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DIFFERENTIAL SANDWICH THEOREMS
FOR SOME SUBCLASS OF
ANALYTIC FUNCTIONS

ASSOCIATED WITH LINEAR OPERATORS

T.N. Shanmugam, M.P. Jeyaraman and A. Singaravelu

Abstract. Let q1 and q2 be univalent in ∆ := {z : |z| < 1} with q1(0) = q2(0) = 1.
We give some applications of first order differential subordination and superordination
to obtain sufficient conditions for a normalized analytic functions f with f(0) = 0 ,
f ′(0) = 1 to satisfy

q1(z) ≺
�

zf ′(z)

f(z)

�λ

≺ q2(z).

1. INTRODUCTION

Let H be the class of functions analytic in ∆ := {z : |z| < 1} and H[a, n]
be the subclass of H consisting of functions of the form f(z) = a + anzn +
an+1z

n+1 + · · · . Let A be the subclass of H consisting of functions of the form
f(z) = z + a2z

2 + · · · . Let p, h ∈ H and let φ(r, s, t; z) : C3 × ∆ → C. If p and
φ(p(z), zp′(z), z2p′′(z); z) are univalent and if p satisfies the second order superor-
dination

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z), (1)

then p is a solution of the differential superordination (1). (If f is subordinate to F ,
then F is called a superordinate of f.) An analytic function q is called a subordinant
if q ≺ p for all p satisfying (1). An univalent subordinant q̄ that satisfies q ≺ q̄ for
all subordinants q of (1) is said to be the best subordinant. Recently Miller and
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Mocanu [10] obtained conditions on h, q and φ for which the following implication
holds:

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z).

Using the results of Miller and Mocanu [10], Bulboaca [3] considered certain classes
of first order differential superordinations as well as superordination-preserving op-
erators [2]. Using the results of [3], Shanmugam et al. [12] obtained sufficient
conditions for a normalized analytic function f(z) to satisfy

q1(z) ≺ f(z)
zf ′(z)

≺ q2(z),

and

q1(z) ≺ z2f ′(z)
{f(z)}2 ≺ q2(z) ,

respectively where q1 and q2 are given univalent functions in ∆.
For αj ∈ C (j = 1, 2, . . . , l) and βj ∈ C \ Z−0 := {0,−1,−2, . . .}, j = 1, 2, . . . m),
the generalized hypergeometric function lFm(α1, . . . , αl; β1, . . . , βm; z) is defined by
the infinite series

lFm(α1, . . . , αl; β1, . . . , βm; z) :=
∞∑

n=0

(α1)n . . . (αl)n

(β1)n . . . (βm)n

zn

n!
.

(l ≤ m + 1; l, m ∈ N0 := N ∪ {0}),
where (a)n is the Pochhammer symbol defined by

(a)n :=
Γ(a + n)

Γ(a)
=

{
1, (n = 0);
a(a + 1)(a + 2) . . . (a + n− 1), (n ∈ N).

Corresponding to the function

h(α1, . . . , αl; β1, . . . , βm; z) := z lFm(α1, . . . , αl; β1, . . . , βm; z),

the Dziok-Srivastava operator [5] (see also [13]) H l
m(α1, . . . , αl;β1, . . . , βm; z) is

defined by the Hadamard product

H l
m(α1, . . . , αl; β1, . . . , βm; z)f(z) := h(α1, . . . , αl; β1, . . . , βm; z) ∗ f(z)

= z +
∞∑

n=2

(α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1

anzn

(n− 1)!
.(2)

It is well known [5] that

α1H
l
m(α1 + 1, . . . , αl; β1, . . . , βm; z)f(z)

= z[H l
m(α1, . . . , αl; β1, . . . , βm; z)f(z)]′

+(α1 − 1)H l
m(α1, . . . , αl; β1, . . . , βm; z)f(z). (3)
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To make the notation simple, we write

H l
m[α1]f(z) := H l

m(α1, . . . , αl; β1, . . . , βm; z)f(z).

