x * (y * x) = x,

for all $x, y \in X$.

We introduce a relation " \leq " on a *BI*-algebra X by $x \leq y$ if and only if x * y = 0. We note that the relation " \leq " is not a partial order, since it is only reflexive. A non-empty subset S of a *BI*-algebra X is said to be a *subalgebra* of X if it is closed under the operation "*". Since x * x = 0, for all $x \in X$, it is clear that $0 \in S$.

Definition 2.1. ([1]) Let (X; *, 0) be a BI-algebra and let I be a non-empty subset of X. Then I is called an ideal of X if

(I1) $0 \in I$, (I2) $x * y \in I$ and $y \in I$ imply $x \in I$,

for any $x, y \in X$.

Obviously, $\{0\}$ and X are ideals of X. We call $\{0\}$ and X a zero ideal and a trivial ideal, respectively. An ideal I is said to be proper if $I \neq X$.

Proposition 2.2. ([1]) Let I be an ideal of a BI-algebra X. If $y \in I$ and $x \leq y$, then $x \in I$.

Proposition 2.3. (1) Let X be a BI-algebra. Then

(i) x * 0 = x, (ii) 0 * x = 0, (iii) x * y = (x * y) * y, (iv) if y * x = x, then $X = \{0\}$, (v) if x * (y * z) = y * (x * z), then $X = \{0\}$, (vi) if x * y = z, then z * y = z and y * z = y, (vii) if (x * y) * (z * u) = (x * z) * (y * u), then $X = \{0\}$,

for all $x, y, z, u \in X$.

A BI-algebra (X; *, 0) is said to be right distributive ([1]) (or left distributive, resp.) if (x * y) * z = (x * z) * (y * z) (z * (x * y) = (z * x) * (z * y), resp.) for all $x, y, z \in X$.

Proposition 2.4. ([1]) Let X be a right distributive BI-algebra. Then

 $\begin{array}{ll} ({\rm i}) & y \ast x \leq y, \\ ({\rm ii}) & (y \ast x) \ast x \leq y, \\ ({\rm iii}) & (x \ast z) \ast (y \ast z) \leq x \ast y, \\ ({\rm iv}) & {\rm if} \; x \leq y, \; {\rm then} \; x \ast z \leq y \ast z, \\ ({\rm v}) & {\rm if} \; (x \ast y) \ast z \leq x \ast (y \ast z), \\ ({\rm vi}) & {\rm if} \; x \ast y = z \ast y, \; {\rm then} \; (x \ast z) \ast y = 0, \end{array}$

for all $x, y, z \in X$.

Proposition 2.5. ([1]) Let X be a right distributive BI-algebra. Then the induced relation " \leq " is a transitive relation.

Example 2.6. ([1]) Let $X := \{0, a, b, c\}$ be a BI-algebra with the following table:

*	0	a	b	c
0	0	0	0	0
a	a	0	a	b
b	b	b	0	b
c	c	b	c	0

Then it is easy to check that $I_1 := \{0, a, c\}$ is an ideal of X, but $I_2 := \{0, a, b\}$ is not an ideal of X, since $c * a = b \in I_2$ and $a \in I_2$, but $c \notin I_2$.

Theorem 2.7. ([9]) Let X be a BCK-algebra. Then X is implicative if and only if it is commutative and positive implicative.

Theorem 2.8. ([9]) Let X be a BCK-algebra. Then the following are equivalent:

- (i) X is commutative,
- (ii) $x \le y \Rightarrow x = y * (y * x)$, for all $x, y \in X$.

3. NORMAL SUBALGEBRAS

In what follows, let X be a BI-algebra unless otherwise specified.

Definition 3.1. A non-empty subset N of X is said to be normal (or a normal subalgebra) if $(x * a) * (y * b) \in N$, for any $x * y, a * b \in N$.

Proposition 3.2. Let N be a normal subalgebra of X. Then N is a subalgebra of X.

Proof. Let $x, y \in N$. Then $x * 0, y * 0 \in N$. Since N is a normal subalgebra of X, we have $(x * y) * (0 * 0) = x * y \in N$. Hence N is a subalgebra of X.

The converse of Proposition 3.2 need not be true in general.

