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Abstract. Let G be a finite group. We denote by ep(G) the probability that

[x,n y] = 1 for two randomly chosen elements x and y of G and some posi-

tive integer n. For x ∈ G we denote by EG(x) the subset {y ∈ G : [y,n x] =

1 for some integer n}. G is called an E-group if EG(x) is a subgroup of G for all

x ∈ G. Among other results, we prove that if G is an non-abelian E-group with

ep(G) > 1
6

, then G is not simple and minimal non-solvable.

Key words : finite group, E-group, Engel element.

Abstrak. Misalkan G meruapakan suatu grup hingga. Misalkan juga ep(G) meru-

pakan peluang dari [x,n y] = 1 untuk dua unsur yang dipilih secara random x dan y

di G dan suatu bilangan bulat positif n. Untuk x ∈ G, misalkan EG(x) merupakan

suatu subset {y ∈ G : [y,n x] = 1 for some integer n}. Grup G disebut suatu

E-group jika EG(x) merupakan suatu subgrup dari G untuk semua x ∈ G. Salah

satu hasil dalam artikel ini adalah, dibuktikan bahwa jika G merupakan suatu non-

abelian E-group dengan ep(G) > 1
6

, maka G bukan merupakan suatu grup simpel

dan minimal non-solvable.

Kata kunci : grup hingga, E-group, unsur Engel.

1. INTRODUCTION

Let G be any group and x1, · · · , xn ∈ G. We define [x1, x2] = x−11 x−12 x1x2

and for n ≥ 2 inductively [x1, · · · , xn] as follows:

[x1, · · · , xn] = [x1, · · · , xn−1]−1x−1n [x1, · · · , xn−1]xn.
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If x2 = · · · = xn, then we denote [x1, · · · , xn] by [x1,n−1 x2]. If there are two
elements x and y in G such that [y,n x] = 1 for some integer n > 0, then x is
called a left Engel element with respect to y. An element x of G is called a left
Engel element if for all y ∈ G there exists an integer n = n(x, y) > 0 such that
[y,n x] = 1. The engelizer of x in G is defined to be the subset EG(x) = {y ∈
G : [y,n x] = 1 for some n}. We notice that EG(x) is not necessary a subgroup
of G. A group G is called an E-group if EG(x) is a subgroup of G for all x ∈ G.
In particular, G is Engel if EG(x) = G for all x ∈ G. In [15] Peng introduced
and investigated the structure of finite solvable E-groups and also he generalized
the previous results in [14]. After him other group theorists such as Heineken and
Casolo studied E-groups (see [5], [6] and [12]). They determined simple E-groups.
In this paper we focus on E-groups with a different viewpoint. For this reason, we
conider some generalization of the commutativity degree of a finite group G, which
means the probability that two randomly chosen elements of G commute. In other
words

cp(G) =
|{(x, y) ∈ G×G : [x, y] = 1}|

|G|2
.

In the literature, the commutativity degree of a group G denoted variously by d(G),
pr(G) or cp(G) and are studied and generalized by some authors (see [11], [8], [10]).

Note that cp(G) =
∑

x∈G |CG(x)|
|G|2 where CG(x) = {y ∈ G : [y, x] = 1} and we know

that CG(x) is a subgroup of G for every x ∈ G.

Since cp(A5) = 1
12 , J. Dixon observed that cp(G) ≤ 1

12 for any finite non-
abelian simple group G (see [9]) and Guralnick and Robinson [9] extended and
proved that every group G with cp(G) > 1

12 is solvable. Now by considering cp(G)
and what are said in above, for all finite groups G, we define ep(G) to be the
probability of being left Engel element in a group G,i.e.,

ep(G) =
|{(x, y) ∈ G×G; [x,n y] = 1 for some natural number n}|

|G|2
.

Also it is evident that ep(G) =
∑

x∈G |EG(x)|
|G|2 . But EG(x) is not necessary a subgroup

of G and so it is difficult to obtain information about a group G from ep(G). Next
since ep(A5) = 1

6 (see Proposition 2.6), it is natural that we propose the following
question:

Question 1.1. If G is a finite group with ep(G) > 1
6 , then is G solvable?

