SLIDING WINDOW ROUGHT MEASURABLE ON *I*-CORE OF TRIPLE SEQUENCES OF BERNSTEIN OPERATOR

DEEPMALA RAI¹, AND N. SUBRAMANIAN²

¹Mathematics Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur-482 005, India, dmrai23@gmail.com

²Department of Mathematics, SASTRA University, Thanjavur-613 401, India,

nsmaths@yahoo.com

Abstract. We introduce sliding window rough I- core and study some basic properties of Bernstein polynomials of rough I- convergent of triple sequence spaces. Also, we study the set of all Bernstein polynomials of sliding window of rough Ilimits of a triple sequence spaces and relation between analytic ness and Bernstein polynomials of sliding window of rough I- core of a triple sequence spaces.

Key words and Phrases: Ideal, triple sequences, rough convergence, closed and convex, cluster points and rough limit points, Bernstein operator.

Abstrak. Dalam makalah ini, diperkenalkan konsep sliding window rough I- core dan dikaji beberapa properti dasar dari polinomial Bernstein dari rough I- convergent di ruang barisan triple. Dikaji juga himpunan semua polinomial Bernstein dari sliding window rough I- limit di ruang barisan triple dan kaitan antara analytic ness dengan polinomial Bernstein dari sliding window rough I- core di ruang barisan triple.

Kata kunci: Ideal, barisan triple, rough convergence, tertutup dan konveks, titik klaster dan titik rough limit, operator Bernstein.

1. INTRODUCTION

The idea of rough convergence was first introduced by Phu [9-11] in finite dimensional normed spaces. He showed that the set LIM_x^r is bounded, closed and convex; and he introduced the notion of rough Cauchy sequence. He also investigated the relations between rough convergence and other convergence types and the dependence of LIM_x^r on the roughness of degree r.

²⁰⁰⁰ Mathematics Subject Classification: 40F05, 40J05, 40G05. Received: 25-09-2017; Accepted: 26-03-2018.

¹⁸³

Aytar [1] studied of rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained two statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar [2] studied that the r- limit set of the sequence is equal to intersection of these sets and that r- core of the sequence is equal to the union of these sets. Dündar and Cakan [9] investigated of rough ideal convergence and defined the set of rough ideal limit points of a sequence The notion of I- convergence of a triple sequence spaces which is based on the structure of the ideal I of subsets of \mathbb{N}^3 , where \mathbb{N} is the set of all natural numbers, is a natural generalization of the notion of convergence and statistical convergence.

In this paper we investigate some basic properties of rough I- convergence of a triple sequence spaces in three dimensional matrix spaces which are not earlier. We study the set of all rough I- limits of a triple sequence spaces and also the relation between analytic ness and rough I- core of a triple sequence spaces.

Let K be a subset of the set of positive integers $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and let us denote the set $K_{ik\ell} = \{(m, n, k) \in K : m \leq i, n \leq j, k \leq \ell\}$. Then the natural density of K is given by

$$\delta\left(K\right) = \lim_{i,j,\ell\to\infty} \frac{|K_{ij\ell}|}{ij\ell},$$

where $|K_{ij\ell}|$ denotes the number of elements in $K_{ij\ell}$. The Bernstein operator of order (r, s, t) is given by

$$B_{rst}(f,x) = \sum_{m=0}^{r} \sum_{n=0}^{s} \sum_{k=0}^{t} f\left(\frac{mnk}{rst}\right) \binom{r}{m} \binom{s}{n} \binom{t}{k} x^{m+n+k} \left(1-x\right)^{(m-r)+(n-s)+(k-t)} ds^{m-1} ds^{m-$$

where f is a continuous (real or complex valued) function defined on [0, 1].