Special cases of the Dziok-Srivastava linear operator includes the Hohlov lin-
ear operator [6] , the Carlson-Shaffer linear operator[4], the Ruscheweyh derivative
operator [11], the generalized Bernardi-Libera-Livingston linear integral operator
(cf. [1], [7], [8]).

2. PRELIMINARIES

In our present investigation, we shall need the following definition and results.
In this paper unless otherwise mentioned α and β are complex numbers.

Definition 2.1: [10, Definition 2, p. 817] Let Q be the set of all functions f that
are analytic and injective on ∆̄− E(f), where

E(f) =
{

ζ ∈ ∂∆ : lim
z→ζ

f(z) = ∞
}

,

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂∆− E(f).

Theorem 2.1 : [9, Theorem 3.4h , p. 132] Let q be univalent in the unit disk
∆ and θ and φ be analytic in a domain D containing q(∆) with φ(ω) 6= 0 when
ω ∈ q(∆).

Set ξ(z) = zq′(z)φ(q(z)), h(z) = θ(q(z)) + ξ(z). Suppose that,

1. ξ(z) is starlike univalent in ∆ and

2. < zh′(z)
ξ(z) > 0 for z ∈ ∆.

If p is analytic in ∆ with p(∆) ⊆ D, and

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)), (4)

then p ≺ q and q is the best dominant.

Lemma 2.1 : [12] Let q be univalent in ∆ with q(0) = 1. Further assuming that

<
[
α

β
+ 1 +

zq′′(z)
q′(z)

]
> 0.

If p is analytic in ∆, with p(∆) ⊆ D and

αp(z) + βzp′(z) ≺ αq(z) + βzq′(z),
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then p ≺ q and q is the best dominant.

Theorem 2.2 : [3] Let q be univalent in the unit disk ∆ and ϑ and ϕ be analytic
in a domain D containing q(∆). Suppose that

1. <
[

ϑ′(q(z))
ϕ(q(z))

]
> 0 for z ∈ ∆, and

2. ξ(z) = zq′(z)ϕ(q(z)) is starlike univalent function in ∆.

If p ∈ H [q(0), 1] ∩ Q, with p(∆) ⊂ D and ϑ(p(z)) + zp′(z)ϕ(p(z)) is univalent in
∆, and

ϑ(q(z)) + zq′(z)ϕ(q(z)) ≺ ϑ(p(z)) + zp′(z)ϕ(p(z)), (5)

then q ≺ p and q is the best subordinant.

Lemma 2.2 : [12] Let q be univalent in ∆ , q(0) = 1. Further assuming that
<

[
α
β q′(z)

]
> 0.

If p ∈ H [q(0), 1] ∩Q, and αp + βzp′ is univalent in ∆, and

αq(z) + βzq′(z) ≺ αp(z) + βzp′(z) ,

then q ≺ p and q is the best subordinant.

3. SUBORDINATION RESULTS FOR ANALYTIC FUNCTIONS

By making use of Lemma 2.3, we prove the following results.

Theorem 3.1 : Let q be univalent in ∆ with q(0) = 1 and satisfying

<
[
α

β
+ 1 +

zq′′(z)
q′(z)

]
> 0. (6)

Let

Ψ(α, β, λ; z) := α

(
zf ′(z)
f(z)

)λ

+ βλ

(
zf ′(z)
f(z)

)λ {
1 +

zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

}
. (7)

If f ∈ A satisfies
Ψ(α, β, λ; z) ≺ αq(z) + βzq′(z), (8)

then (
zf ′(z)
f(z)

)λ

≺ q(z) ,

and q is the best dominant.



Differential Sandwich Theorems 43

Proof. Define the function p(z) by

p(z) :=
(

zf ′(z)
f(z)

)λ

.

Then by means of simple computation we can show that

Ψ(α, β, λ; z) = αp(z) + βzp′(z).

Now (8) becomes
αp(z) + βzp′(z) ≺ αq(z) + βzq′(z),

and Theorem 3.1 follows by an application of Lemma 2.1.

By taking q(z) =
1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1) we have the following Example.

