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STABILITY OF INTEGRODIFFERENTIAL

EQUATIONS WITH IMPULSES

Sariyasa

Abstract. Sufficient conditions have been derived for the asymptotic stability of the

trivial solutions of a class of linear integrodifferential equations under impulsive per-

turbations. The sufficient conditions are formulated in terms of the parameters of the

equations such that in the absence of the impulsive effects, these conditions are reduced

to those of the non-impulsive equations.

1. INTRODUCTION

There are several dynamical systems which display characteristic correspond-
ing to both continuous and discrete processes. These systems at certain instants of
time are subjected to rapid changes represented by instantaneous jumps. Appro-
priate mathematical models for such systems are impulsive differential equations.

A number of biological neural networks and bursting rhythm models in phys-
iology, optimal control models in economic dynamics, signal processing systems
with frequency modulation and motion of flying objects, all incorporate abrupt
and instantaneous changes in the state of the underlying dynamic system (see for
instance [1, 6, 7, 8, 10]). These areas provide some examples of impulsive phenom-
ena. Impulsive phenomena can also be found in the fields of electronics, population
dynamics, economics, biology, automatic control systems, computer networking,
robotics and telecommunications. It has thus become necessary to develop the
study of a new class of dynamic systems to model phenomena which are subjected
to sudden changes in the state of the systems.

The study of the stability of impulsive differential equations is much more
difficult than that of ordinary differential equations because there is no “elegant
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description of properties of an impulsive system in terms of the eigenvalues of the
matrix of the system as we have for a system of ordinary differential equations” ([12,
p. 52]). Thus even for linear impulsive differential equations there is no likelihood
of deriving necessary and sufficient conditions for stability of solutions.

In this paper we investigate the stability of a class of linear integrodifferential
equations subjected to impulsive perturbations. We reduce the study of impulsive
integrodifferential equations to one of a comparison equation with no impulses
by using the variation of constants formula together with integral inequalities for
piecewise continuous functions developed by Azbelev and Tsaliuk (see [13]). The
resulting comparison equation is in the form of an integral equation whose solution
we embed in the solution space of an associated differential equation. Thus our
approach leads to the determination of sufficient conditions for the stability of
equilibrium of the impulsive integrodifferential equations through a study of the
non-impulsive integrodifferential equations. The sufficient conditions obtained are
easy to verify since they are expressed in term of the parameters of the systems.
In the absence of impulses, these conditions reduce to those of the non-impulsive
systems.

2. PRELIMINARIES

Consider scalar impulsive system given by

dx(t)
dt

= −ax(t), t 6= τj , j = 1, 2, 3, . . .

x(0+) = x0

x(τj+) = (1 + pj)x(τj−), 0 ≤ pj ≤ p, j = 1, 2, 3, . . .

0 < τ1 < τ2 < · · · < τj < · · · ,

τj →∞ as j →∞





(1)

in which a and p = max {pj}, j = 1, 2, 3, . . . are real numbers; τj , j = 1, 2, 3 . . . are
the time instant at which the jump occurs; x(τj+) and x(τj−) are defined by

x(τj+) = lim
h→0+

x(τj + h), x(τj−) = lim
h→0+

x(τj − h).

Furthermore we assume that the impulsive perturbation do not occur too often in
the sense that there exists a positive number θ such that

τj+1 − τj ≥ θ > 0, j = 0, 1, 2, . . . .

Let i[t, t0] denote the number of impulses occurring during the time interval [t0, t].
Then it can be shown that

i[t, t0]− 1 <
t− t0

θ
, t > t0. (2)
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Solutions of the system (1) is given by

x(t) = e−atx0

k=j∏

k=1

(1 + pk), τj < t ≤ τj+1, j = 0, 1, 2, . . . (3)

in which we use the notation
∏n

k=m = 1 when n < m. From (3) we derive that

|x(t)| ≤ e−at|x0|(1 + p)i[t,0], τj < t ≤ τj+1, j = 0, 1, 2, . . . (4)

where i[t, 0] denotes the number of impulsive jumps in the state variable contained
in the interval [0, t]. Using (2) with t0 = 0 we obtain from (4) that

|x(t)| ≤ e−
(
a− 1

θ ln(1+p)
)
t(1 + p)|x0|, t > 0. (5)

If W (t, s), 0 ≤ s < t denotes the fundamental solution of the system (1), then we
have the estimate

|W (t, s)| ≤ (1 + p)e−q(t−s), q = a− 1
θ ln(1 + p), t > s ≥ 0. (6)

Consider the initial value problem for the nonhomogeneous impulsive differ-
ential system

dx(t)
dt

= Ax(t) + f(t, x), t 6= τi, i = 1, 2, 3, . . .