Throughout the paper, \mathbb{R} denotes the real of three dimensional space with metric (X, d). Consider a triple sequence of Bernstein polynomials $(B_{mnk}(f, x))$ such that $(B_{mnk}(f, x))$ is in \mathbb{R} , $m, n, k \in \mathbb{N}$. Let f be a continuous function defined on the closed interval [0, 1]. A triple sequence of Bernstein polynomials $(B_{rst}(f, x))$ is said to be statistically convergent to $0 \in \mathbb{R}$, written as st - lim x = 0, provided that the set

$$K_{\epsilon} := \left\{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x) - f(x)| \ge \epsilon \right\}$$

has natural density zero for any $\epsilon > 0$. In this case, 0 is called the statistical limit of the triple sequence of Bernstein polynomials. i.e., $\delta(K_{\epsilon}) = 0$. That is,

$$\lim_{r \to \infty} \frac{1}{r s t} |\{(m, n, k) \le (r, s, t) : |B_{mnk}(f, x) - (f, x)| \ge \epsilon\}| = 0.$$

In this case, we write $\delta - lim B_{mnk}(f, x) = f(x)$ or $B_{mnk}(f, x) \rightarrow^{S_B} f(x)$.

Throughout the paper, \mathbb{N} denotes the set of all positive integers, χ_A – the characteristic function of $A \subset \mathbb{N}$, \mathbb{R} the set of all real numbers. A subset A of \mathbb{N} is said to have asymptotic density d(A) if

$$d(A) = \lim_{i \neq \ell \to \infty} \frac{1}{i \neq \ell} \sum_{m=1}^{i} \sum_{n=1}^{j} \sum_{k=1}^{\ell} \chi_A(K).$$

A triple sequence (real or complex) can be defined as a function

 $x: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{R}(\mathbb{C})$, where \mathbb{N}, \mathbb{R} and \mathbb{C} denote the set of natural numbers, real numbers and complex numbers respectively. The different types of notions of triple sequence was introduced and investigated at the initial by *Sahiner et al.* [13,14], *Esi et al.* [3-6], *Datta et al.* [7], *Subramanian et al.* [15-17], *Debnath et al.* [8] and many others.

A triple sequence $x = (x_{mnk})$ is said to be triple analytic if

$$\sup_{m,n,k} |x_{mnk}|^{\frac{1}{m+n+k}} < \infty.$$

The space of all triple analytic sequences are usually denoted by Λ^3 . In this paper we denote (γ, η) as a sliding window pair provided:

- (i) γ and η are both nondecreasing nonnegative real valued measurable functions defined on $[0, \infty)$,
- (ii) $\gamma(\alpha) < \eta(\alpha)$ for every positive real number α , and $\eta(\alpha) \to \infty$ as $\alpha \to \infty$,
- (iii) $liminf_{abc} (\eta (\alpha) \gamma (\alpha)) > 0$ and
- (iv) $(0,\infty] = \bigcup \{(\gamma(s) \eta(s)] : s \le \alpha\}$ for all $\alpha > 0$.

Suppose $I_{abc} = (\gamma(\alpha), \eta(\alpha)]$ and $\eta(\alpha) - \gamma(\alpha) = \mu(I_{abc})$, where $\mu(A)$ denotes the Lebesgue measure of the set A.

2. DEFINITIONS AND PRELIMINARIES

Throughout the paper \mathbb{R}^3 denotes the real three dimensional case with the metric. Consider a triple sequence $x = (x_{mnk})$ such that $x_{mnk} \in \mathbb{R}^3$; $m, n, k \in \mathbb{N}^3$. The following definitions are obtained:

Definition 2.1. The function g is $N(\gamma, \eta, f, q)$ summable to $\overline{0}$ and write $N(\gamma, \eta, f, q) - limg = \overline{0}$ (or $g \to \overline{0} N(\gamma, \eta, f, q)$) if and only if $lim_{abc \to \infty} \frac{1}{\mu(I_{abc})} \int_{I_{abc}} f(|g(t), \overline{o}|^q) dt$ equals to 0.

