The Probability That an Ordered Pair of Elements is an Engel Pair

S. M. Jafarian Amiri ${ }^{1}$, H. Rostami ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Zanjan, P.O.Box 45371-38791, Zanjan, Iran, sm_jafarian@znu.ac.ir
${ }^{2}$ Department of Mathematics, University of Zanjan, P.O.Box 45371-38791, Zanjan, Iran, h.rostami5991@gmail.com

Abstract

Let G be a finite group. We denote by $e p(G)$ the probability that $[x, n y]=1$ for two randomly chosen elements x and y of G and some positive integer n. For $x \in G$ we denote by $E_{G}(x)$ the subset $\left\{y \in G:\left[y,{ }_{n} x\right]=\right.$ 1 for some integer $n\}$. G is called an E-group if $E_{G}(x)$ is a subgroup of G for all $x \in G$. Among other results, we prove that if G is an non-abelian E-group with $e p(G)>\frac{1}{6}$, then G is not simple and minimal non-solvable.

Key words : finite group, E-group, Engel element.

Abstract

Abstrak. Misalkan G meruapakan suatu grup hingga. Misalkan juga ep (G) merupakan peluang dari $\left[x,{ }_{n} y\right]=1$ untuk dua unsur yang dipilih secara random x dan y di G dan suatu bilangan bulat positif n. Untuk $x \in G$, misalkan $E_{G}(x)$ merupakan suatu subset $\left\{y \in G:\left[y,{ }_{n} x\right]=1\right.$ for some integer $\left.n\right\}$. Grup G disebut suatu E-group jika $E_{G}(x)$ merupakan suatu subgrup dari G untuk semua $x \in G$. Salah satu hasil dalam artikel ini adalah, dibuktikan bahwa jika G merupakan suatu nonabelian E-group dengan $\operatorname{ep}(G)>\frac{1}{6}$, maka G bukan merupakan suatu grup simpel dan minimal non-solvable.

Kata kunci : grup hingga, E-group, unsur Engel.

1. INTRODUCTION

Let G be any group and $x_{1}, \cdots, x_{n} \in G$. We define $\left[x_{1}, x_{2}\right]=x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}$ and for $n \geq 2$ inductively $\left[x_{1}, \cdots, x_{n}\right.$] as follows:

$$
\left[x_{1}, \cdots, x_{n}\right]=\left[x_{1}, \cdots, x_{n-1}\right]^{-1} x_{n}^{-1}\left[x_{1}, \cdots, x_{n-1}\right] x_{n}
$$

[^0]If $x_{2}=\cdots=x_{n}$, then we denote $\left[x_{1}, \cdots, x_{n}\right]$ by $\left[x_{1, n-1} x_{2}\right]$. If there are two elements x and y in G such that $\left[y,{ }_{n} x\right]=1$ for some integer $n>0$, then x is called a left Engel element with respect to y. An element x of G is called a left Engel element if for all $y \in G$ there exists an integer $n=n(x, y)>0$ such that $\left[y,{ }_{n} x\right]=1$. The engelizer of x in G is defined to be the subset $E_{G}(x)=\{y \in$ $G:\left[y,{ }_{n} x\right]=1$ for some $\left.n\right\}$. We notice that $E_{G}(x)$ is not necessary a subgroup of G. A group G is called an E-group if $E_{G}(x)$ is a subgroup of G for all $x \in G$. In particular, G is Engel if $E_{G}(x)=G$ for all $x \in G$. In [15] Peng introduced and investigated the structure of finite solvable E-groups and also he generalized the previous results in [14]. After him other group theorists such as Heineken and Casolo studied E-groups (see [5], [6] and [12]). They determined simple E-groups. In this paper we focus on E-groups with a different viewpoint. For this reason, we conider some generalization of the commutativity degree of a finite group G, which means the probability that two randomly chosen elements of G commute. In other words

$$
c p(G)=\frac{|\{(x, y) \in G \times G:[x, y]=1\}|}{|G|^{2}}
$$

In the literature, the commutativity degree of a group G denoted variously by $d(G)$, $\operatorname{pr}(G)$ or $c p(G)$ and are studied and generalized by some authors (see [11], [8], [10]). Note that $c p(G)=\frac{\sum_{x \in G}\left|C_{G}(x)\right|}{|G|^{2}}$ where $C_{G}(x)=\{y \in G:[y, x]=1\}$ and we know that $C_{G}(x)$ is a subgroup of G for every $x \in G$.

