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Abstract. In this paper we define convex, strict convex and normal structures for

sets in fuzzy cone metric spaces. Also, existence and uniqueness of a fixed point

for non-self mappings with nonlinear contractive condition will be proved, using the

notion of strictly convex structure. Moreover, we give some examples illustrate our

results.
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1. INTRODUCTION

The Banach Contraction Mapping Principle [2] is one of the most important
theorems in functional analysis. There are many generalizations of this theorem
for classical metric spaces. One of the most important of them is the introduction
of a nonlinear contractive principle by Boyd and Wong [3]. Huang and Zhang [11]
introduced the notion of cone metric spaces by replacing real numbers with an
ordered Banach space and proved some fixed point theorems for contractive map-
pings between these spaces. They described the convergence in cone metric spaces,
introduced the notion of completeness and proved some fixed point theorems of
contractive mappings on these spaces.

On the other hand, after the theory of fuzzy sets which introduced by Zadeh
[21], there has been a great effort to obtain fuzzy analogues of classical theories. In
particular, Kramosil and Michalek in [15] introduced the fuzzy metric space. Later
on, George and Veeramani in [9] gave a stronger form of metric fuzziness.
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The notion of fuzzy cone metric spaces, as a generalization of the correspond-
ing notions of fuzzy metric spaces by George and Veeramani was introduced by
Ōner, Kandemir and Tanay [14]. They studied topology, convergence of sequences,
continuity of mappings, defined the completeness of these spaces, etc. Also, they
gave the fuzzy cone Banach contraction theorem.

In 1970 Takahashi [20] was defined convex and normal structures for sets
in metric spaces and generalized some important fixed point theorems previously
proved for Banach spaces. In 1987 Hadžić [10] introduced the notion of convex
structure for sets in Menger probabilistic metric spaces and proved fixed point the-
orem for mappings in probabilistic metric spaces with a convex structure. Ješić [12]
defined convex, strictly convex and normal structure in intuitionistic fuzzy metric
spaces. Recently, Ješić et al. [13] have introduced convex, strictly convex and nor-
mal structure in Menger PM-spaces.

Furthermore, in convex spaces occur cases where the involved function is not
necessarily a self-mapping of a closed subset. Assad and Kirk [1] first considered
non-self mappings in a metric spaces (X, d). They proved that for some non-self
(single- valued) mapping f : C → X, which satisfied Banach Contraction Map-
ping Principle d(fx, fy) ≤ λd(x, y) for all x, y ∈ C and λ ∈ (0, 1), where X is
complete metrically convex space in the sense of Menger (i.e. for every x, y ∈ X
(x 6= y), there exists z ∈ X such that d(x, y) = d(x, z)+d(z, y)), then the condition
f(∂C) ⊆ C is sufficient to guarantee the existence of fixed point for mapping f ,
where ∂C is boundary of set C. In recent years many generalizations of mentioned
theorem were proved (see e.g. [4], [5], [6], [7], [8] and [16]).

In this paper, using the notion of strictly convex structure for fuzzy cone
metric space the existence and uniqueness of a fixed point for non-self mappings
with non- linear contractive condition for function φ : P → P , will be proved. In
the proof of the main result topological methods for characterization spaces with
nondeterministic distances will be used.

2. PRELIMINARIES

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y − x ∈ P. We shall write x < y to indicate that x ≤ y but
x 6= y, while x� y will stand for y−x ∈ int(P ) , int(P ) denotes the interior of P .

The cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,

0 ≤ x ≤ y =⇒ ‖x‖ ≤ K ‖y‖ .

The least positive number satisfying above is called the normal constant of P [11].
Rezapour and Hamlbarani [17] showed that there are no cones with normal constant
K < 1 and there exist cones of normal constant 1, and cones of normal constant
M > K for each K > 1.
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The cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is, if {xn} is sequence such that

x1 ≤ x2 ≤ · · · ≤ xn · · · ≤ y

for some y ∈ E, then there is x ∈ E such that ‖xn − x‖ → 0 (n→∞). Equivalently
the cone P is regular if and only if every decreasing sequence which is bounded from
below is convergent. It is well known that a regular cone is a normal cone.

In the following we always suppose E is a Banach space, P is a cone in E
with int(P ) 6= ∅ and ≤ is partial ordering with respect to P .

Proposition 2.1. ([17, 19]). Let P be a cone of E. Then

(a) P + int(P ) ⊂ int(P );
(b) For every α ∈ R+, we have α int(P ) ⊆ int(P );
(c) For each θ ≤ c1 and θ ≤ c2, there is an element θ ≤ c such that c ≤ c1,

c ≤ c2.

Definition 2.2. ([11]). A cone metric space is an ordered (X, d), where X is any
set and d : X ×X → E is a mapping satisfying:

(CM1) d(x, y) ≥ θ for all x, y ∈ X,
(CM2) d(x, y) = θ if and only if x = y,
(CM3) d(x, y) = d(y, x) for all x, y ∈ X,
(CM4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

In [19], for c ∈ E with c� θ and x ∈ X, define B(x, c) = {y ∈ X : d(x, y)�
c} and β = {B(x, c) : x ∈ X, c ∈ E with c� θ}, then show that

τc = {U ⊂ X : ∀x ∈ U,∃B(x, c) ∈ β, x ∈ B(x, c) ⊂ U}

is a topology on X.

Definition 2.3. ([11]). Let (X, d) be a cone metric space, x ∈ X and {xn} be a
sequence in X. Then

(i) The sequence {xn} is said to converge to x if for any c ∈ E with c � θ
there exists a natural number n0 such that d(xn, x)� c for all n ≥ n0. We
denote this by lim

n→∞
xn = x or xn → x as n→∞.

(ii) The sequence {xn} is said to be a Cauchy sequence if for any c ∈ E with
c � θ there exists a natural number n0 such that d(xn, xm) � c for all
n,m ≥ n0.

(iii) (X, d) is said to be a complete cone metric space if every Cauchy sequence
is convergent.

Definition 2.4. ([18]) A binary operation T : [0, 1] × [0, 1] → [0, 1] is said to
be a continuous t-norm if ([0, 1], T ) is a topological monoid with unit 1 such that
T (a, b) ≤ T (c, d) whenever a ≤ c, b ≤ d for all a, b, c, d ∈ [0, 1].
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Some typical examples of t-norm are the following:

T (a, b) = ab, (product)

T (a, b) = min{a, b}, (minimum)

T (a, b) = max{a+ b− 1, 0}, (Lukasiewicz)

T (a, b) =
ab

a+ b− ab
, (Hamacher)

Remark 2.5. ([9]). For any r1 > r2, we can find a r3 such that r1∗r3 ≥ r2 and for
any r4 we can find a r5 such that r5 ∗ rj ≥ r4, where rj ∈ (0, 1) for j = 1, 2, · · · , 5.