Definition 2.2. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ is said to be sliding window measurable function of statistically convergent to (f, x(t)) denoted by $B_{mnk}(f, x(t)) \rightarrow^{st-limx(t)} (f, x(t))$, if for any $\epsilon > 0$ we have $d(A(\epsilon)) = 0$, where

$$A(\epsilon) = \{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, x(t))| \ge \epsilon \}.$$

Definition 2.3. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ is said to be sliding window measurable function of statistically convergent to (f, x(t)) denoted by $B_{mnk}(f, x(t)) \rightarrow^{st-limx(t)}(f, x(t))$, provided that the set

$$\{(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, x(t))| \ge \epsilon\},\$$

has natural density zero for every $\epsilon > 0$. In this case, (f, x(t)) is called the sliding window measurable function of statistical limit of the sequence of Berstein polynomials.

Definition 2.4. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ in a metric space (X, |., .|) and r be a non-negative real number is said to be sliding window measurable function of r-convergent to (f, x(t)), denoted by $B_{mnk}(f, x(t)) \rightarrow^r (f, x(t))$, if for any $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}^3$ such that for all $m, n, k \ge N_{\epsilon}$ we have

$$B_{mnk}(f, x(t)) - (f, x(t))| < r + \epsilon$$

In this case $B_{mnk}(f, x(t))$ is called sliding window measurable function on r-limit of (f, x(t)).

Remark 2.5. We consider sliding window measurable function on r- limit set $B_{mnk}(f, x(t))$ which is denoted by $LIM^r B_{mnk}(f, x(t))$ and is defined by

 $LIM^{r}B_{mnk}(f, x(t)) = \{f : B_{mnk}(f, x(t)) \to^{r} (f, x(t))\}.$

Definition 2.6. Let f be a continuous function defined on the closed interval [0, 1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ is said to be measurable function of r- convergent if $LIM^rB_{mnk}(f, x(t)) \neq \phi$ and r is called a rough convergence of measurable function of degree of $B_{mnk}(f, x(t))$. If r = 0 then it is ordinary convergence of triple sequence of Bernstein polynomials.

Definition 2.7. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ in a metric space (X, |., .|) and r be a non-negative real number is said to be measurable function of r-statistically convergent to (f, x(t)), denoted by $B_{mnk}(f, x(t)) \rightarrow^{r-st_3} (f, x(t))$, if for any $\epsilon > 0$ we have $d(A(\epsilon)) = 0$, where

$$A(\epsilon) = \{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, x(t))| \ge r + \epsilon \}.$$

In this case (f, x(t)) is called sliding window measurable function of r-statistical limit of $B_{mnk}(f, x(t))$. If r = 0 then it is ordinary statistical convergent of triple sequence of Bernstein polynomials.

Definition 2.8. A class I of subsets of a nonempty set X is said to be an ideal in X provided

(i) $\phi \in I$

- (ii) $A, B \in I$ implies $A \bigcup B \in I$.
- (iii) $A \in I, B \subset A$ implies $B \in I$.

I is called a nontrivial ideal if $X \notin I$.

Definition 2.9. A nonempty class F of subsets of a nonempty set X is said to be a filter in X. Provided

- (i) $\phi \in F$.
- (ii) $A, B \in F$ implies $A \cap B \in F$.
- (iii) $A \in F, A \subset B$ implies $B \in F$.

Definition 2.10. *I* is a non trivial ideal in $X, X \neq \phi$, then the class

$$F(I) = \{ M \subset X : M = X \setminus A \text{ for some } A \in I \}$$

is a filter on X, called the filter associated with I.

Definition 2.11. A non trivial ideal I in X is called admissible if $\{x\} \in I$ for each $x \in X$.

Remark 2.12. If I is an admissible ideal, then usual convergence in X implies I convergence in X.

Remark 2.13. If I is an admissible ideal, then usual rough convergence implies rough I – convergence.