Example 3.1 : Let q(z) =
1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1) in Theorem 3.1. Further

assuming that (6) holds. If f ∈ A, then

Ψ(α, β, λ; z) ≺ α

(
1 + Az

1 + Bz

)
+ β

(A−B)z
(1 + Bz)2

,

⇒
(

zf ′(z)
f(z)

)λ

≺ 1 + Az

1 + Bz
,

and
1 + Az

1 + Bz
is the best dominant.

Also if q(z) =
1 + z

1− z
, then for f ∈ A we have

Ψ(α, β, λ; z) ≺ α

(
1 + z

1− z

)
+

2βz

(1− z)2
,

⇒
(

zf ′(z)
f(z)

)λ

≺ 1 + z

1− z
,

and
1 + z

1− z
is the best dominant.

4. SUPERORDINATION RESULTS FOR ANALYTIC FUNCTIONS

Theorem 4.1 : Let q be convex univalent in ∆ with q(0) = 1. Let f ∈ A,(
zf ′(z)
f(z)

)λ

∈ H [1, 1] ∩Q, with

<
[
α

β
q′(z)

]
> 0. (9)
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If Ψ(α, β, λ; z) as defined by (7) is univalent in ∆, with

αq(z) + βzq′(z) ≺ Ψ(α, β, λ; z) ,

then

q(z) ≺
(

zf ′(z)
f(z)

)λ

,

and q is the best subordinant.

Proof. Theorem 4.1 follows by an application of Lemma 2.2.

By taking q(z) =
1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1) in Theorem 4.1, we have the

following Example.

Example 4.1 : Let q be convex univalent in ∆.

Also let f ∈ A,

(
zf ′(z)
f(z)

)λ

∈ H [1, 1] ∩ Q. Further assuming that (9) holds. If

Ψ(α, β, λ; z) as defined by (7) is univalent in ∆, and

α

(
1 + Az

1 + Bz

)
+

β(A−B)z
(1 + Bz)2

≺ Ψ(α, β, λ; z),

then
1 + Az

1 + Bz
≺

(
zf ′(z)
f(z)

)λ

,

and
1 + Az

1 + Bz
is the best subordinant.

Inparticular, we have

α

(
1 + z

1− z

)
+

2βz

(1− z)2
≺ Ψ(α, β, λ; z),

implies
1 + z

1− z
≺

(
zf ′(z)
f(z)

)λ

,

and
1 + z

1− z
is the best subordinant.

5. SANDWICH THEOREMS

By combining the results of subordination and superordination, we get the
following “Sandwich theorems”.
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Theorem 5.1 : Let q1 and q2 be convex univalent in ∆ and satisfying (9) and
(6) respectively.

Let f ∈ A,

(
zf ′(z)
f(z)

)λ

∈ H [1, 1]∩Q and Ψ(α, β, λ; z) as defined by (7) is univalent

in ∆. Further if

αq1(z) + βzq′1(z) ≺ Ψ(α, β, λ; z) ≺ αq2(z) + βq′2(z),

then

q1(z) ≺
(

zf ′(z)
f(z)

)λ

≺ q2(z),

and q1 and q2 are respectively the best subordinant and best dominant.

For q1(z) =
1 + A1z

1 + B1z
, q2(z) =

1 + A2z

1 + B2z
(−1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1), we

have the following Example.

Example 5.1 : If f ∈ A,

(
zf ′(z)
f(z)

)λ

∈ H[1, 1] ∩ Q and Ψ(α, β, λ; z) as defined

by (7) is univalent in ∆ , and

Ψ1(A1, B1, α, β, λ; z) ≺ Ψ(α, β, λ; z) ≺ Ψ2(A2, B2, α, β, λ; z) ,

then
1 + A1z

1 + B1z
≺

(
zf ′(z)
f(z)

)λ

≺ 1 + A2z

1 + B2z
,

where

Ψ1(A1, B1, α, β, λ; z) := α

(
1 + A1z

1 + B1z

)
+

β(A1 −B1)z
(1 + B1z)2

,

Ψ2(A2, B2, α, β, λ; z) := α

(
1 + A2z

1 + B2z

)
+

β(A2 −B2)z
(1 + B2z)2

.

