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Abstract. The objective of this paper is to present a methodology for deriving Black

Scholes formulae via a simple lognormal distribution approach and introduce European

capped non automatically exercise (NAE) call option pricing theory.

1. INTRODUCTION

Option or option contract is a security which gives its holder the right to buy
or sell the underlying asset under the contracting conditions. Option pricing theory
has advanced along many fronts since the invention by Black and Scholes in [1].
The valuation standard option pricing theory based on distribution approach has
been done by many researchers such as Brooks in [2] with normal and lognormal
distribution, Corrado in [3] with generalized lambda distribution, and Markose and
Alentorn in [4] with generalized gamma distribution. The objective of this paper is
to present a methodology for deriving Black Scholes formulae via a simple lognor-
mal distribution approach and introduce European capped non automatically
exercise (NAE) call option pricing theory. In this option, if the stock price at
time of expiration is greater than the cap value L, we deal that L as the price of
stock and of course the payoff is capped at L−K, conversely if the cap is not crossed
then the payoff becomes the standard call, max (0, ST −K). In this option we see
that the payoff opportunities are more limited, so they are cheaper to buy than
standard. The approach adopted here is based on the risk-adjusted discounting of
expected future cash flows. In this model we have that stock price ST is distributed
lognormal.
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2. MAIN RESULTS

2.1 Lognormal and Brownian Motion
A log normal distribution is given by the following pdf function

f (ST ) =
1

ST σl

√
2π

exp

{
− [ln (ST )− µl]

2

2σ2
l

}
, ST > 0. (1)
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µl and σ2
l are the expected value and variance of ln ST respectively, and l denotes

the underlying reference index having a lognormal distribution. Specifically lnST

has a normal distribution.
ln ST v N
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)
. (2)

Here we take that stock price follows the Samuelson model in [5], that is stock price
is a random process called geometric Brownian motion with

ST = S0e
(r− 1

2 σ2)T+σWT , S0 > 0 (3)

where S0 is stock price at time 0, r ≥ 0 is riskless interest rate, σ > 0 is the
volatility, T is time of expiration, and WT is a standard Brownian process with
mean 0, and variance T respectively. Then

ln ST = ln S0 +
(

r − 1
2
σ2

)
T + σWT . (4)

Mean and variance of ln ST are

µl = E (ln ST ) = ln S0 +
(

r − 1
2
σ2

)
T (5)

σ2
l = σ2T.

respectively.
For standard European call options, the payoff function is assumed to depend

on the last value ST and not on all the values S0, S1..., ST . We define CBS (x) as the
standard Black Scholes call option price with exercise price x. Thus for standard
European call option with contract price K, the option price based on lognormal
is given by

CLog (K) = exp{−rT}E [max (0, ST −K)] . (6)

= exp{−rT}

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K

ST f (ST ) dST −K
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K

f (ST ) dST


 . (7)
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Take a look and compute the first Integral in (7). By taking µl and σl in (5) and
Y = ln ST we have that
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ST f (ST ) dST =
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With a little bit algebraic manipulation the exponential part in (8) can be written

as − 1
2
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and then
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So we have solution for the first integral in (7) is
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,and N(x) is the cumulative standard normal distri-

bution function. Next take a look at the second integral in (7) as a probability
function of ST

∞∫

K

f (ST ) dST = Pr [K < ST < ∞] (9)
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We know from (2) and (4) that
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. From solution of two integration in (7), the European

standard call option price based on lognormal distribution and Brownian motion
is
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CLog(K) = S0N(d1)−K exp(−rT )N(d2) (10)
= CBS(K). (11)

This result is exactly the same as the Black Scholes standard [1] .
2.2 NAE European Capped Option Pricing
Here, in this paper, we will introduce the NAE European Capped call

option pricing. In this call option, if the underlying asset price at maturity time is
greater than the cap value L, the payoff is capped at L−K. So we have the payoff
function is [max (min(ST , L)−K, 0)] , and the price of this call option is given by
the formulae :

Ccap = exp{−rT}E [max (min (ST , L)−K, 0)] . (12)

We calculate the NAE European Capped call option price formulae based on Black
Scholes equation (10). Now