Definition 2.14. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ in a metric space (X, |., .|) and r be a non-negative real number is said to be rough measurable function of ideal convergent or rI- convergent to (f, x(t)), denoted by

$$B_{mnk}\left(f,x\left(t\right)\right) \xrightarrow{rI} \left(f,x\left(t\right)\right),$$

if for any $\epsilon > 0$ we have

$$\{(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, x(t))| \ge r + \epsilon\} \in I.$$

In this case $(B_{mnk}(f, x(t)))$ is called sliding window measurable function of rIconvergent to (f, x(t)) and a triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ is called rough sliding window measurable function of I- convergent to (f, x(t)) with r as roughness of degree. If r = 0 then it is ordinary I- convergent.

Generally, let f be a continuous function defined on the closed interval [0, 1]. A triple sequence of Bernstein polynomials $(B_{mnk}(g, x(t)))$ is not I- convergent in usual sense and $|B_{mnk}(f, x(t)) - B_{mnk}(g, x(t))| \leq r$ for all $(m, n, k) \in \mathbb{N}^3$ or

 $\{(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - B_{mnk}(g, x(t))| \ge r\} \in I.$

for some r > 0. Then the triple sequence of Bernstein polynomials of sliding window measurable function of $(B_{mnk}(f, x(t)))$ is rI- convergent. Also, it is clear that rI- limit of a sequence $B_{mnk}(f, x(t))$ of Bernstein polynomial is not necessarily unique.

Definition 2.15. Consider rI - limit set of f(x), which is denoted by

 $I - LIM^{r}B_{mnk}(f, x(t)) = \{f : B_{mnk}(f, x(t)) \to^{rI} (f, x(t))\},\$

then the triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ is said to be sliding window measurable function of rI- convergent if I- $LIM^rB_{mnk}(f, x(t)) \neq \phi$ and r is called a rough sliding window measurable function of I- convergence degree of $B_{mnk}(f, x(t))$.

Definition 2.16. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ is said to be sliding window measurable function of I- analytic if there exists a positive real number M such that

$$\left\{ (m,n,k) \in \mathbb{N}^3 : |B_{mnk}\left(f,x\left(t\right)\right)|^{1/m+n+k} \ge M \right\} \in I.$$

Definition 2.17. A point of the function $(f, x(t)) \in X$ is said to be an sliding window measurable function of I- accumulation point and Let f be a continuous function defined on the closed interval [0, 1]. A Bernstein polynomials $(B_{mnk}(f, x(t)))$ is a metric space (X, d) if and only if for each $\epsilon > 0$ the set

 $\left\{ (m,n,k) \in \mathbb{N}^3 : d\left(B_{mnk}\left(f,x\left(t\right)\right), f\left(x\left(t\right)\right)\right) = |B_{mnk}\left(f,x\left(t\right)\right) - f\left(x\left(t\right)\right)| < \epsilon \right\} \notin I.$

We denote the set of all I- accumulation points of $(B_{mnk}(f, x(t)))$ by $I(\Gamma(B_{mnk}(f, x(t))))$.

Definition 2.18. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ is said to be rough sliding window measurable function of I-convergent if

$$I - LIM^r B_{mnk}(f, x(t)) \neq \phi.$$

It is clear that if $I-LIM^r B_{mnk}(f, x(t)) \neq \phi$ for a triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ of real numbers, then we have $I-LIM^r B_{mnk}(f, x(t)) = [I-limsup B_{mnk}(f, x(t)) - r, I-liminf B_{mnk}(f, x(t)) + r]$.

Definition 2.19. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f, x(t)))$ is said to be rough sliding window measurable function of I – core $B_{mnk}(f, x(t))$ is defined to the closed interval $[+\infty, -\infty]$.

3. MAIN RESULTS

Theorem 3.1. Let f be a continuous function defined on the closed interval [0, 1]. A triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t)))$ of real numbers and $I \subset 2^{\mathbb{N}}$ be an admissible ideal, we have $\dim (I - LIM^r B_{mnk}(f, x(t))) \leq 2r$. In general, $\dim (I - LIM^r B_{mnk}(f, x(t)))$ has an upper bound.