In the present paper, we will show that if G is an E-group, then it is not
simple and minimal non-solvable.

Theorem 1.2. Let G be a non-abelian E-group with ep(G) > 1
6 . Then G is not

simple and minimal non-solvable.

In this article all groups are finite and an engelizer in a group means the
engelizer of some element of the group. We denote by PSL(2, q) and Sz(q) the
projective special linear group of degree two over the finite field of size q and the
Suzuki group over the finite field of size q = 22m+1 with m > 0, respectively. Also
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Cn, Cn
2 and D2n denote the cyclic group of order n, the elementary abelian 2-

group of rank n and the dihedral group of order 2n, respectively. Other notation
is standard and can be found in [16].

2. Main Results

The following result has been proved by Heineken and Casolo in [12] and [5].
This will be used in proof of Theorem 1.2.

Theorem 2.1. A non-abelian simple group is an E-group if and only if it is one
of the following groups:

PSL(2, 2n), n ≥ 2; Sz(22m+1) with m > 0.

Recall that a collection S of proper subgroups of a group G is called a partition
if every nonidentity element of G belongs to a unique subgroup in S. In what follows
we determine the structure of all engelizers in a Suzuki group.

Lemma 2.2. Let G = Sz(q) and r =
√

q
2 . If 1 6= x ∈ G, then EG(x) has one of

the following structures.

1. The Frobenius group P o Cq−1 where P is Sylow 2-subgroup of G;
2. The dihedral group D2(q−1);
3. The Frobenius group Cq−2r+1 o C4;
4. The Frobenius group Cq+2r+1 o C4.

Proof. By Theorem 2.1, G is an E-group and so EG(x) is a subgroup of G. If
EG(x) = G, then x is a left Engel element of G and therefore since G is finite, by
Corollary 3.17 of [3], x belongs to the Hirsch-Plotkin radical of G, a contradiction.
Therefore EG(x) is a proper subgroup of G. By Theorems 3.10 and 3.11 of [13],
Γ = {P g, Ag, Bg, Cg : g ∈ G} is a partition of G where P is a Sylow 2-subgroup G,
A is cyclic of order q − 1, B is cyclic of order q − 2r + 1 and C is cyclic of order
q + 2r + 1. It follows that x ∈ M for some M ∈ Γ. Since A,B and C are cyclic
and P is nilpotent, then for all y ∈ M we have M = EM (y), hence M ≤ EG(x).
Let K be a maximal subgroup of G containing EG(x). Then K is isomorphic to
P o Cq−1, Cq−2r+1 o C4, Cq+2r+1 o C4, D2(q−1) or Sz(q0) where ql0 = q, l is prime
and q0 > 2 (see for example page 343 of [4]). Now we consider the following three
cases.

Case 1. If M is a Sylow 2-subgroup of G, then K = M oAg for some g ∈ G
and also M ′ = Z(M) by Claim 3.2 of [4]. Since K

M is a cyclic group, K ′ ≤M . Now
if y ∈ K, then [y,2 x] ∈M ′ which implies [y,3 x] = 1. Consequently EG(x) = K, as
a desired.

Case 2. Suppose that M is cyclic of order q − 1. By page 137 of [18],
we see that K = M o 〈a〉 ∼= D2(q−1) for some involution a ∈ G. It follows that
[a, x] ∈ M and since M is cyclic, we have [a,2 x] = 1 which yields that a ∈ EG(x).
Consequently EG(x) = K, as wanted.

Case 3. Suppose that M is a cyclic group of order either q − 2r + 1 or
q + 2r + 1. Then K = M o H where H is a cyclic group of order 4. Similarly if
a ∈ H, then [a,2 x] = 1 and so EG(x) = K. This completes the proof.
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�

In the following lemma, we compute ep(Sz(q)).

Proposition 2.3. ep(Sz(q)) = q2+3q−2
q2(q2+1)(q−1) where q = 22n+1, n > 0. In particular

ep(Sz(q)) ≤ 1
6 .