∆ x|t=τi = Bix(τi−), i = 1, 2, 3, . . .

x(t0+) = x0





(7)

under the following assumptions:

(i) t0 = τ0 < τ1 < τ2 < · · · < τk < · · · and limk→∞ τk = ∞;

(ii) A is an n× n constant matrix;

(iii) f : R+ × Rn → Rn is continuous on [τk−1, τk) × Rn and for every x ∈ Rn,
k = 1, 2, 3, . . .

lim
(t,y)→(τk,x)

f(t, y) exists for t > τk;

(iv) for every k = 1, 2, 3, . . ., Bk is a constant n× n matrix such that (I + Bk) is
nonsingular.

Theorem 2.1. Suppose the assumptions (i)–(iv) hold. Let x(t) be any solution of
the nonhomogeneous initial value problem (7) existing on [t0,∞) and let W (t, s) be
the fundamental matrix solution of the homogeneous initial value problem where

W (t, s) = X(t, t0)X−1(s, t0). (8)
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Then x(t) satisfies the integral equation

x(t) = W (t, t0)x0 +
∫ t

t0

W (t, s)f(s, x(s)) ds, t > t0. (9)

Proof. Let X(t, t0) be the fundamental matrix solution associated with

dx(t)
dt

= Ax(t), t 6= τi, i = 1, 2, 3, . . .

∆ x|t=τi
= Bix(τi−), i = 1, 2, 3, . . .

x(t0+) = x0





where t0 = τ0 < τ1 < τ2 < · · · < τi < · · · and ti →∞ as i →∞. We let

x(t) = X(t, t0)y(t) (10)

be a solution of the nonhomogeneous linear system (7).
We have by direct verification that

dx

dt
=

dX

dt
y(t) + X(t, t0)

dy

dt
= AX(t, t0)y(t) + f(t, x(t)), t 6= τi

which leads to the system

dy(t)
dt

= X−1(t, t0)f(t, x(t))

∆ y|t=τi = X−1(τi, t0)Bix(τi−), i = 1, 2, 3, . . .

y(t0+) = X−1(t0, t0)x(t0)





so that

y(t) = y(t0) +
∫ t

t0

X−1(s, t0)f(s, x(s)) ds

and hence using (8) and (10) we obtain

x(t) = X(t, t0)y(t0) +
∫ t

t0

X(t, t0)X−1(s, t0)f(s, x(s)) ds

= W (t, t0)x(t0) +
∫ t

t0

W (t, s)f(s, x(s)) ds, t > t0.

The proof is complete.

Our result in the next section is depend on the result of Azbelev and Tsaliuk
(see [13]) which concerns with the comparison of solutions of integral inequalities
containing piecewise continuous functions.
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3. STABILITY ANALYSIS

In this section we shall obtain sufficient conditions for the asymptotic stabil-
ity of a class of linear integrodifferential equations subjected to impulsive pertur-
bations.

We consider the scalar impulsive integrodifferential system given by the fol-
lowing:

dx(t)
dt

= −ax(t) + bα

∫ t

0

e−α(t−s)x(s) ds, t 6= τi

x(0+) = x0

∆x|t=τi
= x(τi+)− x(τi−) = pix(τi−), 0 ≤ pi ≤ p, i = 1, 2, 3, . . .

0 < τ1 < τ2 < · · · < τi < · · · , τi →∞ as i →∞
τi+1 − τi ≥ θ > 0, i = 0, 1, 2, . . .





(11)

in which α denotes a nonnegative real number; a, b and p = max {pi}, i = 1, 2, 3, . . .
are real numbers. The following result provides sufficient condition for the asymp-
totic stability of the trivial solution of the system (11).

Theorem 3.1. Suppose the parameters a, b, p, and θ in the system (11) satisfy

a− 1
θ

ln(1 + p) > |b|(1 + p), (12)

then the trivial solution of the impulsive integrodifferential system (11) is asymp-
totically stable.