Proof. Assume that diam $(LIM^{r}B_{mnk}(f, x(t)))$. Then, $\exists B_{mnk}(p, x(t))$, $B_{mnk}(q, x(t))$ in $LIM^{r}B_{mnk}(f, x(t))$ such that

$$|B_{mnk}(p, x(t)) - B_{mnk}(q, x(t))| > 2r.$$

Take $\epsilon \in \left(0, \frac{|B_{mnk}(p,x(t)) - B_{mnk}(q,x(t))|}{2} - r\right)$. Because $B_{mnk}(p,x(t))$ and $B_{mnk}(q,x(t))$ in $I - LIM^r B_{mnk}(f,x(t))$, we have $A_{\epsilon}(\epsilon) \in I$ and $A_{\epsilon}(\epsilon) \in I$ for every $\epsilon > 0$, where

we have $A_1(\epsilon) \in I$ and $A_2(\epsilon) \in I$ for every $\epsilon > 0$, where

$$A_{1}\left(\epsilon\right) = \left\{ \left(i, j, k\right) \in \mathbb{N}^{3} : \left|B_{mnk}\left(f, x\left(t\right)\right) - B_{mnk}\left(p, x\left(t\right)\right)\right| \ge r + \epsilon \right\}$$

and

$$A_{2}\left(\epsilon\right) = \left\{\left(i, j, k\right) \in \mathbb{N}^{3} : \left|B_{mnk}\left(f, x\left(t\right)\right) - B_{mnk}\left(q, x\left(t\right)\right)\right| \ge r + \epsilon\right\}.$$

Using the properties F(I), we get

$$(A_1(\epsilon)^c \bigcap A_2(\epsilon)^c) \in F(I).$$

Thus we write,

$$|B_{mnk}(p, x(t)) - B_{mnk}(q, x(t))| \leq |B_{mnk}(f, x(t)) - B_{mnk}(p, x(t))| + |B_{mnk}(f, x(t)) - B_{mnk}(q, x(t))| < (r + \epsilon) + (r + \epsilon) < 2(r + \epsilon),$$

for all $(m, n, k) \in A_1(\epsilon)^c \cap A_2(\epsilon)^c$, which is a contradiction. Hence

$$diam\left(LIM^{r}B_{mnk}\left(f,x\left(t\right)\right)\right) \leq 2r$$

Now, consider a triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t)))$ of real numbers such that

$$I - \lim_{m n k \to \infty} B_{m n k} \left(f, x\left(t \right) \right) = f\left(x\left(t \right) \right)$$

Let $\epsilon > 0$. Then we can write

$$\left\{ (m,n,k) \in \mathbb{N}^3 : |B_{mnk}\left(f,x\left(t\right)\right) - (f,x\left(t\right))| \ge \epsilon \right\} \in I$$

Thus, we have

$$|B_{mnk}(f, x(t)) - B_{mnk}(p, x(t))| \leq |B_{mnk}(f, x(t)) - (f, x(t))| + |(f, x(t)) - B_{mnk}(p, x(t))| \\ \leq |B_{mnk}(f, x(t)) - (f, x(t))| + r \\ \leq r + \epsilon,$$

for each $B_{mnk}(p, x(t))$ in

$$\bar{B}_{r}((f, x(t))) := \left\{ B_{mnk}(p, x(t)) \in \mathbb{R}^{3} : |B_{mnk}(p, x(t)) - (f, x(t))| \le r \right\}.$$

Then, we get

$$\left|B_{mnk}\left(f, x\left(t\right)\right) - B_{mnk}\left(p, x\left(t\right)\right)\right| < r + \epsilon$$

for each $(m, n, k) \in \{(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, x(t))| < \epsilon\}$. Because the triple sequence of Bernstein polynomials of rough sliding window measurable function of $B_{mnk}(f, x(t))$ is I- convergent to (f, x(t)), we have

$$\{(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, x(t))| < \epsilon\} \in F(I)$$

Therefore, we get $p \in I - LIM^r B_{mnk}(f, x(t))$. Consequently, we can write

$$I - LIM^{r}B_{mnk}\left(f, x\left(t\right)\right) = \bar{B}_{r}\left(\left(f, x\left(t\right)\right)\right).$$

$$\tag{1}$$

Because $dim\left(\bar{B}_r\left((f, x\left(t\right))\right)\right) = 2r$, this shows that in general, the upper bound 2r of the diameter of the set $I - LIM^r B_{mnk}\left(f, x\left(t\right)\right)$ is not lower bound.