The functions
1 + A1z

1 + B1z
and

1 + A2z

1 + B2z
are respectively the best subordinant and best

dominant.

6. APPLICATION TO DZIOK-SRIVASTAVA OPERATOR

Theorem 6.1 : Let q be univalent in ∆ with q(0) = 1. Let

η(α, β, λ, l, m; z) :=
(

Hl
m[α1+1]f(z)
Hl

m[α1]f(z)

)λ

×
[
(α + βλ)

{
(α1 + 1)

(
H l

m[α1 + 2]f(z)
)

H l
m[α1 + 1]f(z)

− α1

(
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)

)
− 1

}]
. (10)
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If f ∈ A satisfies
η(α, β, λ, l, m; z) ≺ αp(z) + βzq′(z) ,

then (
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)

)λ

≺ q(z) ,

and q is the best dominant.

Proof. Define the function p(z) by

p(z) :=
(

H l
m[α1 + 1]f(z)
H l

m[α1]f(z)

)λ

. (11)

By taking logarithmic derivative of (11) we get

zp′(z)
p(z)

= λ

[
z

(
H l

m[α1 + 1]f(z)
)′

H l
m[α1 + 1]f(z)

− z
(
H l

m[α1]f(z)
)′

H l
m[α1]f(z)

]
. (12)

By using identity

z
(
H l

m[α1]f(z)
)′

= α1H
l
m[α1 + 1]f(z)− (α1 − 1)H l

m[α1]f(z),

and (11) in (12) we get

αp(z) + βzp′(z) =
(

Hl
m[α1+1]f(z)
Hl

m[α1]f(z)

)λ

×
[
(α + βλ)

{
(α1 + 1)H l

m[α1 + 2]f(z)
H l

m[α1 + 1]f(z)
− α1

(
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)

)
− 1

}]
.

Now Theorem 6.1 follows as an application of Lemma 2.1.
By taking l = 2, m = 1 and α2 = 1 in Theorem 6.1 we have the following

corollary.

Corollary 6.1 : Let q be univalent in ∆ with q(0) = 1 . Let

φ(a, c, α, β, λ : z) :=
(

L(a+1,c)f(z)
L(a,c)f(z)

)λ

×
[
α + βλ

{
(a + 1)L(a + 2, c)f(z)

L(a + 1, c)f(z)
− aL(a + 1, c)f(z)

L(a, c)f(z)
− 1

}]
.

If f ∈ A satisfies
φ(a, c, α, β, λ : z) ≺ αq(z) + βzq′(z) ,

then (
L(a + 1, c)f(z)

L(a, c)f(z)

)λ

≺ q(z) ,

and q is the best dominant.
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Taking a = 1 and c = 1 in corollary 6.1 we get the following corollary.

Corollary 6.2 : Let q be univalent in ∆ with q(0) = 1. If f ∈ A and

(
Dn+1f(z)
Dnf(z)

)λ [
α + βλ

{
(a + 1)Dn+2f(z)

Dn+1f(z)
− aDn+1f(z)

Dnf(z)
− 1

}]
≺ αq(z)+βzq′(z),

then (
Dn+1f(z)
Dnf(z)

)λ

≺ q(z) ,

and q is the best dominant.
Since the superordination results are a dual of the subordination here we

state only the results pertaining to the superordination.

Theorem 6.2 : Let q be convex univalent in ∆ with q(0) = 1. Let f ∈ A,(
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)

)λ

∈ H[1, 1]∩Q, with <
[

α
β q′(z)

]
> 0. Further if η(α, β, λ, l, m; z)

as defined by (10) is univalent in ∆, with

αq(z) + βzq′(z) ≺ η(α, β, λ, l,m; z) ,

then

q(z) ≺
(

H l
m[α1 + 1]f(z)
H l

m[α1]f(z)

)λ

,

and q is the best subordinant.

Theorem 6.3 : Let q be convex univalent in ∆.