Definition 2.6. ([9]) A triple (X,M, T ) is called a fuzzy metric space (briefly, a
FM-space) if X is an arbitrary (non-empty ) set, T is a continuous t-norm and M
is a fuzzy set on X ×X × [0,∞) such that the following axioms hold:

(FM-1) M(x, y, t) > 0 for all x, y ∈ X and t > 0,
(FM-2) M(x, y, t) = 1 for every t > 0 if and only if x = y,
(FM-3) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0,
(FM-4) M(x, z, t + s) ≥ T{M(x, y, t),M(y, z, s)} for all x, y, z ∈ X and for all

t, s ∈ [0,∞).
(FM-5) M(x, y, .) : (0,∞)→ [0, 1] is continuous.

Remark 2.7. ([9]) Let (X,M, T ) be a fuzzy metric space, τ = {A ⊂ X : x ∈
A←→ ∃ t > 0 and r ∈ (0, 1) such that B(x, r, t) ⊂ A} is a topology on X.

3. Fuzzy Cone Metric Spaces

In this section, we introduce the fuzzy cone metric space and the topology
induced by this space. Then we give some properties.

Definition 3.1. ([14]) A triple (X,M, T ) is said to be a fuzzy cone metric space
(briefly, a FCM-space) if P is a cone in E, X is an arbitrary set, T is a continuous
t-norm and M is a fuzzy set on X2 × int(P ) satisfying the following axioms:

(FCM-1) M(x, y, t) > 0 for all x, y ∈ X and t ∈ int(P );
(FCM-2) M(x, y, t) = 1 for every t ∈ int(P ) if and only if x = y,
(FCM-3) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t ∈ int(P ),
(FCM-4) M(x, z, t + s) ≥ T{M(x, y, t),M(y, z, s)} for all x, y, z ∈ X and for all

t, s ∈ int(P ),
(FCM-5) M(x, y, .) : int(P )→ [0, 1] is continuous.

Remark 3.2. If we take E = R, P = (0,∞) and T (a, b) = ab, then every fuzzy
metric spaces became a fuzzy cone metric spaces.

Example 3.3. ([14]) Let E = R2. Then P = {(x, y) ∈ R2 : x, y ≥ 0} is a normal
cone with normal constant K = 1. Let X = R, T (a, b) = ab and M : X2×int(P )→
[0, 1] defined by

M(x, y, t) =
1

e
|x−y|
‖t‖



Fixed point Theorems for Non-self mappings 5

for all x, y ∈ X and t� θ. Then (X,M, T ) is a fuzzy cone metric spaces.

Example 3.4. ([14]) Let P be any cone, X = N, T (a, b) = ab, M : X2× int(P )→
[0, 1] defined by

M(x, y, t) =

{
x/y, if x ≤ y;
y/x, if y ≤ x.

for all x, y ∈ X and t� θ. Then (X,M, T ) is a fuzzy cone metric spaces.

Lemma 3.5. ([14]) M(x, y, .) : int(P )→ [0, 1] is nondecreasing for all x, y ∈ X.

Definition 3.6. ([14]) Let (X,M, T ) be a fuzzy cone metric space. For t� θ, the
open ball B(x, r, t) with center x and radius r ∈ (0, 1) is defined by

Bx(r, t) = {y ∈ X : M(x, y, t) > 1− r}.

Proposition 3.7. ([14]) Let (X,M, T ) be a fuzzy cone metric space. Define

τfc = {A ⊂ X : x ∈ A⇐⇒ ∃ r ∈ (0, 1), and t� θ such that Bx(r, t) ⊂ A},
then τfc is a topology on X.

Proposition 3.8. ([14]) Let (X,M, T ) be a fuzzy cone metric space. Then (X, τfc)
is a Hausdorff and first countable.

Definition 3.9. ([14]) Let (X,M, T ) be a fuzzy cone metric space, x ∈ X and {xn}
be a sequence in X. Then

(i) {xn} is said to be converge to x if for any t � θ and any r ∈ (0, 1) there
exists a natural number n0 such that M(xn, x, t) > 1 − r for all n ≥ n0.
We denote this by lim

n→∞
xn = x or xn → x as n→∞.

(ii) {xn} is said to be a Cauchy sequence if for any t � θ and any r ∈ (0, 1)
there exists a natural number n0 such that M(xn, xm, t) > 1 − r for all
n,m ≥ n0.

(iii) A fuzzy cone metric space is said to be complete if every Cauchy sequence
is convergent.

Definition 3.10. Let (X,M, T ) be a fuzzy cone metric space and A ⊂ X. The
closure of the set A is the smallest closed set containing A, denoted by A.

Definition 3.11. A subset K of a fuzzy cone metric space is called compact if
following statement holds:

K ⊆
⋃
α∈Λ

Uα =⇒ K ⊆
n⋃
i=1

Uαi
for some α1, · · · , αn ∈ Λ

for every collection {Uα : α ∈ Λ} of open sets Uα ⊆ X.

Lemma 3.12. Let (X,M, T ) be a fuzzy cone metric space with a continuous t-
norm T and K ⊆ X. Then, K is compact if and only if for every collection of
closed sets {Fα} such that Fα ⊆ K it holds that⋂

α∈Λ

Fα =⇒
n⋂
i=1

Fαi = ∅ for some α1, · · · , αn ∈ Λ .



6 M.H.M.Rashid

Lemma 3.13. Let (X,M, T ) be a fuzzy cone metric space with a continuous t-
norm T and K ⊆ X. Then x ∈ K if and only if there exists a sequence {xn} in K
such that xn → x.

Definition 3.14. Let (X,M, T ) be a fuzzy cone metric space with a continuous
t-norm T and A ⊆ X. The fuzzy diameter of A is given by

δA(t) = inf
x,y∈A

sup
s<t

M(x, y, s).

The diameter of the set A is defined as

δA = sup
t>0

inf
x,y∈A

sup
s<t

M(x, y, s).

If there exists a number λ ∈ (0, 1) such that δA = 1 − λ, then the set A is called
fuzzy semi-bounded. If δA = 1, then A is called fuzzy bounded.