Theorem 3.2. Let f be a continuous function defined on the closed interval [0, 1]. A triple sequence of Bernstein polynomials of sliding window measurable function of $(B_{mnk}(f, x(t)))$ of real numbers, $I \subset 3^{\mathbb{N}}$ be an admissible ideal. For an arbitrary $(f, c) \in I(\Gamma_x)$, we have $|B_{mnk}(f, x(t)) - (f, c)| \leq r$ for all $B_{mnk}(f, x(t))$ in $I - LIM^r B_{mnk}(f, x(t))$. Proof. Assume on the contrary that there exist a point $(f, c) \in I(\Gamma_x)$ and $B_{mnk}(f, x(t))$ in $I - LIM^r B_{mnk}(f, x(t))$ such that $|B_{mnk}(f, x(t)) - (f, c)| > r$. Define $\epsilon := \frac{|B_{mnk}(f, x(t)) - (f, c)| - r}{3}.$

Then

$$\{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, c)| < \epsilon \} \subseteq \{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, x(t))| \ge r + \epsilon \}$$

$$(2)$$

Since $(f, c) c \in I(\Gamma_x)$, we have

{

$$\left\{ \left(m,n,k\right)\in\mathbb{N}^{3}:\left|B_{mnk}\left(f,x\left(t\right)\right)-\left(f,c\right)\right|<\epsilon\right\}\notin I.$$

But from definition of I- convergence, since

$$\left\{ \left(m,n,k\right)\in\mathbb{N}^{3}:\left|B_{mnk}\left(f,x\left(t\right)\right)-f\left(x\left(t\right)\right)\right|\geq r+\epsilon\right\} \in I,$$

so by (3.2) we have

$$\{(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, c)| < \epsilon\} \in I,$$

which contradicts the fact $(f, c) \in I(\Gamma_x)$. On the other hand, if $(f, c) \in I(\Gamma_x)$ i.e.,

$$(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, c)| < \epsilon \} \notin I,$$

then

$$\{(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - (f, x(t))| \ge r + \epsilon\} \notin I,$$

which contradicts the fact $(f, x(t)) \in I - LIM^{r}B_{mnk}(f, x(t))$.

Theorem 3.3. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t))) \xrightarrow{I} (f, x(t)) \iff I - LIM^r B_{mnk}(f, x(t)) = \overline{B}_r((f, x(t)))$.

Proof. Necessity: By Theorem 3.1.

Sufficiency: Let $I - LIM^r B_{mnk}(f, x(t)) = \overline{B}_r((f, x(t))) (\neq \phi)$. Thus the triple sequence spaces of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t)))$ is I- analytic. Suppose that (f, x(t)) has another I-cluster point (f', x(t)) different from (f, x(t)). The point

$$(\bar{f}, x(t)) = (f, x(t)) + \frac{r}{|(f, x(t)) - (f', x(t))|} ((f, x(t)) - (f', x(t)))$$

and

$$(\bar{f}, x(t)) - (f', x(t)) = (f, x(t)) - (f', x(t)) + \frac{r}{|(f, x(t)) - (f', x(t))|} [((f, x(t)) - (f', x(t))) - ((f', x(t)) - (f', x(t)))]$$

$$\begin{split} \left| \left(\bar{f}, x\left(t \right) \right) - \left(f', x\left(t \right) \right) \right| &= \left| \left(f, x\left(t \right) \right) - \left(f', x\left(t \right) \right) \right| \\ &+ \frac{r}{\left| \left(f, x\left(t \right) \right) - \left(f', x\left(t \right) \right) \right|} \left| \left(f, x\left(t \right) \right) - \left(f', x\left(t \right) \right) \right| \\ &\left| \left(\bar{f}, x\left(t \right) \right) - \left(f', x\left(t \right) \right) \right| &= \left| \left(f, x\left(t \right) \right) - \left(f', x\left(t \right) \right) \right| + r \\ &> r. \end{split}$$