Example 3.3. ([1]) (1) Let $X := \{0, a, b, c\}$ be a BI-algebra with the following table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	0	0	b
c	c	0	c	0

Then $\{0, a, b\}$ is a subalgebra of X, but not normal, since $c * c = 0, b * c = b \in \{0, a, b\}, (c * b) * (c * c) = c * 0 = c \notin \{0, a, b\}.$

(2) Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Then X is a BI-algebra. It is easy to check that $I := \{0, 1\}$ is a normal subalgebra of X. If we consider $J := \{0, 1, 2\}$, then J is a subalgebra of X, but is not a normal subalgebra of X, since $3 * 3 = 0, 2 * 3 = 2 \in J$ and $(3 * 2) * (3 * 3) = 3 * 0 = 3 \notin J$.

Lemma 3.4. Let N be a normal subalgebra of X. If $x * y \in N$, for all $x, y \in X$, then $y * x \in N$.

Proof. Let $x * y \in N$, for any $x, y \in X$. Since $y * y = 0 \in N$, we have $y * x = (y * x) * 0 = (y * x) * (y * y) \in N$. This completes the proof.

Let N be a normal subalgebra of X. Define a relation " \sim_N " on X by $x \sim_N y$ if and only if $x * y \in N$, for any $x, y \in X$.

Proposition 3.5. Let N be a normal subalgebra of X. Then \sim_N is a congruence relation on X.

Proof. By (B1), \sim_N is reflexive. It follows from Lemma 3.4 that \sim_N is symmetric. Let $x \sim_N y$ and $y \sim_N z$, for any $x, y, z \in X$. Then $x * y, y * z \in N$. Using Lemma 3.4, we have $z * y \in N$. Since N is normal, we have $x * z = (x * z) * (y * y) \in N$. Hence \sim_N is an equivalence relation.

Let $x \sim_N y$ and $p \sim_N q$ for any $x, y, p, q \in X$. Then $x * y, p * q \in N$. Since N is normal, we have $(x * p) * (y * q) \in N$. Hence $x * p \sim_N y * q$. Thus \sim_N is a congruence relation on X.

Denote $X/N := \{[x]_N | x \in X\}$, where $[x]_N := \{y \in X | x \sim_N y\}$. If we define $[x]_N *'[y]_N := [x * y]_N$, then "*'" is well-defined, since \sim_N is a congruence relation.

Theorem 3.6. Let N be a normal subalgebra of X. Then $(X/N; *', [0]_N)$ is a BI-algebra.

Proof. Note that $[0]_N = \{x \in X | x \sim_N 0\} = \{x \in X | x * 0 \in N\} = \{x \in X | x \in N\} = N$. Checking two axioms are trivial and we omit the proof.

The *BI*-algebra X/N discussed in Theorem 3.6 is called the *quotient BI*algebra of X by N. Let X, Y be *BI*-algebras. A map $f : X \to Y$ is called a homomorphism if f(x * y) = f(x) * f(y), for any $x, y \in X$.

Proposition 3.7. Let N be a normal subalgebra of X. Then the mapping γ : $X \to X/N$, given by $\gamma(x) = [x]_N$, is a surjective homomorphism and $Ker\gamma = N$.

Proof. Since \sim_N is a congruence relation, the operation "*'" on X/N defined by $[x]_N *' [y]_N := [x * y]_N$ is well defined. For all $x, y \in X$, we have $\gamma(x * y) = [x * y]_N = [x]_N *' [y]_N = \gamma(x) *' \gamma(y)$. Hence γ is a *BI*-homomorphism. Since $\gamma(X) = \{\gamma(x) | x \in X\} = \{[x]_N | x \in X\} = X/N, \gamma$ is surjective. Furthermore

$$Ker\gamma = \{x \in X | \gamma(x) = N\} \\ = \{x \in X | [x]_N = N\} \\ = \{x \in X | [x]_N = [0]_N\} \\ = \{x \in X | x \in N\} = N,$$

proving the proposition.

The mapping γ discussed in Proposition 3.7 is called the *canonical homomorphism* of X onto X/N.

Proposition 3.8. Let $f : X \to Y$ be a homomorphism of *BI*-algebras. If f is injective, then $Kerf = \{0_X\}$.

Proposition 3.9. Let $f : X \to Y$ be a homomorphism of *BI*-algebras. Then *Kerf* is a subalgebra of *X*.

Proof. Let $x, y \in Kerf$. Then $f(x) = 0_Y = f(y)$ and so $f(x * y) = f(x) * f(y) = 0_Y * 0_Y = 0_Y$. Hence $x * y \in Kerf$. \Box

Note that $Ker\phi$ need not be a normal subalgebra of a BI-algebra (see below example).