Lemma 3.15. Let (X,M, T ) be a fuzzy cone metric space with a continuous t-
norm T and A ⊆ X. A set A is fuzzy bounded if and only if for each λ ∈ (0, 1)
there exists t� θ such that M(x, y, t) > 1− λ for all x, y ∈ A.

Proof. The proof follows immediately from the definition of supA and inf A of
non-empty sets. �

It is not difficult to see that every metrically bounded set is also fuzzy bounded
if it is considered in the induced FCM-space.

Theorem 3.16. Every compact subset A of a fuzzy cone metric space (X,M, T )
with continuous t-norm T is fuzzy semi-bounded.

Proof. Let A be a compact subset of X. Let fix ε � θ and λ ∈ (0, 1). Now,
we will consider an (ε, λ)-cover {Bx(ε, λ) : x ∈ A}. Since A is compact, there

exist x1, x2, · · · , xn ∈ A such that A ⊆
n⋃
i=1

Bxi
(ε, λ). Let x, y ∈ A. Then there

exists i ∈ {1, · · ·n} such that x ∈ Bxi
(ε, λ) and exists j ∈ {1, · · ·n} such that

y ∈ Bxj
(ε, λ). Thus we have M(x, xi, ε) > 1− λ and M(y, xj , ε) > 1− λ. Now, let

m = min{M(xi, xj , ε) : 1 ≤ i, j ≤ n}. It is obvious that m > 0 and we have

M(x, y, ε) ≥ T (M(x, xi, ε),M(xi, xj , ε),M(xj , y, ε)) ≥ T (1− λ,m, 1− λ) > 1− δ,
for some 0 < δ < 1. If we take ε1 = 3ε, we have M(x, y, ε) > 1− δ for all x, y ∈ A.
Hence we obtain that A is fuzzy semi-bounded set. �

Proposition 3.17. Let (X,M, T ) be a fuzzy cone metric space with a continuous
t-norm T and τfc be the topology induced by fuzzy cone metric space. Then for any
nonempty subset S ⊆ X we have

(i) S is closed if and only if for any sequence {xn} in X which converges to x,
we have x ∈ S;

(ii) if we define S to be the intersection of all closed subset of X which contain
S, then for any x ∈ S and for any 0 < λ < 1 and ε � θ, we have
Nx(ε, λ) ∩ S 6= ∅.
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Proof. (i) Assume that S is closed and let {xn} be a sequence in S such that
lim
n→∞

xn = x. Let us prove that x ∈ S. Assume not, i.e. x /∈ S. Since S is

closed, then there exists 0 < λ < 1 and ε � θ such that Bx(λ, ε) ∩X = ∅. Since
{xn} converges to x, then there exists N ≥ 1 such that for any n ≥ N we have
xn ∈ Bx(λ, ε). Hence xn ∈ Bx(λ, ε)∩S, which leads to a contradiction. Conversely
assume that for any sequence {xn} in S which converges to x, we have x ∈ S. Let
us prove that S is closed. Let x /∈ S. We need to prove that there exists 0 < λ < 1
and ε � θ such that Bx(λ, ε) ∩ S = ∅. Assume not, i.e. for any 0 < λ < 1 and
ε � θ, we have Bx(λ, ε) ∩ S 6= ∅. So for any n ≥ 1, choose xn ∈ Bx( 1

n , ε). Clearly
we have {xn} converges to x. Our assumption on S implies x ∈ S, a contradiction.
(ii) Clearly S is the smallest closed subset which contains S. Set

S∗ = {x ∈ X : for any ε� θ, there exists a ∈ S such that M(x, a, ε) > 1− λ}.
We have S ⊂ S∗. Next we prove that S∗ is closed. For this we use property (i).
Let {xn} be a sequence in S∗ such that {xn} converges to x. Let 0 < λ < 1 and
ε� θ. Since {xn} converges to x, there exists N ≥ 1 such that for any n ≥ N we
have

M

(
x, xN ,

(
t

2

))
> 1− λ.

Let λ0 = M
(
x, xN ,

(
t
2

))
> 1 − λ. Since λ0 > 1 − λ, we can find an µ, 0 < µ < 1,

such that λ0 > 1− µ > 1− λ0. Now for a given λ0 and µ such that λ0 > 1− µ we
can find λ1, 0 < λ1 < 1, such that

λ0 ∗ (1− λ1) ≥ 1− µ.
Now since xn ∈ S∗, there exists a ∈ X such that

M
(
xn, a,

( ε
2

))
> 1− λ1

Hence

M(x, a, ε) ≥ T
(
M

(
x, xN ,

(
t

2

))
,M

(
xn, a,

( ε
2

)))
> T (λ0, 1−λ1) ≥ 1−µ > 1−λ,

which implies x ∈ S∗. Therefore S∗ is closed and contains S. The definition of
S ⊂ S∗, which implies the conclusion of (ii). �

Note that, every compact subset of a Hausdorff topological space is closed.

Proposition 3.18. Let (X,M, ∗) be a fuzzy cone metric space with a continuous
t-norm T and τfc be the topology induced by fuzzy cone metric type. Let S be a
nonempty subset of X. The following properties are equivalent:

(i) S is compact.
(ii) For any sequence {xn} in S, there exists a subsequence {xnk

} of {xn} which
converges, and if {xnk

} converges to x then x ∈ S.

Proof. (i) Assume that S is a nonempty compact subset of X. It is easy to see
that any decreasing sequence of nonempty closed subsets of S have a nonempty
intersection. Let {xn} be a sequence in S. Set Cm = {xm : m ≥ n}. Then we have



8 M.H.M.Rashid⋂
n≥1 Cn 6= ∅. Then for 0 < λ < 1, t � θ and for any n ≥ 1, there exists mn ≥ n

such that M(x, xmn , ε) > 1−λ. This clearly implies the existence of a subsequence
of {xn} which converges to x. Since S is closed, then we must have x ∈ S.
Conversely let S be a nonempty subset of X such that the conclusion of (ii) is true.
Let us prove that S is compact. First note that for any 0 < λ < 1, t � θ, there
exists x1, x2, · · · , xn ∈ A such that

S ⊆
n⋃
i=1

Bxi(λ, ε).

Assume not, then there exists 0 < λ0 < 1, such that for any finite number of points
x1, x2, · · · , xn ∈ X, we have

S *
n⋃
i=1

Bxi
(λ, ε).