Since $c p\left(A_{5}\right)=\frac{1}{12}$, J. Dixon observed that $c p(G) \leq \frac{1}{12}$ for any finite nonabelian simple group G (see [9]) and Guralnick and Robinson [9] extended and proved that every group G with $c p(G)>\frac{1}{12}$ is solvable. Now by considering $c p(G)$ and what are said in above, for all finite groups G, we define $e p(G)$ to be the probability of being left Engel element in a group G,i.e.,

$$
e p(G)=\frac{\mid\{(x, y) \in G \times G ;[x, n y]=1 \text { for some natural number } n\} \mid}{|G|^{2}}
$$

Also it is evident that $e p(G)=\frac{\sum_{x \in G}\left|E_{G}(x)\right|}{|G|^{2}}$. But $E_{G}(x)$ is not necessary a subgroup of G and so it is difficult to obtain information about a group G from $e p(G)$. Next since $e p\left(A_{5}\right)=\frac{1}{6}$ (see Proposition 2.6), it is natural that we propose the following question:
Question 1.1. If G is a finite group with $\operatorname{ep}(G)>\frac{1}{6}$, then is G solvable?
In the present paper, we will show that if G is an E-group, then it is not simple and minimal non-solvable.

Theorem 1.2. Let G be a non-abelian E-group with $\operatorname{ep}(G)>\frac{1}{6}$. Then G is not simple and minimal non-solvable.

In this article all groups are finite and an engelizer in a group means the engelizer of some element of the group. We denote by $P S L(2, q)$ and $S z(q)$ the projective special linear group of degree two over the finite field of size q and the Suzuki group over the finite field of size $q=2^{2 m+1}$ with $m>0$, respectively. Also
C_{n}, C_{2}^{n} and $D_{2 n}$ denote the cyclic group of order n, the elementary abelian 2group of rank n and the dihedral group of order $2 n$, respectively. Other notation is standard and can be found in [16].

2. Main Results

The following result has been proved by Heineken and Casolo in [12] and [5]. This will be used in proof of Theorem 1.2.
Theorem 2.1. A non-abelian simple group is an E-group if and only if it is one of the following groups:
$\operatorname{PSL}\left(2,2^{n}\right), \quad n \geq 2 ; \quad S z\left(2^{2 m+1}\right)$ with $m>0$.
Recall that a collection S of proper subgroups of a group G is called a partition if every nonidentity element of G belongs to a unique subgroup in S. In what follows we determine the structure of all engelizers in a Suzuki group.
Lemma 2.2. Let $G=S z(q)$ and $r=\sqrt{\frac{q}{2}}$. If $1 \neq x \in G$, then $E_{G}(x)$ has one of the following structures.

1. The Frobenius group $P \rtimes C_{q-1}$ where P is Sylow 2-subgroup of G;
2. The dihedral group $D_{2(q-1)}$;
3. The Frobenius group $C_{q-2 r+1} \rtimes C_{4}$;
4. The Frobenius group $C_{q+2 r+1} \rtimes C_{4}$.