Example 3.10. Consider a BI-algebra $X = \{0, a, b, c\}$ as in Example 3.3(1). We define $\phi(x) = 0$, for all $x \in X$. Then $Ker\phi = \{0, a, b, c\}$ is a normal subalgebra of X. If we define $\phi(x) = x$, for all $x \in X$, then $Ker\phi = \{0\}$ is a subalgebra of X, but is not a normal subalgebra of X, since c * c = 0, b * a = 0 and $(c * b) * (c * a) = c * 0 = c \notin \{0\}$.

Definition 3.11. A BI-algebra X is called a BI_1 -algebra if

(B3) $x * y = 0 = y * x \Rightarrow x = y$, for all $x, y \in X$.

Example 3.12. Consider a BI-algebra $X = \{0, a, b, c\}$ as in Example 2.6. Then (X, *, 0) is a BI₁-algebra.

Proposition 3.13. Let X be a BI_1 -algebra and Y be a BI-algebra. Let $\phi : X \to Y$ be a homomorphism. Then ϕ is injective if and only if $Ker\phi = \{0_X\}$.

Proof. Suppose $Ker\phi = \{0_X\}$. If $\phi(x) = \phi(y)$, for any $x, y \in X$, then $\phi(x * y) = \phi(x) * \phi(y) = 0_Y$ and so $x * y \in Ker\phi = \{0_X\}$. Hence $x * y = 0_X$. Similarly, $y * x = 0_X$. Since X is a BI_1 -algebra, we obtain x = y. Thus ϕ is injective.

The converse is trivial. This completes the proof.

Proposition 3.14. Let A and I be normal subalgebras of X with $I \subseteq A$. Then A/I is a normal subalgebra of a BI-algebra X/I.

Proof. Let $[x_1]_I *' [x_2]_I, [y_1]_I *' [y_2]_I \in A/I$, for any $[x_1]_I, [x_2]_I, [y_1]_I, [y_2]_I \in A/I$. Then $[x_1 * x_2]_I, [y_1 * y_2]_I \in A/I$ and so $x_1 * x_2, y_1 * y_2 \in A$. Hence $(x_1 * y_1) * (x_2 * y_2) \in A$. A. It follows that $[(x_1 * y_1) * (x_2 * y_2)]_I$ and $[(x_1 * x_2)_I * (y_1 * y_2)_I] \in A/I$, i.e., $([x_1] *' [y_1]_I) *' ([x_2] *' [y_2]_I) \in A/I$ and $([x_1] *' [x_2]_I) *' ([y_1] *' [y_2]_I) \in A/I$. Thus A/I is a normal subalgebra of a BI-algebra X/I.

Definition 3.15. Let I be an ideal of X. Then I is called a normal ideal of X if it is normal.

Example 3.16. Consider a BI-algebra $X = \{0, 1, 2, 3\}$ as in Example 3.3(2). It is easy to show that $I = \{0, 1\}$ is a normal ideal of X, and $J = \{0, 1, 2\}$ is an ideal, but is not a normal ideal of X.

Proposition 3.17. Let I be a normal ideal of X. Then I is a subalgebra of X.

Proof. Let $x, y \in I$. Then $x * x = 0 \in I$ and y * 0 = y. Since I is a normal ideal, then $(x * y) * (x * 0) = (x * y) * x \in I$. Since $x \in I$ and I is an ideal, we have $x * y \in I$. This completes the proof. \square

Theorem 3.18. S is a normal subalgebra of X if and only if S is a normal ideal Xof X.

Proof. Let S be a normal subalgebra of X. Clearly, $0 \in S$. Suppose that $x * y \in S$ and $y \in S$. By Proposition 2.3(ii), 0 = 0 * y. Since S is normal, we have x = $(x * 0) * 0 = (x * 0) * (y * y) \in S$. Hence S is an ideal of X.

The converse follows from Proposition 3.17.

Proposition 3.19. Let $f: X \to Y$ be a homomorphism of BI-algebras. Then Kerf is an ideal of X.

Proof. Obviously, $0_X \in Kerf$, i.e., (I1) holds. Let $x * y \in Kerf$ and $y \in Kerf$. Then $0_Y = f(x * y) = f(x) * f(y) = f(x) * 0_Y = f(x)$ and so $x \in Kerf$. Therefore (I2) is satisfied. Thus Kerf is an ideal of X. \square

Definition 3.20. A homomorphism $f: X \to Y$, where X, Y are BI-algebras, is said to be normal if Kerf is a normal ideal of X.