Proof. Let G = Sz(q). For a given subgroup H of G, we denote the set of all
conjugates of H in G by Cl(H). Let Γ be the partition of G described in the proof
of Lemma 2.2. If 1 6= x ∈ G, then x ∈ M for some M ∈ Γ. If M = P g for
some g ∈ G, then by using Lemma 2.2 and simple calculation one can see that
|EG(x)| = q2(q − 1). But the number of Sylow 2-subgroups of G is q2 + 1( see
Theorems 3.10 and 3.11 of chapter XI in [13] or proof of Theorem 1.2 of [2]). It
follows that ∑

X∈Cl(P )

∑
16=x∈X |EG(x)| = q2(q − 1)(q2 + 1)(q2 − 1).

If M = Ag for some g ∈ G, then |EG(x)| = 2(q − 1). Since the number of

conjugates of A in G is q2(q2+1)
2 ( see Theorems 3.10 and 3.11 of chapter XI in [13]

or proof of Theorem 1.2 of [2]), we have∑
X∈Cl(A)

∑
16=x∈X |EG(x)| = q2(q2+1)

2 (q − 2)2(q − 1).

If M = Bg for some g ∈ G, then |EG(x)| = 4(q− 2r + 1). But the number of

conjugates of B in G is q2(q−1)(q2+1)
4(q−2r+1) ( see Theorems 3.10 and 3.11 of chapter XI in

[13] or proof of Theorem 1.2 of [2]). It follows that∑
X∈Cl(B)

∑
16=x∈X |EG(x)| = q2(q − 1)(q2 + 1)(q − 2r).

If M = Cg for some g ∈ G, then |EG(x)| = 4(q + 2r + 1). But the number of

conjugates of C in G is q2(q−1)(q2+1)
4(q+2r+1) ( see Theorems 3.10 and 3.11 of chapter XI in

[13] or proof of Theorem 1.2 of [2]). So∑
X∈Cl(C)

∑
16=x∈X |EG(x)| = q2(q − 1)(q2 + 1)(q + 2r).

Consequently

ep(G) =

∑
x∈G |EG(x)|
|G|2

=
|G|+

∑
16=x∈G |EG(x)|

(q2(q2 + 1)(q − 1))2
=

q2 + 3q − 2

q2(q2 + 1)(q − 1)
.

�

According to a well known theorem of [7]( see chapter 12 pages 260-287), the
maximal subgroups of PSL(2, 2n), (n > 1) fall into four families as follows.

Theorem 2.4. Every maximal subgroup of G = PSL(2, q) with q = 2n > 3 is
isomorphic to one of the following.

1. Cn
2 o Cq−1, that is, the stabilizer of a point of the projective line;
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2. Dihedral group D2(q−1);
3. Dihedral group D2(q+1);
4. Projective general linear group PGL(2, q0) for q = qr0 with r a prime and

q0 6= 2.

Lemma 2.5. Let G = PSL(2, 2n) such that n > 1 and 1 6= x ∈ G. Then EG(x) is
isomorphic to D2(q−1), D2(q+1) or Cn

2 o Cq−1.

Proof. It follows from Theorem 2.1 that EG(x) is a subgroup of G. By Proposition
3.21 of [1], G has a partition Γ = {P g, Ag, Bg|g ∈ G} such that P is an elementary
abelian 2- group of order q, A is cyclic of order q− 1 and B is cyclic of order q + 1.
Therefore x ∈ M where M ∈ Γ and since P,A and B are abelian groups, we have
M ≤ EG(x)( Note that since G is finite, EG(x) 6= G by exercise 12.3.2 of [16]( see
also Theorem 3.14 and Corollary 3.17 of [3]).

Case 1. Let M = Ag for some g ∈ G. By Proposition 3.21 of [1], we have
normalizer of 〈x〉 in G; NG(x) is a dihedral group of order 2(q − 1) and so by
Theorem 2.4, it is a maximal subgroup of G. Therefore NG(x) = M o 〈a〉 for some
involution a ∈ G. It follows that a ∈ EG(x) and hence EG(x) = NG(x) ∼= D2(q−1),
as wanted.

Case 2. Let M = Bg for some g ∈ G. Similarly to case 1, we get EG(x) ∼=
D2(q+1).