E [max (min (ST , L)−K, 0)] =

L∫
0

[max (0, ST −K)] f (ST ) dST |ST <L +
∞∫
L

[max (0, L−K)] f (ST ) dST |ST≥L

(13)

The value of the integral in (12) can be found with algebraic manipulation and then
using equation (10) leads to the analytical formulae for NAE Capped call option
price

Ccap = exp{−rT}

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where d3 =
ln(S0/L)+(r+ 1
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ln(S0/L)+(r− 1
2 σ2)T

σ
√

T
. So we have this call option

price formulae is the Standard European call option price with contract price K
minus Standard European call option price with contract price L. In general we
can see that this price is cheaper than standard option.

2.3 Properties
In this section we will present some properties and analytical results of this

option pricing model compared to standard option.

1. For S0 ≥ K, If T → 0, then d1 and d2 → ∞ , but d3 and d4 → −∞. So we
have CBS(K) → S0 −K, CBS(L) → 0 and Ccap → (S0 −K) .

2. For S0 < K, If T → 0, we have that all d1, d2, d3 and d4 → −∞. So we have
CBS(K) → 0, CBS(L) → 0 and Ccap → 0.
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3. (a) If T →∞, then all of d1, d2, d3, d4 →∞, and of course all N(d1), N(d2),
N(d3), N(d4) → 1. We have CBS(K) → S0, CBS(L) → S0 and on the
other hand Ccap → 0. Illustration of this result can be seen in figure
1(a). The solid curve represents the plot of standard option, while the
dash-dot one represents NAE European Capped option price. Table 1
give an example of comparison between both options in different time of
expiration. Notice that in standard option the price get more expensive
tend to asset price as the time of expiration get longer. However in
NAE European Capped option, the price go up and then go down tend
to zero as the time of expiration get longer, see figure 2(a).

Table 1. Option price in different time of expiration.
Input

Stock Price (S) 8000 8000 8000 8000 8000
Strike Price (K) 8000 8000 8000 8000 8000
Cap (L) 8800 8800 8800 8800 8800
Time of Exp.(T ) 1 2 5 15 50
Interest rate (r) 0.1 0.1 0.1 0.1 0.1
Volatility(σ) 0.35 0.35 0.35 0.35 0.35
NAE Capped 317.3 318.69 267.01 114.25 4.16
Standard BS 1481.56 2258.84 3887.81 6513.75 7982.61

(b) If L → ∞, obviously CBS(L) → 0 and then Ccap → CBS(K). This
show that if the cap L → ∞, the option is exactly the same as that
standard, see also figure 1(b). The dash-dot curve represents standard
option price.

Figure 1. Option pricing in different time of
expiration T (a), and cap value L (b)
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4. If L → K, then CBS(L) → CBS(K) and of course the option price Ccap → 0.
It means that if the value of the payoff function get smaller then the option
price also get cheaper.

5. (a) If σ1 ≤ σ2 then Cσ1
BS(K) ≤ Cσ2

BS(K) and Cσ1
BS(L) ≤ Cσ2

BS(L). But from
algebra we know that Cσ1

BS(K)−Cσ1
BS(L) not always ≤ Cσ2

BS(K)−Cσ2
BS(L)

or Ccap(σ1) not always ≤ Ccap(σ2). See figure 2(a) for more detail plot.
We can search the volatility’s value which maximizes the option price
by differencing dCcap

dσ = S
√

TN ′(d1) − S
√

TN ′(d3) = 0. This gives σ =√
ln( K.L

S2 )

T − 2r that maximizes the option price.

Figure 2. Option price in different volatility (a), and
interest rate r (b)

(b) If r1 ≤ r2 then clearly Ccap(r1) ≤ Ccap(r2). See figure 2(b).

3. CONCLUDING REMARKS

We have shown that Black Scholes formulae can be derived by lognormal
distribution approach and more simple than the original Black Scholes. From the
definition of NAE European capped, this option is cheaper than the real european
capped option. In the real european capped option if the stock price reaches the
cap value prior the expiration time, this option is automatically exercised. Both of
them are cheaper than the standard.
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