Proof. By Theorem 2.1, G is an E-group and so $E_{G}(x)$ is a subgroup of G. If $E_{G}(x)=G$, then x is a left Engel element of G and therefore since G is finite, by Corollary 3.17 of [3], x belongs to the Hirsch-Plotkin radical of G, a contradiction. Therefore $E_{G}(x)$ is a proper subgroup of G. By Theorems 3.10 and 3.11 of [13], $\Gamma=\left\{P^{g}, A^{g}, B^{g}, C^{g}: g \in G\right\}$ is a partition of G where P is a Sylow 2-subgroup G, A is cyclic of order $q-1, B$ is cyclic of order $q-2 r+1$ and C is cyclic of order $q+2 r+1$. It follows that $x \in M$ for some $M \in \Gamma$. Since A, B and C are cyclic and P is nilpotent, then for all $y \in M$ we have $M=E_{M}(y)$, hence $M \leq E_{G}(x)$. Let K be a maximal subgroup of G containing $E_{G}(x)$. Then K is isomorphic to $P \rtimes C_{q-1}, C_{q-2 r+1} \rtimes C_{4}, C_{q+2 r+1} \rtimes C_{4}, D_{2(q-1)}$ or $S z\left(q_{0}\right)$ where $q_{0}^{l}=q, l$ is prime and $q_{0}>2$ (see for example page 343 of [4]). Now we consider the following three cases.

Case 1. If M is a Sylow 2-subgroup of G, then $K=M \rtimes A^{g}$ for some $g \in G$ and also $M^{\prime}=Z(M)$ by Claim 3.2 of [4]. Since $\frac{K}{M}$ is a cyclic group, $K^{\prime} \leq M$. Now if $y \in K$, then $\left[y,{ }_{2} x\right] \in M^{\prime}$ which implies $\left[y,{ }_{3} x\right]=1$. Consequently $E_{G}(x)=K$, as a desired.

Case 2. Suppose that M is cyclic of order $q-1$. By page 137 of [18], we see that $K=M \rtimes\langle a\rangle \cong D_{2(q-1)}$ for some involution $a \in G$. It follows that $[a, x] \in M$ and since M is cyclic, we have $\left[a,_{2} x\right]=1$ which yields that $a \in E_{G}(x)$. Consequently $E_{G}(x)=K$, as wanted.

Case 3. Suppose that M is a cyclic group of order either $q-2 r+1$ or $q+2 r+1$. Then $K=M \rtimes H$ where H is a cyclic group of order 4. Similarly if $a \in H$, then $\left[a,{ }_{2} x\right]=1$ and so $E_{G}(x)=K$. This completes the proof.

In the following lemma, we compute $e p(S z(q))$.
Proposition 2.3. $\operatorname{ep}(S z(q))=\frac{q^{2}+3 q-2}{q^{2}\left(q^{2}+1\right)(q-1)}$ where $q=2^{2 n+1}, n>0$. In particular $e p(S z(q)) \leq \frac{1}{6}$.
Proof. Let $G=S z(q)$. For a given subgroup H of G, we denote the set of all conjugates of H in G by $C l(H)$. Let Γ be the partition of G described in the proof of Lemma 2.2. If $1 \neq x \in G$, then $x \in M$ for some $M \in \Gamma$. If $M=P^{g}$ for some $g \in G$, then by using Lemma 2.2 and simple calculation one can see that $\left|E_{G}(x)\right|=q^{2}(q-1)$. But the number of Sylow 2-subgroups of G is $q^{2}+1$ (see Theorems 3.10 and 3.11 of chapter XI in [13] or proof of Theorem 1.2 of [2]). It follows that

$$
\sum_{X \in C l(P)} \sum_{1 \neq x \in X}\left|E_{G}(x)\right|=q^{2}(q-1)\left(q^{2}+1\right)\left(q^{2}-1\right)
$$

If $M=A^{g}$ for some $g \in G$, then $\left|E_{G}(x)\right|=2(q-1)$. Since the number of conjugates of A in G is $\frac{q^{2}\left(q^{2}+1\right)}{2}$ (see Theorems 3.10 and 3.11 of chapter XI in [13] or proof of Theorem 1.2 of [2]), we have

$$
\sum_{X \in C l(A)} \sum_{1 \neq x \in X}\left|E_{G}(x)\right|=\frac{q^{2}\left(q^{2}+1\right)}{2}(q-2) 2(q-1)
$$