Fix x1 ∈ X. Since S * Bx1
(λ, ε), there exists x2 ∈ S \ Bx1

(λ, ε). By induction we
build a sequence {xn} such that

xn+1 ∈ S \ (Bx1
(λ, ε) ∪ · · · ∪Bxn

(λ, ε))

for all n ≥ 1. Clearly we have M(xn, xm, ε) < 1− λ0 for all n,m ≥ 1, with n 6= m.
This condition implies that no subsequence of {xn} will be Cauchy or convergent.
This contradicts our assumption on X. Next let {Oα}α∈J be an open cover of
S. Let us prove that only finitely many Oα cover S. Fix ε � θ, first note that
there exists 0 < λ0 < 1 such that for any x ∈ S, there exists α ∈ J such that
Nx(λ0, ε) ⊂ Oα. Assume not, then for any 0 < λ < 1, there exists xλ ∈ X such
that for any α ∈ J , we have Bx(λ, ε) * Oα. In particular, for any n ≥ 1, there exists
xn ∈ X such that for any α ∈ J , we have Nx(ε, 1/n) * Oα. By our assumption on
S, there exists a subsequence {xnk

} of {xn} which converges to some point x ∈ X.
Since the family {Oα}α∈J covers X, there exists α0 ∈ J such that x ∈ Oα0

. Since
Oα0 is open, there exists 0 < λ0 < 1, and ε0 � θ such that Bx(λ, ε) ⊂ Oα0 . Fix
ε� θ and let ε1 = ε, for any n1 ≥ 1 and a ∈ Nxn1

( 1
n1
, ε) = Nxn1

( 1
n1
, ε1) we have

M(x, a, ε0) ≥ T (M(x, xnk
, ε0 − ε1),M(xnk

, a, ε1)) > M(x, xnk
, ε0 − ε1) > 1− 1

nk

for nk large enough, we will get M(x, a, ε) > 1−λ0 for any a ∈ Bxnk
( 1
nk
, ε). In the

other words, we have Bxnk
( 1
nk
, t) ⊂ Bx(r0, t0), which implies

Bxnk
(

1

nk
, ε) ⊂ Oα0

.

This is in clear contradiction with the way the sequence {xn} was constructed.
Therefore there exists 0 < λ0 < 1 such that for any x ∈ S, there exists α ∈ J such
that Bx(λ0, ε) ⊂ Oα. For such λ0, there exist x1, x2, · · · , xn ∈ X such that

S ⊂ Bx1
(λ0, ε) ∪ · · · ∪Bxn

(λ0, ε)

But for any i = 1, 2, · · · , n there exists α ∈ J such that Nxi
(ε, λ0) ⊂ Oα, i.e.

S ⊂ Oα1
∪ · · · ∪Oαn

. This completes the proof that S is compact. �
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Lemma 3.19. In a fuzzy cone metric space (X,M, T ) with a continuous t-norm
T , every compact set is closed and bounded.

4. Convex Structure, Normal structure and Strictly Convex Structure
on FM-Spaces

Takahashi [20] introduced the notion of metric spaces with a convex structure.
This class of metric spaces includes normed linear spaces and metric spaces of the
hyperbolic type.

Definition 4.1. Let (X, d) be a cone metric space. We say that a cone metric space
possesses a Takahashi convex structure if there exists a function W : X2×[0, 1]→ X
which satisfies

d(z,W (x, y, µ)) ≤ µd(z, x) + (1− µ)d(z, y),

for all x, y, z ∈ X and arbitrary µ ∈ [0, 1]. A cone metric space (X, d) with Taka-
hashi’s structure is called convex cone metric space.

In this section, we introduce a generalization of Takahashi’s definition to the
case of a fuzzy cone metric space.

Definition 4.2. Let (X,M, T ) be a fuzzy cone metric space with continuous t-norm
T . A mapping S : X ×X × [0, 1]→ X is said to be a convex structure on X if for
every (x, y) ∈ X × X holds S(x, y, 0) = y, S(x, y, 1) = 1 and for all x, y, z ∈ X,
µ ∈ [0, 1] and t� θ

M(S(x, y, µ), z, 2t) ≥ T
(
M

(
x, z,

t

µ

)
,M

(
x, z,

t

1− µ

))
. (1)

Example 4.3. Let X = R, E = R and P = [0,∞) be a cone. Let S : X × X ×
[0, 1]→ X defined by

S(x, y, µ) = µx+ (1− µ)y

for all x, y ∈ R and µ ∈ (0, 1) is a convex structure on fuzzy cone metric space
(R,M, T ) induced by a metric d(x, y) = |x− y| on X, where T (a, b) = min{a, b} is
continuous t-norm for a, b ∈ [0, 1] and

M(x, y, t) =

{
0, if t ≤ d(x, y);
1, if d(x, y) < t.

for all x, y ∈ X and t � θ. Let us prove this assertion. Firstly, we have that
S(x, y, 0) = y and S(x, y, 1) = x for all x, y ∈ X. Now, let us prove that inequality
(1) is satisfied. If we assume that

min

{
M

(
x, z,

(
t

µ

))
,M

(
y, z,

(
t

1− µ

))}
= 0

then inequality (1) is a trivially satisfied because we get M(S(x, y, µ), z, 2t) ≥ 0.

Now we will assume that M
(
x, z,

(
t
µ

))
= 1 and M

(
y, z,

(
t

1−µ

))
= 1. Then we
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have that t
µ > d(x, z) and t

1−µ > d(y, z), i.e. t > µd(x, z) and t > (1 − µ)d(y, z).

Hence, we obtain

2t > µd(x, z) + (1− µ)d(y, z) = µ|x− z|+ (1− µ)|y − z|
≥ |µx− µz + (1− µ)y − (1− µ)z|
= |µx+ (1− µ)y − z| = d(µx+ (1− µ)y, z)

= d(S(x, y, µ), z),

that is, 2t−d(S(x, y, µ), z) > 0 and so M(S(x, y, µ), z, 2t) = 1. Therefore, inequality
(1) holds for all x, y, z ∈ X and t� θ.

It is easy to see that every cone metric space (X, d) with a convex structure
S can be consider as a fuzzy cone metric space (X,M, T ) (the associated fuzzy
metric space) with the same function S. A fuzzy cone metric space (X,M, T ) with
a convex structure S is called a convex fuzzy cone metric space.

Here we give some terminology will be used in the sequel.

Definition 4.4. A point x ∈ A is called diametral if infy∈A sups<tM(x, y, s) =
δA(t) holds for all t > 0.