Proof. Consider the system (11) as a perturbation of the one in which α = 0.
Accordingly, we consider the unperturbed system

du(t)
dt

= −au(t), t 6= τi

u(0+) = x0

u(τi+) = (1 + pi)u(τi−), 0 ≤ pi ≤ p, i = 1, 2, 3, . . .





From (4) we have

|u(t)| ≤ e−at|x0|(1 + p)i[t,0], τi < t ≤ τi+1, i = 0, 1, 2, . . .

in which i[t, 0] denotes the number of impulsive jumps in the state variable con-
tained in the interval [0, t]. Furthermore, from (5) we obtain that

|u(t)| ≤ e−{a−
1
θ ln(1+p)}t(1 + p)|x0|, t > 0.

If W (t, s) denotes the fundamental matrix solution of this simplified system where
0 ≤ s < t, then following (6) we have the estimate

|W (t, s)| ≤ (1 + p)e−q(t−s), q = a− 1
θ

ln(1 + p), t > s ≥ 0.
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By virtue of (9), any solution of the impulsive perturbed system is given by

x(t) = W (t, 0)x0 + bα

∫ t

0

W (t, s)
(∫ s

0

e−α(s−u)x(u) du

)
ds

which leads to the estimation

|x(t)| ≤ (1 + p)e−qtx0 + |b|α
∫ t

0

(1 + p)e−q(t−s)

(∫ s

0

e−α(s−u)|x(u)| du

)
ds

or equivalently,

|x(t)|eqt ≤ (1 + p)x0 + |b|α(1 + p)
∫ t

0

∫ s

0

e−α(s−u)eqse−qu|x(u)| du ds.

We can now use theorem of Azbelev and Tsaliuk (see [13]) so as to set up a com-
parison integral equation. It is found that |x(t)|eqt is bounded above by v(t) where
v(t) is a continuous solution of the integral equation

v(t) = (1 + p)x0 + bα(1 + p)
∫ t

0

∫ s

0

e−(α−q)(s−u)v(u) du ds. (13)

We now investigate the asymptotic behaviour of (t). From the integral equa-
tion governing v(t) in (13) we find that v(t) belongs to the solution space of the
differential system

dv(t)
dt

= |b|α(1 + p)
∫ t

0

e−(α−q)(t−u)v(u) du

d2v(t)
dt2

= |b|α(1 + p)v − (α− q)|b|α(1 + p)
∫ t

0

e−(α−q)(t−u)v(u) du

= |b|α(1 + p)v − (α− q)
dv(t)
dt

.

This system can be put into first order system

dv

dt
= u

du

dt
= |b|α(1 + p)v − (α− q)u

whose characteristic equation is given by

µ2 + (α− q)µ− |b|α(1 + p) = 0.

We note that any solution v of the integral equation (13) is of the form

v(t) = c1e
µ1t + c2e

µ2t, t > 0.
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The asymptotic behaviour of x(t) is given by

x(t) ≤ c1e
(µ1−q)t + c2e

(µ2−q)t

= c1e
λ1t + c2e

λ2t

where λ1 and λ2 are the roots of the equation

(λ + q)2 + (λ + q)(α− q)− |b|α(1 + p) = 0

which is equivalent to

λ2 + λ(α + q) + α{q − |b|(1 + p)} = 0.

Applying Routh-Hurwitz criteria, it follows that if

q − |b|(1 + p) > 0 or a− 1
θ

ln(1 + p)− |b|(1 + p) > 0,

which is the same condition as in (12), then the trivial solution of the impulsive
integrodifferential system is asymptotically stable. This completes the proof.

In the above proof, we have reduced the integral equation into the differential
system. This procedure is based on the work of [4] that contains a necessary and
sufficient condition for the reducibility of a functional differential (or integrodiffer-
ential) equation to a system of ordinary differential equations. The method of [4]
has been used by [3, 9, 11, 14] to reduce integrodifferential equations arising in pop-
ulation dynamics to systems of ordinary differential equations. Stability questions
for ordinary differential equations are then easily answered using the Routh-Hurwitz
criteria. The validity of such a method of reduction has been established by [2].