If $M=B^{g}$ for some $g \in G$, then $\left|E_{G}(x)\right|=4(q-2 r+1)$. But the number of conjugates of B in G is $\frac{q^{2}(q-1)\left(q^{2}+1\right)}{4(q-2 r+1)}$ (see Theorems 3.10 and 3.11 of chapter XI in [13] or proof of Theorem 1.2 of [2]). It follows that

$$
\sum_{X \in C l(B)} \sum_{1 \neq x \in X}\left|E_{G}(x)\right|=q^{2}(q-1)\left(q^{2}+1\right)(q-2 r)
$$

If $M=C^{g}$ for some $g \in G$, then $\left|E_{G}(x)\right|=4(q+2 r+1)$. But the number of conjugates of C in G is $\frac{q^{2}(q-1)\left(q^{2}+1\right)}{4(q+2 r+1)}$ (see Theorems 3.10 and 3.11 of chapter XI in [13] or proof of Theorem 1.2 of [2]). So

$$
\sum_{X \in C l(C)} \sum_{1 \neq x \in X}\left|E_{G}(x)\right|=q^{2}(q-1)\left(q^{2}+1\right)(q+2 r)
$$

Consequently

$$
e p(G)=\frac{\sum_{x \in G}\left|E_{G}(x)\right|}{|G|^{2}}=\frac{|G|+\sum_{1 \neq x \in G}\left|E_{G}(x)\right|}{\left(q^{2}\left(q^{2}+1\right)(q-1)\right)^{2}}=\frac{q^{2}+3 q-2}{q^{2}\left(q^{2}+1\right)(q-1)} .
$$

According to a well known theorem of [7](see chapter 12 pages 260-287), the maximal subgroups of $\operatorname{PSL}\left(2,2^{n}\right),(n>1)$ fall into four families as follows.
Theorem 2.4. Every maximal subgroup of $G=P S L(2, q)$ with $q=2^{n}>3$ is isomorphic to one of the following.

1. $C_{2}^{n} \rtimes C_{q-1}$, that is, the stabilizer of a point of the projective line;
2. Dihedral group $D_{2(q-1)}$;
3. Dihedral group $D_{2(q+1)}$;
4. Projective general linear group $P G L\left(2, q_{0}\right)$ for $q=q_{0}^{r}$ with r a prime and $q_{0} \neq 2$.

Lemma 2.5. Let $G=P S L\left(2,2^{n}\right)$ such that $n>1$ and $1 \neq x \in G$. Then $E_{G}(x)$ is isomorphic to $D_{2(q-1)}, D_{2(q+1)}$ or $C_{2}^{n} \rtimes C_{q-1}$.

Proof. It follows from Theorem 2.1 that $E_{G}(x)$ is a subgroup of G. By Proposition 3.21 of $[1], G$ has a partition $\Gamma=\left\{P^{g}, A^{g}, B^{g} \mid g \in G\right\}$ such that P is an elementary abelian 2- group of order q, A is cyclic of order $q-1$ and B is cyclic of order $q+1$. Therefore $x \in M$ where $M \in \Gamma$ and since P, A and B are abelian groups, we have $M \leq E_{G}(x)$ (Note that since G is finite, $E_{G}(x) \neq G$ by exercise 12.3 .2 of [16] (see also Theorem 3.14 and Corollary 3.17 of [3]).

Case 1. Let $M=A^{g}$ for some $g \in G$. By Proposition 3.21 of [1], we have normalizer of $\langle x\rangle$ in $G ; N_{G}(x)$ is a dihedral group of order $2(q-1)$ and so by Theorem 2.4, it is a maximal subgroup of G. Therefore $N_{G}(x)=M \rtimes\langle a\rangle$ for some involution $a \in G$. It follows that $a \in E_{G}(x)$ and hence $E_{G}(x)=N_{G}(x) \cong D_{2(q-1)}$, as wanted.