Definition 4.5. Let (X,M, T ) be a fuzzy cone metric space and A ⊆ X. The fuzzy
diameter of A is given by

δA(t) = sup
ε<t

inf
x,y∈A

M(x, y, ε).

The diameter of the set A is defined by

δA = sup
t>0

δA(t).

If there exists λ ∈ (0, 1) such that δA = 1 − λ the set A will be called fuzzy semi-
bounded. If δA = 1 the set A will be called fuzzy bounded.

Lemma 4.6. Let (X,M, T ) be a fuzzy cone metric space. A set A ⊆ X is fuzzy
bounded if and only if for each λ ∈ (0, 1) there exists t � θ such that M(x, y, t) >
1− λ for all x, y ∈ A.

Definition 4.7. Let (X,M, T ) be a fuzzy cone metric space with continuous t-norm
T and a convex structure S(x, y, µ). A subset A ⊆ X is said to be a convex if for
every x, y ∈ A and µ ∈ [0, 1] it follows that S(x, y, µ) ∈ A.

Lemma 4.8. Let (X,M, T ) be a fuzzy cone metric space with continuous t-norm
T and let {Kα}α∈Λ be a family of convex subsets of X. Then the intersection
K =

⋂
α∈ΛKα is a convex set.

Proof. If x, y ∈ K, then x, y ∈ Kα for every α ∈ Λ. It follows that S(x, y, µ) ∈ Kα

for every α ∈ Λ, i.e., S(x, y, µ) ∈ K, which means that K is convex. �

Definition 4.9. A convex fuzzy cone metric space (X,M, T ) with a convex struc-
ture S : X ×X × [0, 1]→ X and continuous t-norm T will be called strictly convex
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if, for arbitrary x, y ∈ X and µ ∈ (0, 1) the element z = S(x, y, µ) is the unique
element which satisfies

M

(
x, y,

t

µ

)
= M(x, y, t), M

(
x, y,

t

1− µ

)
= M(x, y, t), (2)

for all t� θ.

Lemma 4.10. Let (X,M, T ) be a fuzzy cone metric space with a convex structure
S(x, y, λ) and continuous t-norm T . Suppose that for every µ ∈ (0, 1), t > 0 and
x, y, z ∈ X hold

M(S(x, y, µ), z, t) > min{M(z, x, t),M(z, y, t)}. (3)

If there exists z ∈ X such that

M(S(x, y, µ), z, t) = min{M(z, x, t),M(z, y, t)} (4)

is satisfied, for all t� θ, then S(x, y, µ) ∈ {x, y}.

Proof. Let us assume that (4) holds for some z ∈ X and for all t � θ. Since (3)
holds, it follows that µ = 0 or µ = 1 and, consequently we have that S(x, y, 0) = y
or S(x, y, 1) = x,which proves the lemma. �

Lemma 4.11. Let (X,M, T ) be a fuzzy metric space with a convex structure
S(x, y, µ) and continuous t-norm T . Then for arbitrary x, y ∈ X, x 6= y there
exists µ ∈ (0, 1) such that S(x, y, µ) /∈ {x, y}.

Proof. Suppose that for every µ ∈ (0, 1), it holds that S(x, y, µ) ∈ {x, y}. From (2)
it follows that M(x, y, t) = 1 for all t� θ which means that x = y and so the proof
is achieved. �

Definition 4.12. A fuzzy cone metric space (X,M, T ) with continuous t-norm T
possesses a normal structure if, for every closed , fuzzy semi-bounded and convex
set Y ⊂ X, which consists of at least two different points, there exists a point x ∈ Y
which is non-diametral, i.e., there exists t0 > 0 such that

δY (t0) < inf
y∈Y

sup
s<t0

M(x, y, s)

holds.

It is obvious that compact and convex sets in convex metric space possess a
normal structure (see [20]).

Definition 4.13. Let (X,M, T ) be a convex fuzzy cone metric space with contin-
uous t-norm T and Y ⊆ X. The closed convex shell of a set Y denoted by cov(Y ),
is the intersection of all closed, convex sets that contain Y .

It is easy to see that the set cov(Y ) exists, since the collection of closed,
convex sets that contain Y is non-empty, because the fact that X belongs to this
collection. From Lemma 4.8, it follows that this intersection is convex set. Also,
this intersection is closed as an intersection of closed sets.
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Example 4.14. Let E = R. Then P = {x ∈ R : x ≥ 0} is a normal cone with
normal constant K = 1. Let X = R, T (a, b) = min{a, b} and M : X2 × int(P ) →
[0, 1] defined by

M(x, y, t) = H(t− d(x, y))

for all x, y ∈ X and t � θ, where d : X2 → E is a cone metric space defined by
d(x, y) = |x− y| and

H(t) =

{
0, if d(x, y) ≤ t;
1, if d(x, y) > t.

Then (X,M, T ) is a fuzzy cone metric spaces.
The mapping S : R× R× [0, 1]→ [0, 1] defined by

S(x, y, µ) = µx+ (1− µ)y

for all x, y ∈ R and µ ∈ (0, 1) is a convex structure on fuzzy cone metric space. For
arbitrary x, y ∈ X and µ ∈ (0, 1) the element z = S(x, y, µ) = µx+ (1− µ)y is the
unique element which satisfies

M(z, x, t) = H(t− d(x, z)) = H(t− d(x− µx, z − µx))

= H

(
t

1− µ
− d((1− µ)x, z − µx)

1− µ

)
= H

(
t

1− µ
− d

(
x,

z

1− µ
− µx

1− µ

))
= H

(
t

1− µ
− d(x, y)

)
= M

(
x, y,

t

1− µ

)
.

In a similar way it can proved that the second equality in (2) is satisfied. Hence
we obtained that the fuzzy cone metric space is strictly convex with a given convex
structure S(x, y, µ).

On the other hand, we have that

d(µx+ (1− µ)y, z) < max{d(x, z), d(y, z)}
is satisfied for all µ ∈ (0, 1), and it follows that

M(S(x, y, µ), z, t) = H(t− d(S(x, y, µ), z))

> H(t−max{d(x, z), d(y, z)})
= min{H(t− d(x, z)), H(t− d(y, z))}
= min{M(x, z, t),M(y, z, t)}

holds, that is, condition (3) is satisfied.

Definition 4.15. Let (X,M, T ) be a fuzzy cone metric space with continuous t-
norm T and let f be a self-mapping on X. We say that f is a non-expansive
mapping if

M(fx, fy, t) ≥M(x, y, t) (5)

holds for all x, y ∈ X and t� θ.
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Proposition 4.16. Let (X,M, T ) be a fuzzy cone metric space and {Fn}n∈N a
nested sequence of nonempty, closed subsets of X such that limn→∞ δFn

= 1. Then
there is exactly one point x0 ∈ Fn, for every n ∈ N.