Next, we consider the impulsive integrodifferential system

dx(t)
dt

= −ax(t) + b

∫ ∞

0

K(s)x(t− s) ds, t 6= τi

x(s) = ϕ(s), s ≤ 0, ϕ is bounded and continuous on (−∞, 0]
∆x|t=τi = pix(τi−), 0 ≤ pi ≤ p, i = 1, 2, 3, . . .

0 < τ1 < τ2 < · · · < τi < · · · , τi →∞ as i →∞
τi+1 − τi ≥ θ > 0, i = 0, 1, 2, . . .





(14)

where a, b and p = max {pi}, i = 1, 2, 3, . . . are real numbers. The kernel K :
[0,∞) → [0,∞) is bounded and continuous on [0,∞) and is such that

∫ ∞

0

K(s) ds < ∞ and
∫ ∞

0

sK(s) ds < ∞. (15)

The following theorem provides condition that guarantees the asymptotic stability
of the system (14).
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Theorem 3.2. Suppose the delay kernel K, the parameters a, b, θ, and p are such
that

a− 1
θ

ln(1 + p) > |b|(1 + p)
∫ ∞

0

K(s) ds, (16)

then the trivial solution of the impulsive system (14) is asymptotically stable.

Proof. From (9), any solution of the impulsive integrodifferential system (14) is a
solution of the integral equation

x(t) = W (t, 0)ϕ(0) + b

∫ t

0

W (t, s)
(∫ ∞

0

K(u)x(s− u) du

)
ds (17)

where W (t, s) denotes the fundamental solution associated with the unperturbed
impulsive differential system. By using the estimates of the fundamental solution,
we obtain from (17) that

|x(t)| ≤ (1 + p)e−qtϕ(0) + |b|(1 + p)
∫ t

0

e−q(t−s)

∫ ∞

0

K(u)|x(s− u)| du ds.

where
q = a− 1

θ
ln(1 + p). (18)

We observe that |x(t)| ≤ v(t) where by theorem of Azbelev and Tsaliuk (see [13]),
v(t) is a solution of

v(t) = (1 + p)e−qtϕ(0) + |b|(1 + p)
∫ t

0

e−q(t−s)

∫ ∞

0

K(u)v(s− u) du ds

and such a v(t) is also a solution of

dv(t)
dt

= −q(1 + p)e−qtϕ(0) + |b|(1 + p)
∫ ∞

0

K(u)v(t− u) du−

q|b|(1 + p)
∫ t

0

e−q(t−s)

∫ ∞

0

K(u)v(s− u) du ds

= −qv + |b|(1 + p)
∫ ∞

0

K(u)v(t− u) du. (19)

We now examine the asymptotic behaviour of the integrodifferential equation (19)
by using a Lyapunov functional V (t) defined by

V (t) = |v(t)|+ |b|(1 + p)
∫ ∞

0

K(s)
(∫ t

t−s

|v(u)| du

)
ds.

We note that V (t) > 0 for t > 0 and that

V (0) ≤ |v(0)|+ |b|(1 + p)
∫ ∞

0

K(s)

(
s sup

u∈[t−s,t]

|v(u)|
)

ds. (20)
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From the hypothesis on K(·) given in (15), it will follow from (20) that V (0) is
well-defined and V (0) < ∞. We compute the upper right derivative d+V

dt along the
solutions of the integrodifferential equation (19) to obtain

d+V

dt
≤ −q|v(t)|+ |b|(1 + p)

∫ ∞

0

K(s) ds|v(t)|

≤ −
{

q − |b|(1 + p)
∫ ∞

0

K(s) ds

}
|v(t)|. (21)

It follows from (16), (18), and (21) that V (·) is nonincreasing and we derive from
(21) that

V (t) +
{

q − |b|(1 + p)
∫ ∞

0

K(s) ds

} ∫ t

0

|v(u)| du ≤ V (0). (22)

It then follows that v(t) is bounded. Also we have from (22) that v(·) ∈ L1(0,∞)
which together with uniform continuity of v on (0,∞) implies by Barbalat’s lemma
(see [5]) that

lim
t→∞

v(t) = 0.

Since |x(t)| ≤ v(t), it follows that the trivial solution of the impulsive integrodif-
ferential system is asymptotically stable. This completes the proof.
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