Case 2. Let $M=B^{g}$ for some $g \in G$. Similarly to case 1 , we get $E_{G}(x) \cong$ $D_{2(q+1)}$.

Case 3. Let $M=P^{g}$ for some $g \in G$. Then M is contained in a maximal subgroup T such that $T=M \rtimes L$ and L is cyclic of order $q-1$ by Theorem 2.4. Since $x \in M$, we have $E_{G}(x)=T$. This completes the proof.

In the following we compute $\operatorname{ep}\left(\operatorname{PSL}\left(2,2^{n}\right)\right)$ for $n>1$.
Proposition 2.6. If $q>3$ is even, then $\operatorname{ep}(P S L(2, q))=\frac{3 q-2}{q(q-1)(q+1)}$. In particular $e p\left(P S L\left(2,2^{n}\right)\right) \leq e p\left(A_{5}\right)=\frac{1}{6}$.

Proof. Let $G=P S L(2, q)$. Then G has a partition

$$
\Gamma=\left\{P^{g}, A^{g}, B^{g} \mid g \in G\right\}
$$

which is the same as in the proof of Lemma 2.5. Also by Lemma 2.5, $E_{G}(x)$ is a maximal subgroup of G for any $1 \neq x \in G$. But by Proposition 2.4 of [2], the numbers of conjugates of A, B and P in G are $\frac{q(q+1)}{2}, \frac{q(q-1)}{2}$ and $q+1$, respectively. Therefore we have

$$
\begin{aligned}
\sum_{X \in C l(A)} \sum_{1 \neq x \in X}\left|E_{G}(x)\right|=2(q-1)(q-2) \frac{q(q+1)}{2} & =(q-1) q(q+1)(q-2), \\
\sum_{X \in C l(B)} & \sum_{1 \neq x \in X}\left|E_{G}(x)\right|=2(q+1) q \frac{q(q-1)}{2}
\end{aligned}=(q-1) q^{2}(q+1)
$$

and also

$$
\sum_{X \in C l(P)} \sum_{1 \neq x \in X}\left|E_{G}(x)\right|=q(q-1)(q-1)(q+1)=(q-1)^{2} q(q+1) .
$$

It follows that $e p(G)=\frac{\sum_{x \in G}\left|E_{G}(x)\right|}{|G|^{2}}=\frac{|G|+\sum_{1 \neq x \in G}\left|E_{G}(x)\right|}{((q-1) q(q+1))^{2}}=\frac{3 q-2}{q(q-1)(q+1)}$, as desired.

The following lemma due to Heineken, will be used in the proof of the main result.

Lemma 2.7. Let G be an E-group and $N \unlhd G$. Then both of N and G / N are E-groups.

Proof. Theorem 1 of [12] and its proof give the result.
Lemma 2.8. Let G be a group and $N \unlhd G$. Then $e p(G) \leq e p(G / N)$.

Proof. Let $S=\{(a, b) \in G \times G ;(a, b)$ is an Engel pair $\}$ and $\bar{S}=\{(A, B) \in G / N \times$ $G / N ;(A, B)$ is an Engel pair $\}$. Now the subsets $A \times B$ for $(A, B) \in \bar{S}$ are pairwise disjoint subsets of $G \times G$ where each has size $|N| .|N|$. Clearly $S \subseteq \bigcup_{(A, B) \in \bar{S}} A \times B$ and thus $|S| \leq|\bar{S}| \cdot|N|^{2}$ from which it follows that

$$
e p(G)=\frac{|S|}{|G|^{2}} \leq \frac{|\bar{S}| \cdot|N|^{2}}{|G|^{2}}=e p(G / N)
$$

Proof of Theorem 1.2.

Let G be a non-abelian simple E-group. Then by Theorem 2.1, $G \cong P S L\left(2,2^{n}\right), \quad n \geq$ 2 or $G \cong S z\left(2^{2 m+1}\right)$ with $m>0$. Now assuming $e p(G)>\frac{1}{6}$ is on the contrary to Lemmas 2.3 and 2.6.