Lemma 4.17. Let (X,M, T ) be a fuzzy cone metric space and {Fn}n∈N a nested
sequence of nonempty, closed subsets of X. The sequence {Fn}n∈N has fuzzy di-
ameter zero, i.e., for each λ ∈ (0, 1) and t � θ there exists n0 ∈ N such that
M(x, y, t) > 1− λ for all x, y ∈ Fn0 if and only if limn→∞ δFn = 1.

5. Main Results

Definition 5.1. Let ΦW denote the class of all functions φ : P → P satisfying the
following condition: for each t� θ, there exists r ≥ t such that limn→∞ φn(r) = 0.

Lemma 5.2. Let φ ∈ ΦW , then for each t� θ there exists r ≥ t such that φ(r) < t.

Definition 5.3. A t-norm is said to be a Hadzić type (shortly H-type) t-norm if
the family {Tm}m≥1 of its iterates defined for each t ∈ [0, 1] by

T 1(t) = T (t, t)

and, in general, for all m > 1, Tm(t) = (t, Tm−1(t)) is equi-continuous at t = 1,
that is, given λ > 0 there exists η(λ) ∈ (0, 1) such that

η(λ) < t ≤ 1⇒ T (m)(η(λ)) ≥ 1− λ
for all m > 0.

Definition 5.4. Let (X,M, T ) be a fuzzy cone metric space with continuous t-norm
T of H-type. A mapping f : X → X is said to be a fuzzy φ-contraction if there
exists a function φ ∈ ΦW such that

M(fx, fy, φ(t)) ≥M(x, y, t) (6)

for all x, y ∈ X and t� θ.

Lemma 5.5. Let {xn} be a sequence in a fuzzy cone metric space with continuous
t-norm T of H-type. If there exists a function φ ∈ ΦW such that

(i) φ(t) > t for all t� θ;
(ii) M(xn, xn+1, φ(t)) ≥M(xn−1, xn, t) for all n ∈ N and t� θ,

then {xn} is a Cauchy sequence in X.

Lemma 5.6. Let (X,M, T ) be a fuzzy cone metric space with continuous t-norm
T of H-type. If there exists a function φ ∈ ΦW such that

M(x, y, φ(t)) ≥M(x, y, t) (7)

for all t� θ and x, y ∈ X, then x = y.

Proof. Since M is monotonic, it is obvious that from (7) it follows φ(t) > 0 for all
t� θ. Therefore we have φn(t) > 0 for all t� θ and n ≥ 1. By induction, we have
from (7) that

M(x, y, φn(t)) ≥M(x, y, t) (8)
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for all t� θ and n ≥ 1.
To prove x = y, it is required that M(x, y, t) = 1 for all t � θ. Suppose, to
the contrary, that there exists some t0 � θ such that M(x, y, t0) < 1. Since
lim
t→∞

M(x, y, t) = 1, there exists t1 > t0 such that

M(x, y, t) ≥M(x, y, t0) (9)

for all t ≥ t1.
Since φ ∈ ΦW , there exists t2 ≥ t1 such that lim

n→∞
φn(t2) = 0. Therefore, we can

choose large enough n0 ≥ 1 such that φn0(t2) < t0. By the monotone property of
M , using (8) and (9), we have

M(x, y, t0) ≥M(x, y, φn0(t2)) ≥M(x, y, t2) > M(x, y, t0),

which is a contradiction. Therefore, M(x, y, t) = 1 for all t� θ and so x = y. �

Theorem 5.7. Let (X,M, T ) be a complete fuzzy cone metric space with continuous
t-norm T of H-type. If the mapping f is a fuzzy φ-contraction, then f has a unique
fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point X and the sequence {xn} be defined as
follows: xn+1 = fnx0 for all n ≥ 1. Since f is a fuzzy φ-contraction, by (6) for all
t� θ we have

M(xn, xn+1, φ(t)) = M(fxn−1, fxn, φ(t))

≥M(xn−1, xn, t).

By Lemma 5.5 we conclude that the sequence {xn} is a Cauchy sequence in X.
Since X is complete, there exists x ∈ X such that lim

n→∞
xn = x, that is, for all

t� θ,

lim
n→∞

M(x, xn, t) = 1. (10)

Now we prove that x is a fixed point of f . By (FCM-4) with y = fxn in Definition
3.1, we have

M(fx, x, t) ≥ T (M(fx, fxn, φ(t)),M(fxn, x, t− φ(t)))

≥ T (M(fx, fxn, φ(t)),M(xn+1, x, t− φ(t))).

Hence, by (6), we get

M(fx, x, t) ≥ T (M(x, xn, φ(t)),M(xn+1, x, t− φ(t))) (11)

Again by (FCM-3) and (FCM-4) with y = xn=1 in Definition 3.1,

M(x, xn+1, t− φ(t)) = M(xn+1, x, t− φ(t))

≥ T
(
M

(
x, xn+1,

t− φ(t)

2

)
,M

(
xn+1, x,

t− φ(t)

2

))
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Hence, by (FCM-3) in Definition 3.1, we have

M(xn+1, x, t− φ(t)) ≥ T
(
M

(
x, xn+1,

t− φ(t)

2

)
,M

(
x, xn+1,

t− φ(t)

2

))
.

Now from (11) we get

M(fx, x, t) ≥ T

(
M(x, xn, t), T

(
M

(
x, xn+1,

t− φ(t)

2

)
,M

(
x, xn+1,

t− φ(t)

2

)))
(12)

Since lim
n→∞

xn = lim
n→∞

xn+1 = x and T is continuous, taking n→∞ in (12) we get,

for all t� θ,

M(fx, x, t) ≥ T (1, T (1, 1)) = T (1, 1) = 1.

Hence fx = x, that is, x is a fixed point of f .
Next suppose that y 6= x is another fixed point of f . Then, for all t� θ, we

have

M(x, y, φ(t)) = M(fx, fy, φ(t))

≥M(x, y, t)

which implies, by Lemma 5.6, that x = y. Therefore, f has a unique fixed point in
X. This achieves the proof of the theorem. �

Example 5.8. Let E = R. Then P = {x ∈ R : x ≥ 0} is a normal cone with
normal constant K = 1. Let X = [0,∞), T (a, b) = min{a, b} for all a, b ∈ X.
Define M : X2 × int(P )→ [0, 1] by

M(x, y, t) =
t

t+ d(x, y)

for all x, y ∈ X, d(x, y) = |x−y| and t� θ. Then (X,M, T ) is a fuzzy cone metric
space.
Let f : X → X be a mapping defined by fx = x

2 and φ : P → P be defined by

φ(t) =


t
2 , if 0 ≤ t < 1;
4−t

3 , if 1 ≤ t ≤ 3/2;
t− 2

3 , if 3/2 < t <∞.