Example 3.21. Let $X := \{0, 1, 2, 3, 4\}$ and $Y := \{0, 1, 2, 3\}$ be sets with the following Cayley tables:

*	0	1	\mathcal{Z}	3	4	<i>v</i>	n	1	9	Q
0	0	0	0	0	0	т О	0	-	~	
1	1	0	1	0	1	0		0	U	0
2	2	2	0	0	2	1	1	0	1	1
2	2	~ 0	1	n	~ 2	2	2	$\mathcal{2}$	0	$\mathcal{2}$
5		~	1	0	0	\mathcal{B}	3	\mathcal{B}	\mathcal{B}	0
- 4	4	4	4	4	U		I			

It is easy to show that (X; *, 0) and (Y; *', 0) are BI-algebras. Define functions $f, g: X \to Y$ by

$$\begin{split} f: 0 &\rightarrow 0, 1 \rightarrow 0, 2 \rightarrow 2, 3 \rightarrow 2, 4 \rightarrow 1. \\ g: 0 &\rightarrow 0, 1 \rightarrow 0, 2 \rightarrow 0, 3 \rightarrow 0, 4 \rightarrow 3. \end{split}$$

It is easy to check that g is a normal homomorphism. Also f is a homomorphism, but not a normal homomorphism. In fact, let Kerf := N. Then $N = \{0, 1\}$. $2 * 3 = 0, 1 * 2 = 1 \in N$ and $(2 * 1) * (3 * 2) = 2 * 1 = 2 \notin N$. Hence Kerf is not a normal ideal.

Theorem 3.22. Let X, Y be BI_1 -algebras. If $f : X \to Y$ is a normal homomorphism from X onto Y, then X/Kerf is isomorphic to Y.

Proof. By the definition of a normal homomorphism, N := Kerf is a normal ideal of X and so N is a normal subalgebra of X. Define a mapping $\phi : X/N \to Y$ by $\phi([x]_N) = f(x)$, for all $x \in X$. Let $[x]_N = [y]_N$. Then $x \sim_N y$, i.e., $x * y \in N$ and $y * x \in N$. Hence $f(x) * f(y) = 0_Y = f(y) * f(x)$. Since Y is a BI_1 -algebra, we have f(x) = f(y). Therefore $\phi([x]_N) = \phi([y]_N)$. This means that ϕ is well defined. It is easy to check that ϕ is a homomorphism from X/N onto Y. Observe that $Ker\phi = [0]_N$. In fact, $[x]_N \in Ker\phi \Leftrightarrow \phi([x]_N) = 0_Y \Leftrightarrow f(x) = 0_Y \Leftrightarrow x \in N \Leftrightarrow$ $[x]_N = [0]_N$. It follows from Proposition 3.13 that ϕ is one-to-one. Thus ϕ is an isomorphism from X/Kerf onto Y.

4. ANALYTIC CONSTRUCTION FOR BI-ALGEBRAS

We apply the analytic method deviced by J. Neggers and H. S. Kim ([6]) for obtaining an example of a *BI*-algebra. Note that the *BI*-algebra (X, *, 0) in Example 4.6 is not an implicative *BCK*-algebra. This shows that the notion of *BI*-algebra is a generalization of an implicative *BCK*-algebra. Let $X := [0, \infty)$ be the set of all non-negative real numbers unless otherwise specified. Define a binary operation "*" on X as follows:

(a) $x * y = \max\{0, f(x, y)(x - y)\} = \max\{0, \lambda(x, y)x\}$

where f(x, y) and $\lambda(x, y)$ are non-negative real valued functions with

(b) $\lambda(0, y) = 0.$

Proposition 4.1. If $x, y \in X$ with x > 0, then

$$x * y = 0 \iff x \le y \iff \lambda(x, y) = 0.$$

Proof. It follows immediately from (a).

Proposition 4.2. The function $\lambda(x, y)$ can be described as follows:

$$\lambda(x,y) = \begin{cases} 0 & \text{if } x \le y \\ \frac{x-y}{x} f(x,y) > 0 & \text{otherwise} \end{cases}$$

Proof. If x > y, then, by Proposition 4.1, $\lambda(x, y) > 0$. Since x > y, we obtain x > 0. By applying (a), we have $x * y = f(x, y)(x - y) = \lambda(x, y)x > 0$, and so we obtain $\lambda(x, y) = \frac{x - y}{x} f(x, y)$. If $x \le y$ and x > 0, then, by Proposition 4.1, we have $\lambda(x, y) = 0$. If $x \le y$ and x = 0, then $\lambda(x, y) = 0$ by the assumption (a).

Proposition 4.3. If the function $\lambda(x, y)$ satisfies the condition

(c) $\lambda(x, x) = 0$,

then the axiom (B1) holds.

