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Abstract. Let G be a finite group. We denote by ep(G) the probability that
[,ny] = 1 for two randomly chosen elements z and y of G and some posi-
tive integer n. For * € G we denote by Eg(z) the subset {y € G : [ynz] =
1 for some integer n}. G is called an E-group if Eg(z) is a subgroup of G for all
x € G. Among other results, we prove that if G is an non-abelian E-group with

ep(G) > %, then G is not simple and minimal non-solvable.

Key words : finite group, E-group, Engel element.

Abstrak. Misalkan G meruapakan suatu grup hingga. Misalkan juga ep(G) meru-
pakan peluang dari [z,, y| = 1 untuk dua unsur yang dipilih secara random z dan y
di G dan suatu bilangan bulat positif n. Untuk z € G, misalkan FEg(z) merupakan
suatu subset {y € G : [y,nz] = 1 for some integer n}. Grup G disebut suatu
E-group jika F¢(z) merupakan suatu subgrup dari G untuk semua z € G. Salah
satu hasil dalam artikel ini adalah, dibuktikan bahwa jika G merupakan suatu non-
abelian E-group dengan ep(G) > %, maka G bukan merupakan suatu grup simpel

dan minimal non-solvable.

Kata kunci : grup hingga, F-group, unsur Engel.

1. INTRODUCTION

Let G be any group and xy, -+ ,x, € G. We define [z, 23] = xl_lxglaclxg
and for n > 2 inductively [z1,--- ,x,] as follows:
[xla e 7xn] = [.751, e 7In—1]_1x;1[x1a e 7x77,—1]'rn'
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If 29 = -+ = x,, then we denote [z1, -+ ,z,] by [¥1,n—122]. If there are two
elements z and y in G such that [y,, z] = 1 for some integer n > 0, then z is
called a left Engel element with respect to y. An element x of G is called a left
Engel element if for all y € G there exists an integer n = n(z,y) > 0 such that
[y,n ] = 1. The engelizer of z in G is defined to be the subset Eg(z) = {y €
G : [y;nx] =1 for some n}. We notice that Eg(x) is not necessary a subgroup
of G. A group G is called an E-group if Eg(x) is a subgroup of G for all z € G.
In particular, G is Engel if Eg(z) = G for all z € G. In [15] Peng introduced
and investigated the structure of finite solvable E-groups and also he generalized
the previous results in [14]. After him other group theorists such as Heineken and
Casolo studied E-groups (see [5], [6] and [12]). They determined simple E-groups.
In this paper we focus on E-groups with a different viewpoint. For this reason, we
conider some generalization of the commutativity degree of a finite group G, which
means the probability that two randomly chosen elements of G commute. In other
e (.)€ G X G [z,y] = 1)]
x,Y) € X e,y =
Cp(G) - ‘G|2 :

In the literature, the commutativity degree of a group G denoted variously by d(G),
pr(G) or ¢p(G) and are studied and generalized by some authors (see [11], [8], [10]).
Note that ¢p(G) = W where Cg(z) = {y € G : [y,z] = 1} and we know
that Cg(z) is a subgroup of G for every z € G.

Since cp(A5) = 15, J. Dixon observed that c¢p(G) < 5 for any finite non-

abelian simple group G (see [9]) and Guralnick and Robinson [9] extended and

proved that every group G with ¢p(G) > % is solvable. Now by considering ¢p(G)

and what are said in above, for all finite groups G, we define ep(G) to be the
probability of being left Engel element in a group G.i.e.,

H(z,y) € G x G;[z,ny] =1 for some natural number n}|

ep(G) = e .

Also it is evident that ep(G) = W But Eg(z) is not necessary a subgroup

of G and so it is difficult to obtain information about a group G from ep(G). Next
since ep(As) = % (see Proposition 2.6), it is natural that we propose the following
question:

Question 1.1. If G is a finite group with ep(G) > &, then is G solvable?

In the present paper, we will show that if G is an E-group, then it is not
simple and minimal non-solvable.

Theorem 1.2. Let G be a non-abelian E-group with ep(G) > L. Then G is not

6
simple and minimal non-solvable.

In this article all groups are finite and an engelizer in a group means the
engelizer of some element of the group. We denote by PSL(2,q) and Sz(q) the
projective special linear group of degree two over the finite field of size g and the
Suzuki group over the finite field of size ¢ = 22 *! with m > 0, respectively. Also
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Cp, C3 and Dy, denote the cyclic group of order n, the elementary abelian 2-
group of rank n and the dihedral group of order 2n, respectively. Other notation
is standard and can be found in [16].

2. MAIN RESULTS

The following result has been proved by Heineken and Casolo in [12] and [5].
This will be used in proof of Theorem 1.2.

Theorem 2.1. A non-abelian simple group is an E-group if and only if it is one
of the following groups:
PSL(2,2"), n>2; Sz(2*"t1) with m > 0.

Recall that a collection S of proper subgroups of a group G is called a partition
if every nonidentity element of G belongs to a unique subgroup in S. In what follows
we determine the structure of all engelizers in a Suzuki group.