Case 3. Let M = P g for some g ∈ G. Then M is contained in a maximal
subgroup T such that T = M o L and L is cyclic of order q − 1 by Theorem 2.4.
Since x ∈M , we have EG(x) = T . This completes the proof. �

In the following we compute ep(PSL(2, 2n)) for n > 1.

Proposition 2.6. If q > 3 is even, then ep(PSL(2, q)) = 3q−2
q(q−1)(q+1) . In particular

ep(PSL(2, 2n)) ≤ ep(A5) = 1
6 .

Proof. Let G = PSL(2, q). Then G has a partition

Γ = {P g, Ag, Bg|g ∈ G}
which is the same as in the proof of Lemma 2.5. Also by Lemma 2.5, EG(x) is
a maximal subgroup of G for any 1 6= x ∈ G. But by Proposition 2.4 of [2], the

numbers of conjugates of A,B and P in G are q(q+1)
2 , q(q−1)

2 and q+1, respectively.
Therefore we have∑

X∈Cl(A)

∑
1 6=x∈X

|EG(x)| = 2(q − 1)(q − 2)
q(q + 1)

2
= (q − 1)q(q + 1)(q − 2),

∑
X∈Cl(B)

∑
1 6=x∈X

|EG(x)| = 2(q + 1)q
q(q − 1)

2
= (q − 1)q2(q + 1)

and also ∑
X∈Cl(P )

∑
1 6=x∈X

|EG(x)| = q(q − 1)(q − 1)(q + 1) = (q − 1)2q(q + 1).
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It follows that ep(G) =
∑

x∈G |EG(x)|
|G|2 =

|G|+
∑

16=x∈G |EG(x)|
((q−1)q(q+1))2 = 3q−2

q(q−1)(q+1) , as desired.

�

The following lemma due to Heineken, will be used in the proof of the main
result.

Lemma 2.7. Let G be an E-group and N � G. Then both of N and G/N are
E-groups.

Proof. Theorem 1 of [12] and its proof give the result. �

Lemma 2.8. Let G be a group and N �G. Then ep(G) ≤ ep(G/N).

Proof. Let S = {(a, b) ∈ G×G; (a, b) is anEngel pair} and S = {(A,B) ∈ G/N ×
G/N ; (A,B) is anEngel pair}. Now the subsets A×B for (A,B) ∈ S are pairwise
disjoint subsets of G×G where each has size |N |.|N |. Clearly S ⊆

⋃
(A,B)∈S A×B

and thus |S| ≤ |S|.|N |2 from which it follows that

ep(G) = |S|
|G|2 ≤

|S|.|N |2
|G|2 = ep(G/N).

�

Proof of Theorem 1.2.

Let G be a non-abelian simple E-group. Then by Theorem 2.1, G ∼= PSL(2, 2n), n ≥
2 or G ∼= Sz(22m+1) with m > 0. Now assuming ep(G) > 1

6 is on the contrary to
Lemmas 2.3 and 2.6.

Now let G be a minimal non-solvable E- group with ep(G) > 1
6 . By Corollary

1 of [17] we know that if G is a minimal non-solvable group, then for some normal
subgroup N of G, G/N is isomorphic to one of the following groups:

1. PSL(2, 2p), p a prime.
2. PSL2(3p), p an odd prime.
3. PSL(2, p), p > 3 a prime congruent to 2 or 3mod 5.
4. Sz(2p), p an odd prime.
5. PSL(3, 3).

Also Lemma 2.7 shows that if G is an E-group G/N is an E-group too where N
is a normal subgroup of G. Next since by Theorem 2.1, only simple groups which
are E- groups are PSL(2, 2n), n ≥ 2; Sz(22m+1) with m > 0, G/N can be only
isomorphic to one of the cases 1 or 4 in above. But for these cases, from Lemmas
2.3 and 2.6 we have ep(G/N) ≤ 1

6 . Next, since by Lemma 2.8, ep(G) ≤ ep(G/N),

we have also that ep(G) ≤ 1
6 . Therefore we get a contradiction by our assumption

and proof is complete.
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