Now let G be a minimal non-solvable E - group with $\operatorname{ep}(G)>\frac{1}{6}$. By Corollary 1 of [17] we know that if G is a minimal non-solvable group, then for some normal subgroup N of $G, G / N$ is isomorphic to one of the following groups:

1. $\operatorname{PSL}\left(2,2^{p}\right), p$ a prime.
2. $\operatorname{PSL} S\left(3^{p}\right), p$ an odd prime.
3. $\operatorname{PSL}(2, p), p>3$ a prime congruent to 2 or $3 \bmod 5$.
4. $S z\left(2^{p}\right), p$ an odd prime.
5. $\operatorname{PSL}(3,3)$.

Also Lemma 2.7 shows that if G is an E-group G / N is an E-group too where N is a normal subgroup of G. Next since by Theorem 2.1, only simple groups which are E - groups are $P S L\left(2,2^{n}\right), n \geq 2 ; \quad S z\left(2^{2 m+1}\right)$ with $m>0, G / N$ can be only isomorphic to one of the cases 1 or 4 in above. But for these cases, from Lemmas 2.3 and 2.6 we have $e p(G / N) \leq \frac{1}{6}$. Next, since by Lemma 2.8, ep $(G) \leq e p(G / N)$, we have also that $e p(G) \leq \frac{1}{6}$. Therefore we get a contradiction by our assumption and proof is complete.

REFERENCES

[1] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algbera, 298 (2006), 468-492.
[2] A. Abdollahi, A. Azad, A. Mohammadi HasanAbadi and M. Zarrin, On the clique numbers of non-commuting graphs of certain groups, Algebra Colloquium, 17:4(2010), 611-620.
[3] A. Abdollahi, Engel elements in groups, Groups St Andrews 2009 in Bath, Volume 1(2011), 94-117.
[4] S. Aivazidis, On the subgroup permutability degree of the simple Suzuki groups, Monatsh. Math. 176 (2015), 335-358.
[5] C. Casolo, Finite groups in which subnormalizers are subgroups, Rend. Semin. Mat. Univ. Padova 82 (1989), 25-53.
[6] C. Casolo, Subnormalizers in finite groups, Comm. Algebra, 18 (11) (1990), 3791-3818.
[7] L. E. Dickson, Linear Groups: With an Exposition of the Galois Field Theory, Dover Publishing, Inc. New York, 1958.
[8] A. Erfanian, and M. Farrokhi Dg, On the probability of being a 2-Engel group, International Journal of Group Theory 2.4 (2013), 31-38.
[9] R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, Journal of Algebra, 300 (2006), 509-528.
[10] E. Khamseh, M.R.R. Moghaddam and F.G. Russo, Some Restrictions on the Probability of Generating Nilpotent Subgroups, Southeast Asian Bulletin of Mathematics, 37.4 (2013).
[11] R. Heffernan, D. MacHale and N SH, Restrictions on commutativity ratios in finite groups, International Journal of Group Theory 3.4 (2014), 1-12.
[12] H. Heineken, On E-groups in the sense of Peng, Glasg. Math. J., 31 (1989), 231-242.
[13] B. Huppert and N. Blackburn, Finite groups, III, Springer-Verlag, Berlin, 1982.
[14] T. A. Peng, On groups with nilpotent derived groups, Arch. Math. 20 (1969), 251-253.
[15] T. A. Peng, Finite soluble groups with an Engel condition, J. Algebra 11 (1969), 319-330.
[16] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag New York 1996.
[17] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bulletin of the American Mathematical Society 74.3 (1968): 383-437.
[18] M. Suzuki, On a class of doubly transitive groups, Annals of Mathematics (1962), 105-145.

[^0]: 2000 Mathematics Subject Classification: Primary: 20F05; Secondary: 05C05.
 Received: 08-10-2017, revised: 15-10-2018, accepted: 21-10-2018.