It is easy to verify that φ ∈ ΦW and (t) ≥ t
2 for all t ≥ 0. Now we show that f

satisfies (6). We have

M(fx, fy, φ(t)) =
φ(t)

φ(t) + |fx− fy|

=
φ(t)

φ(t) + |x2 −
y
2 |

≥
t
2

t
2 + |x2 −

y
2 |

≥ t

t+ d(x, y)

= M(x, y, t).
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This shows that (6) holds and f has a fixed point in X. The fixed point is 0.

Theorem 5.9. Let (X,M, T ) be a strictly convex, complete cone metric space with
convex structure S : X2 × [0, 1] → X satisfying (3). Let f : C → X be a non-self
mapping satisfying

M(fx, fy, φ(t)) ≥M(x, y, t) (13)

for all x, y ∈ C and every t ∈ int(P ), where φ ∈ ΦW and C is a nonempty, closed
and fuzzy bounded subset of X. Further, suppose that f has the property

f(∂C) ⊆ C. (14)

Then f has a unique fixed point in C.

Proof. Let x ∈ ∂C be an arbitrary point. We shall construct the sequence {xn}
as follows. Set x0 = x. Since x ∈ ∂C, by (14) fx0 ∈ C. Set x1 = fx0. Define
y2 = fx1. If y2 ∈ C, set x2 = y2. If y2 /∈ C let us choose x2 ∈ ∂C so that
x2 = S(x1, y2, µ), µ ∈ (0, 1). Continuing in this manner, we obtain a sequence
{xn} satisfying

xn =

{
fxn−1, if fxn−1 ∈ C;
S(xn−1, fxn−1, µ), if fxn−1 /∈ C.

(15)

Notice that if xn = S(xn−1, fxn−1, µ),µ ∈ (0, 1), then obviously xn+1 = fxn and
xn−1 = fxn−2 for n = 2, 2, · · · .

Let us consider nested sequence of nonempty closed sets defined by

Gn = {xn, xn+1, · · · } and Fn = Gn, n ∈ N.

We shall prove the family {Fn}n∈N has fuzzy diameter zero.
Firstly, let us prove that:

δGn
(φ(t)) ≥ δGn−2

(t) (16)

holds for every t� θ. Hence, we will observe the following three cases that are all
of the possibilities:

Case 1: xn+p = fxn+p−1 and xn+q = fxn+q−1 for arbitrary p, q ∈ N ∪ {0}.
Case 2: xn+p = fn+p−1 and xn+q = S(xn+q−1, fxn+q−1, µ), µ ∈ (0, 1) for arbitrary

p, q ∈ N ∪ {0}.
Case 3: xn+p = S(xn+p−1, fxn+p−1, µ1), µ1 ∈ (0, 1) and

xn+q = S(xn+q−1, fxn+q−1, µ2),

µ2 ∈ (0, 1) for arbitrary p, q ∈ N ∪ {0}.
Case 1: If xn+p = fxn+p−1 and xn+q = fxn+q−1 for arbitrary p, q ∈ N ∪ {0}, from
(13) we have

M(xn+p, xn+q, φ(t)) = M(fxn+p−1, fxn+q−1, φ(t))

≥M(xn+p, xn+q, t) (17)

≥ δGn−2(t).
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Case 2: If xn+p = fn+p−1 and xn+q = S(xn+q−1, fxn+q−1, µ), µ ∈ (0, 1) for
arbitrary p, q ∈ N ∪ {0}, then from (3) and (13) we have

M(xn+p, xn+q, φ(t)) = M(fxn+p−1, S(xn+q−1, fxn+q−1, µ), φ(t))

> min{M(fxn+p−1, xn+q−1, φ(t)),M(fxn+p−1, fxn+q−1, φ(t))}
= min{M(fxn+p−1, fxn+q−2, φ(t)),M(fxn+p−1, fxn+q−1, φ(t))}

(18)

≥ min{M(xn+p−1, xn+q−2, t),M(xn+p−1, xn+q−1, t)}
≥ δGn−2

(t).

Case 3: If xn+p = S(xn+p−1, fxn+p−1, µ1), µ1 ∈ (0, 1) and

xn+q = S(xn+q−1, fxn+q−1, µ2)

, µ2 ∈ (0, 1) for arbitrary p, q ∈ N ∪ {0}, then from (3) and (13) we have

M(xn+p, xn+q, φ(t)) = M(S(xn+p−1, fxn+p−1, µ1), S(xn+q−1, fxn+q−1, µ2), φ(t))

> min{M(xn+p−1, xn+q−1, φ(t)),M(xn+p−1, xn+q−1, φ(t)),

M(fxn+p−1, xn+q−1, φ(t)),M(fxn+p−1, fxn+q−1, φ(t))}
= min{M(fxn+p−2, xn+q−2, φ(t)),M(fxn+p−2, xn+q−1, φ(t)),

M(fxn+p−1, fxn+q−2, φ(t)),M(fxn+p−1, fxn+q−1, φ(t))}
(19)

≥ min{M(xn+p−2, xn+q−2, t),M(xn+p−2, xn+q−1, t),

M(xn+p−1, xn+q−2, t),M(xn+p−1, xn+q−1, t)}
≥ δGn−2(t).

Since the inequalities (17), (18) and (19) are of all the possibilities we have that

δGn
(φ(T )) = sup

ε<φ(t)

inf
x,y∈Gn

M(x, y, ε) = sup
ε<φ(t)

inf
p,q∈N∪{0}

M(xn+p, xn+q, ε) ≥ δGn−2
(t),

i.e. it follows that (16) holds for every t� θ.
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Now, we shall prove that family {Fn}n∈N has fuzzy diameter zero. Let λ ∈
(0, 1) and t � θ be arbitrary. From Gk ⊆ K, for arbitrary k ∈ N, it follows that
Gk is a fuzzy bounded set. Now, from Lemma 4.6 we have that for every λ ∈ (0, 1)
there exist t0 � θ such that

M(x, y, t0) > 1− λ (20)

for all x, y ∈ Gk. Hence, for every λ ∈ (0, 1) there exist t0 � θ we get that

δGk
(t0) ≥ 1− λ.