Lemma 2.2. Let G = Sz(q) andr = /4. If 1 # x € G, then Eg(x) has one of
the following structures.

1. The Frobenius group P »x Cy_1 where P is Sylow 2-subgroup of G;
2. The dihedral group Dy(y—1);

3. The Frobenius group Cyq_or41 X Cy;

4. The Frobenius group Cyyor+1 % Cy.

Proof. By Theorem 2.1, G is an E-group and so Fg(z) is a subgroup of G. If
Ec(x) = G, then z is a left Engel element of G and therefore since G is finite, by
Corollary 3.17 of [3], « belongs to the Hirsch-Plotkin radical of G, a contradiction.
Therefore Eg(x) is a proper subgroup of G. By Theorems 3.10 and 3.11 of [13],
I'={P9,A9,B9,CY9: g € G} is a partition of G where P is a Sylow 2-subgroup G,
A is cyclic of order ¢ — 1, B is cyclic of order ¢ — 2r + 1 and C' is cyclic of order
q+ 2r + 1. It follows that x € M for some M € I'. Since A, B and C are cyclic
and P is nilpotent, then for all y € M we have M = Ep(y), hence M < Eg(z).
Let K be a maximal subgroup of G containing E¢(x). Then K is isomorphic to
P xCy1,Cq0r11 % Cy,Cyiory1 ¥ Cy, Doyq—1y or Sz(qo) where ¢} = g, 1 is prime
and ¢qo > 2 (see for example page 343 of [4]). Now we consider the following three
cases.

Case 1. If M is a Sylow 2-subgroup of G, then K = M x A9 for some g € G
and also M’ = Z(M) by Claim 3.2 of [4]. Since £ is a cyclic group, K’ < M. Now
if y € K, then [y,» ] € M’ which implies [y,3 ] = 1. Consequently Fg(z) = K, as
a desired.

Case 2. Suppose that M is cyclic of order ¢ — 1. By page 137 of [18],
we see that K = M x (a) = Dy4—1 for some involution a € G. It follows that
[a,z] € M and since M is cyclic, we have [a,3 2] = 1 which yields that a € Eg(x).
Consequently Eg(x) = K, as wanted.

Case 3. Suppose that M is a cyclic group of order either ¢ — 2r + 1 or
q+2r+1. Then K = M x H where H is a cyclic group of order 4. Similarly if
a € H, then [a,3 2] =1 and so Eg(z) = K. This completes the proof.
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In the following lemma, we compute ep(Sz(q)).

q2+3§(*q?_1) where ¢ = 22"t n > 0. In particular

Proposition 2.3. ep(Sz(q)) = Zle @D

ep(Sz(q)) < §-

Proof. Let G = Sz(q). For a given subgroup H of G, we denote the set of all
conjugates of H in G by CI(H). Let T be the partition of G described in the proof
of Lemma 2.2. If 1 # = € G, then z € M for some M € I'. If M = P9 for
some g € G, then by using Lemma 2.2 and simple calculation one can see that
|Ec(z)] = ¢*(g — 1). But the number of Sylow 2-subgroups of G is ¢* + 1( see
Theorems 3.10 and 3.11 of chapter XI in [13] or proof of Theorem 1.2 of [2]). It
follows that

Yoxeour) 2rzaex | Ea(@)| = (a—1)(¢* +1)(¢* = 1).

If M = A9 for some g € G, then |Eg(z)| = 2(¢ — 1). Since the number of

conjugates of A in G is @( see Theorems 3.10 and 3.11 of chapter XTI in [13]
or proof of Theorem 1.2 of [2]), we have

2 2
> xeci(a) 2zeex [ Ea(@)| = %(q —2)2(qg - 1).

If M = B9 for some g € G, then |Eg(z)| = 4(¢ — 2r +1). But the number of
2 2
conjugates of B in G is %W( see Theorems 3.10 and 3.11 of chapter XI in
[13] or proof of Theorem 1.2 of [2]). It follows that

ZXGCZ(B) Zl;ﬁzeX |Ec(2)| = ¢*(q — 1)(¢* + 1)(g — 2r).

If M = C9 for some g € G, then |Eg(z)| = 4(¢ + 2r + 1). But the number of
2 2
conjugates of C in G is %( see Theorems 3.10 and 3.11 of chapter XI in
[13] or proof of Theorem 1.2 of [2]). So

Yoxecuc) 21eex | Ba(z)] = ¢*(q —1)(¢* + 1) (g +27).

Consequently

Ywec | Ba(@)|  |GI+ 3 scq [Bo (@) ¢ +3q—2

G2 (@@ -1))? @@+ 1)(g—-1)

ep(G) =
O

According to a well known theorem of [7]( see chapter 12 pages 260-287), the
maximal subgroups of PSL(2,2"), (n > 1) fall into four families as follows.

Theorem 2.4. Fvery mazimal subgroup of G = PSL(2,q) with ¢ = 2" > 3 is
isomorphic to one of the following.