Let f ∈ A,
(

L(a + 1, c)f(z)
L(a, c)f(z)

)λ

∈ H[1, 1] ∩ Q and φ(a, c, α, β, λ : z) as defined by

(13) is univalent in ∆. If

αq(z) + βzq′(z) ≺ φ(a, c, α, β, λ : z) ,

then

q(z) ≺
(

L(a + 1, c)f(z)
L(a, c)f(z)

)λ

,

and q is the best subordinant.

Taking q(z) =
1 + Az

1 + Bz
,

1 + z

1− z
in Theorem 6.1 we can get more results and

we omit the details involved.
Combining the results of subordination and superordination, we state the

following Sandwich Theorems.
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Theorem 6.4 : Let q1 and q2 be convex univalent in ∆ satisfying (9) and (6)

respectively. If f ∈ A,
(

H l
m[α1 + 1]f(z)
H l

m[α1]f(z)

)λ

∈ H[1, 1] ∩Q and η(α, β, λ, l, m; z) as

defined by (10) is univalent in ∆, and

αq1(z) + βzq′1(z) ≺ η(α, β, λ, l,m; z) ≺ αq2(z) + βzq′2(z) ,

then

q1(z) ≺
(

H l
m[α1 + 1]f(z)
H l

m[α1]f(z)

)λ

≺ q2(z) ,

and q1(z) and q2(z) are respectively the best subordinant and best dominant.

For q1(z) =
1 + A1z

1 + B1z
, q2(z) =

1 + A2z

1 + B2z
(−1 ≤ B2 < B1 < A1 < A2 ≤ 1), we

have the following corollary.

Corollary 6.3 : If f ∈ A,
(

H l
m[α1 + 1]f(z)
H l

m[α1]f(z)

)λ

∈ H[1, 1]∩Q and η(α, β, λ, l, m; z)

as defined by (10) is univalent in ∆, and

Φ1(A1, B1, α, β; z) ≺ η(α, β, λ, l,m; z) ≺ Φ2(A2, B2, α, β; z),

where

Φ1(A1, B1, α, β; z) := α

(
1 + A1z

1 + B1z

)
+

β(A1 −B1)z
(1 + B1z)2

,

Φ2(A2, B2, α, β; z) := α

(
1 + A1z

1 + B1z

)
+

β(A2 −B2)z
(1 + B2z)2

,

⇒ 1 + A1z

1 + B1z
≺

(
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)

)λ

≺ 1 + A2z

1 + B2z
.

The functions
1 + A1z

1 + B1z
and

1 + A2z

1 + B2z
are respectively the best subordinant and best

dominant.

Theorem 6.5 : Let q1 and q2 be convex univalent in ∆ and satisfing (9) and (6)

respectively. If f ∈ A,
(

L(a + 1, c)f(z)
L(a, c)f(z)

)λ

∈ H[1, 1] ∩Q and φ(a, c, α, β, λ : z) as

defined by (13) is univalent in ∆, and

αq1(z) + βzq′1(z) ≺ φ(a, c, α, β, λ : z) ≺ αq2(z) + βzq′2(z) ,

then

q1(z) ≺
(

L(a + 1, c)f(z)
L(a, c)f(z)

)λ

≺ q2(z) ,

and q1(z) and q2(z) are respectively the best subordinant and best dominant.
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Theorem 6.6 : Let q1(z) and q2(z) be convex univalent in ∆ and satisfing (9)

and (6) respectively. Let f ∈ A,
(

Dn+1f(z)
Dnf(z)

)λ

∈ H[1, 1] ∩Q,

(
Dn+1f(z)
Dnf(z)

)λ [
α + βλ

{
(a + 1)Dn+2f(z)

Dn+1f(z)
− aDn+1f(z)

Dnf(z)
− 1

}]
,

is univalent in ∆. Further if

αq1(z) + βzq′1(z) ≺
(

Dn+1f(z)
Dnf(z)

)λ

×
[
α + βλ

{
(a + 1)Dn+2f(z)

Dn+1f(z)
− aDn+1f(z)

Dnf(z)
− 1

}]
≺ αq2(z) + βzq′2(z) ,

then

q1(z) ≺
(

Dn+1f(z)
Dnf(z)

)λ

≺ q2(z),

and q1 and q2 are respectively the best subordinant and best dominant.
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