From the definition of φ ∈ ΦW , for such t0, there exists s ≥ t0 such that

lim
n→∞

φn(s) = 0.

Hence, there exists l ∈ N such that φl(s) < s. From the previous we can conclude
that there exists an even number p, p > l, such that φp(s) < t, i.e. φ2m(s) < t
where m = p

2 .
Let n = 2m + k and x, y ∈ Gn be arbitrary. Applying induction in (16) we

obtain

δGn
(t) ≥ δGn

(φ2m(s)) ≥ δn−2m(s).

From the previous inequality it follows that

δGn
(t) ≥ δGn

(φ2m(s)) ≥ δn−2m(s) ≥ δGk
(t0) ≥ 1− λ

that is,

δGn
(t) ≥ 1− λ.

Finally, since Gn and Fn have the same fuzzy diameter, we obtain that

δFn(t) ≥ 1− λ
i.e.,we get that

M(x, y, t) ≥ 1− λ
for all x, y ∈ Fn, i.e., the family {Fn}n∈N has fuzzy diameter zero.

Applying Proposition 4.16 and Lemma 4.17 we conclude that family {Fn}n∈N
has nonempty intersection, which consists of exactly one point z i.e. z ∈ Fn, for all
n ∈ N. Since the family {Fn}n∈N has fuzzy diameter zero, then for each λ ∈ (0, 1)
and each t� θ there exists n0 ∈ N such that for all n ≥ n0 holds

M(xn, z, t) > 1− λ.
From the last inequality it follows that

lim
n→∞

M(xn, z, t) > 1− λ

holds for every λ ∈ (0, 1). Taking λ→ 0 we get

lim
n→∞

F (xn, z, t) = 1, i.e., lim
n→∞

xn = z.

By the construction of sequence {xn}n∈N it follows that there exists a subse-
quence {xnk

}k∈N such that xnk+1 = fxnk
. It is obvious that limnk→∞ xnk+1 = z

and limnk→∞ fxnk
= z.

From the definition of φ ∈ ΦW , since for arbitrary t � θ, there exists r ≥ t
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such that limn→∞ φn(r) = 0, it follows that there exists l ∈ N such that φl(r) < t.
Now, from inequality (13) and previous we get

M(fxnk
, fz, t) ≥M(fxnk

, fz, φl(r)) ≥M(xnk
, z, φl−1(r)).

Taking the limit in previous inequality, applying Lemma , we obtain

lim
n→∞

M(fxnk
, fz, t) ≥ 1.

Hence, since previous inequality holds for arbitrary t� θ, we get that

M(z, fz, t) ≥ 1.

holds for every t � θ, i.e. we get that fz = z, i.e. z is the fixed point of f .
Furthermore, since set C is closed set, we conclude that z ∈ C.

Let us prove that z is a unique fixed point. For this purpose let us suppose
that there exists another fixed point, denoted by u. From the condition (13) follows

M(fz, fu, t) ≥M(z, u, t)

for every t� θ. Therefore we get that

M(z, u, φ(t)) ≥M(z, u, t)

for every t � θ. Finally, applying Lemma 5.6 it follows that z = u. This achieves
the proof. �

Example 5.10. Let X = E = R and P = [0,∞) and let d : X2 → E defined by

d(x, y) = |x− y| and let f : R→ R defined by f(x) = 3
5 −

x2

2 and C = [−1/2, 1/2].
Let us show that all conditions of Theorem 5.9 are satisfied. From Example

4.3 and Example 4.14 we have that (X,M,min) is a strictly convex fuzzy cone
metric space satisfies condition (3) with a convex structure S(x, y, µ) = µx+(1−µ)y
for all x, y ∈ X and µ ∈ (0, 1). The mapping f : [−1/2, 1/2] → [19/40, 3/5] is
a non-self mapping and it satisfying the condition f(∂C) ⊆ C because f(−1/2) =
f(1/2) = 19/40 ∈ C. It is obvious that C is nonempty and closed set. Furthermore,
C is a metrically bounded set and hence it is a fuzzy bounded set.
Let us define function φ : int(P )→ int(P ) by

φ(t) =


t
t+1 , if 0 < t < 1;

− 3
4 t+ 7

4 , if 1 ≤ t ≤ 4
3 ;

t− 7
12 , if t > 4

3 .

For a function φ we have that lim
n→∞

φn(t) = lim
n→∞

t

1 + nt
= 0 holds for every t ∈

(0, 1), but does not satisfy the condition lim
n→∞

φn(t) = 0, for every t ≥ 1, because

φ(1) = φ( 19
12 ) = 1 we get

lim
n→∞

φn(1) = lim
n→∞

φn(
19

12
) = 1.

Now we will show that function φ satisfying the condition in Definition 5.1 for all
t ≥ 1, that is, we show by induction that

lim
n→∞

φn
(

7k

12

)
= 0 (21)
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holds for k = 2, 3, · · · . It is obvious that (21) holds for k = 2, because φ( 7
6 ) = 7

8 ∈
(0, 1). Let us assume that (21) holds for k = l. Then, for k = l + 1, we have that
7(l+1)

12 > 4
3 , and it follows

lim
n→∞

φn
(

7(l + 1)

12

)
= lim
n→∞

φn−1

(
7l

12

)
= 0

which shows that (21) holds for k = l + 1, and by induction (21) holds, for every
k = 2, 3, · · · . Finally, we can conclude that for every t ≥ 1, exists r = 7k0

12 > t for
sufficiently large k0 = 2, 3, · · · , such that (21) holds. Hence the function φ satisfies
the condition in Definition 5.1.
Notice that φ(t) > t

2 holds for t� θ and |x2−y2| ≤ |x−y| holds for every x, y ∈ C,
because |x+ y| ≤ 1 holds for every x, y ∈ C. Then, we get

M(fx, fy, φ(t)) = H(φ(t)− d(fx, fy)) = H(φ(t)− |fx− fy|)

= H(φ(t)− 1

2
|x2 − y2|) ≥ H

(
t

2
− 1

2
|x− y|

)
= H(t− |x− y|) = H(t− d(x, y)) = M(x, y, t),

that is, condition (13) is satisfied for every x, y ∈ C. Since all conditions of Theo-

rem 5.9 are satisfied and so we obtain that f has a unique fixed point x = −5+
√

55
5 ∈

C.
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