Proposition 4.4. If the function $\lambda(x, y)$ satisfies the condition

(d) $\lambda(x, 0) = 1$, then x * 0 = x, for all $x \in X$.

Proof. $x * 0 = \max\{0, \lambda(x, 0)x\} = \lambda(x, 0)x = x.$

Theorem 4.5. If the function
$$\lambda(x, y)$$
 satisfies the conditions (b)~(d) and

(e)
$$\lambda(x,y) < \frac{y}{x}$$
, when $y \le x$

and

(f)
$$\lambda(x, \lambda(y, x)y) = 1$$
, for all $x, y \in X$,

then the axiom (B2) holds.

Proof. Consider x * (y * x) = x. If y < x, then y * x = 0. By Proposition 4.1, we obtain x * (y * x) = x * 0 = x.

If x < y, then $y * x = \lambda(y, x)y$. Let q := y * x. If x < q, then $\lambda(x, q) = 0$ and hence $x * (y * x) = x * q = \lambda(x, q)x = 0 \neq x$, i.e., (B2) does not hold. If x > q, then

x

$$> q \iff x > y * x \\ \Leftrightarrow x > \lambda(y, x)y \\ \Leftrightarrow \frac{x}{y} > \lambda(y, x).$$

By using the condition (f), we obtain

$$\begin{aligned} x*(y*x) &= x*q \\ &= \lambda(x,q)x \\ &= \lambda(x,y*x)x \\ &= \lambda(x,\lambda(y,x)y)x \\ &= x. \end{aligned}$$

This proves the theorem.

Example 4.6. If we define a binary operation "*" on $X = [0, \infty)$ by $x * y := \max\{0, \lambda(x, y)x\}$ where

$$\lambda(x,y) = \begin{cases} 1 & \text{if } y = 0\\ 0 & \text{if } y \neq 0, \end{cases}$$

then

$$x * y = \begin{cases} x & \text{if } y = 0\\ 0 & \text{if } y \neq 0. \end{cases}$$

If $x \neq 0$, then y * x = 0 and hence x * (y * x) = x * 0 = x. If x = 0, then y * x = y * 0 = y and hence x * (y * x) = x * y = 0 * y = 0 = x. Hence (X, *, 0) is a BI-algebra. Note that $\lambda(x, y)$ satisfies the conditions $(a) \sim (f)$.

Proposition 4.7. Every implicative BCK-algebra is a BI-algebra.

The converse of Proposition 4.7 may not be true in general as the following example.

Example 4.8. Consider the BI-algebra (X, *, 0) discussed in Example 4.6. Assume that (X; *, 0) is an implicative BCK-algebra. By Theorem 2.7, X should be a commutative BCK-algebra. By Theorem 2.8, X satisfies the following property: $x \le y \Rightarrow x = y * (y * x)$, for all $x, y \in X$. Let x := 3, y := 5. Then $5 * (5 * 3) = 5 * 0 = 5 \ne 3$, which is a contradiction. Hence X is a BI-algebra which is not an implicative BCK-algebra.

A BI-algebra X is said to be medial if (a * b) * (c * d) = (a * c) * (b * d), for any $a, b, c, d \in X$.

Theorem 4.9. There is no non-trivial medial normal BI-algebras.

Proof. Assume that (X; *, 0) is a medial *BI*-algebra with $|X| \ge 2$. Then we have

$$x = x * (y * x)$$

= (x * 0) * (y * x)
= (x * y) * (0 * x)
= (x * y) * 0
= x * y,

for any $x, y \in X$. It follows that x = x * x = 0, i.e., $X = \{0\}$, which is a contradiction. This completes the proof.

5. Acknowledgment

We would like to warmly thank the referees for their helpful comments and suggestions for the improvement of this paper.

REFERENCES

- A. Borumand Saeid, H. S. Kim and A. Razaei, On BI-algebras, An. St. Univ. Ovidius Constanţa 25 (2017), 177-194.
- [2] K. Iséki, On BCI-algebras, Math. Sem. Notes, Kobe Univ. 8(1980), 125-130.
- [3] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. 1(1998), 347-354.
- [4] C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Math. 41(2008), 497-505.
- [5] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54(2002), 21-29.
- [6] J. Neggers and H. S. Kim, On analytic T-algebras, Sci. Math. Japo. Online 4 (2001), 157-163.
- [7] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49(1999), 19-26.
- [8] A. Walendziak, On BF-algebras, Math. Slovaca 57(2007), 119-128.
- [9] H. Yisheng, BCI-algebra, Science Press, Beijing, 2006.