1. CF x Cy_1, that is, the stabilizer of a point of the projective line;
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2. Dihedral group Daq—1);

Dihedral group Dy(qy1);

4. Projective general linear group PGL(2,qo) for ¢ = ¢ with v a prime and
qo # 2.

Lemma 2.5. Let G = PSL(2,2") such thatn >1 and 1 # x € G. Then Eg(x) is
isomorphic to Dyq—1), Da(q4+1) or C3 x Cy_1.

©w

Proof. 1t follows from Theorem 2.1 that Eg(x) is a subgroup of G. By Proposition
3.21 of [1], G has a partition I" = {P9, A9, B9|¢g € G} such that P is an elementary
abelian 2- group of order ¢, A is cyclic of order ¢ — 1 and B is cyclic of order ¢+ 1.
Therefore © € M where M € I' and since P, A and B are abelian groups, we have
M < E¢(x)( Note that since G is finite, Eg(x) # G by exercise 12.3.2 of [16]( see
also Theorem 3.14 and Corollary 3.17 of [3]).

Case 1. Let M = A9 for some g € G. By Proposition 3.21 of [1], we have
normalizer of (x) in G; Ng(z) is a dihedral group of order 2(¢ — 1) and so by
Theorem 2.4, it is a maximal subgroup of G. Therefore Ng(x) = M % (a) for some
involution a € G. It follows that a € Eg(z) and hence Eg(x) = Ng(x) = Dyg—1),
as wanted.

Case 2. Let M = BY for some g € G. Similarly to case 1, we get Eg(z) =
Dagr1)-

Case 3. Let M = P9 for some g € G. Then M is contained in a maximal
subgroup T such that T'= M x L and L is cyclic of order ¢ — 1 by Theorem 2.4.
Since x € M, we have Eg(x) = T. This completes the proof. O

In the following we compute ep(PSL(2,2")) for n > 1.

Proposition 2.6. If g > 3 is even, then ep(PSL(2,q)) =
ep(PSL(2,2™)) < ep(As) =

3¢g—2 .
1 m In particular
6.
Proof. Let G = PSL(2,q). Then G has a partition
I = {P!]7A!]’Bg|g c G}

which is the same as in the proof of Lemma 2.5. Also by Lemma 2.5, Eqg(x) is

a maximal subgroup of G for any 1 # x € G. But by Proposition 2.4 of [2], the

numbers of conjugates of A, B and P in G are (’Hl), q(q2 D and q—+1, respectively.

Therefore we have

> Y 1Bl =200 -2 < (-1t + 10 -2),

X€eCl(A) 1#£zeX

> Y 1B =20+ e = -+ 1)

X€CI(B) 1£zeX
and also

S Y [Ee@)=qlg—1)(g—1)(g+1) = (¢—1)°qlg +1).

X€ECI(P) 1#£zeX
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Ysec |Ea(@)] _ IGl+2 1 succ | Pa(@)| 3g—2

It follows that ep(G) = et TaoDar N~ = Ta-bar) 3 desired.

O

The following lemma due to Heineken, will be used in the proof of the main
result.

Lemma 2.7. Let G be an E-group and N I G. Then both of N and G/N are
E-groups.

Proof. Theorem 1 of [12] and its proof give the result. O

Lemma 2.8. Let G be a group and N IG. Then ep(G) < ep(G/N).

Proof. Let S = {(a,b) € G x G;(a,b)isan Engel pair} and S = {(A, B) € G/N x
G/N; (A, B)isan Engel pair}. Now the subsets A x B for (A, B) € S are pairwise
disjoint subsets of G x G where each has size |[N|.[N|. Clearly S € 4 pjes 4 x B
and thus |S| < |S].|N|? from which it follows that

ep(G) = ||g||2 < |S||ég| = ep(G/N).

Proof of Theorem 1.2.

Let G be a non-abelian simple E-group. Then by Theorem 2.1, G = PSL(2,2"), n >
2 or G = Sz(22™*1) with m > 0. Now assuming ep(G) > ¢ is on the contrary to
Lemmas 2.3 and 2.6.

Now let G be a minimal non-solvable E- group with ep(G) > . By Corollary
1 of [17] we know that if G is a minimal non-solvable group, then for some normal
subgroup N of G, G/N is isomorphic to one of the following groups:

PSL(2,2P),p a prime.

PSL2(37), p an odd prime.

PSL(2,p), p> 3 a prime congruent to 2 or 3mod 5.
Sz(2P), p an odd prime.

5. PSL(3,3).

Ll e

Also Lemma 2.7 shows that if G is an E-group G/N is an E-group too where N
is a normal subgroup of G. Next since by Theorem 2.1, only simple groups which
are E- groups are PSL(2,2"), n >2; Sz(2?"*1) with m > 0, G/N can be only
isomorphic to one of the cases 1 or 4 in above. But for these cases, from Lemmas
2.3 and 2.6 we have ep(G/N) < 1. Next, since by Lemma 2.8, ep(G) < ep(G/N),
we have also that ep(G) < % Therefore we get a contradiction by our assumption
and proof is complete.
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