Since $(f', x(t)) \in I(\Gamma_x)$, by Theorem 3.2, $(\bar{f}, x(t)) \notin I - LIM^r B_{mnk}(f, x(t))$. It is not possible as

$$\left|\left(\bar{f}, x\left(t\right)\right) - \left(f, x\left(t\right)\right)\right| = r$$

and

$$I - LIM^{r}B_{mnk}\left(f, x\left(t\right)\right) = \bar{B}_{r}\left(\left(f, x\left(t\right)\right)\right).$$

Since (f, x(t)) is the unique-*I*- cluster point of (f, x(t)). Hence $B_{mnk}(f, x(t)) \xrightarrow{I} f(x(t)).$

Corollary 3.4. If (X, |., .|) is a strictly convex spaces and Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t))) \in X$, there exists $y_1, y_2 \in I - LIM^r B_{mnk}(f, x(t))$ such that $|y_1 - y_2| = 2r$, then this triple sequence $(f, x(t)) \rightarrow \frac{I}{2} \frac{y_1 + y_2}{2}$

Theorem 3.5. If $I - LIM^r \neq \phi$, then $I - \lim \sup B_{mnk}(f, x(t))$ and $I - lim inf B_{mnk}(f, x(t))$ belong to the set $I - LIM^{2r}B_{mnk}(f, x(t))$.

Proof. We know that $I - LIM^r B_{mnk}(f, x(t)) \neq \phi$, a triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t)))$ is Ianalytic. The number $I - lim inf B_{mnk}(f, x(t))$ is an I-cluster point of (f, x(t))and consequently, we have

$$\left|\left(f, x\left(t\right)\right) - I - lim \ inf B_{mnk}\left(f, x\left(t\right)\right)\right| \le r \ \forall \ \left(f, x\left(t\right)\right) \in I - LIM^{r}\left(f, x\left(t\right)\right).$$

Let $A = \{(m, n, k) \in \mathbb{N}^3 : |(f, x(t)) - B_{mnk}(f, x(t))| \ge r + \epsilon\}$. Now if (m, n, k) is not in A, then

$$|B_{mnk}(f, x(t)) - (I - lim inf B_{mnk}(f, x(t)))| \leq |B_{mnk}(f, x(t)) - (f, x(t))| + |(f, x(t)) - (I - lim inf B_{mnk}(f, x(t)))| < 2r + \epsilon.$$

Thus

$$I - lim \ inf B_{mnk} \left(f, x\left(t \right) \right) \in I - LIM^{2r} B_{mnk} \left(f, x\left(t \right) \right).$$

Similarly it can be shown that $I - \lim \sup x_{mnk}(t) \in I - LIM^{2r}x_{mnk}(t)$.

Corollary 3.6. Let f be a continuous function defined on the closed interval [0, 1]. A triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t)))$ of real numbers, if $I - LIM^r B_{mnk}(f, x(t)) \neq \phi$, then

$$I - core\left\{f\left(x\left(t\right)\right)\right\} \subseteq I - LIM^{2r}B_{mnk}\left(f, x\left(t\right)\right).$$

Proof. We have

$$I - LIM^{r}B_{mnk}(f, x(t)) = [I - lim \sup B_{mnk}(f, x(t)) -2r, I - lim \inf B_{mnk}(f, x(t)) +$$

Then the result follows from Theorem 3.5.

Theorem 3.7. Let f be a continuous function defined on the closed interval [0, 1]. A triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t)))$ of real numbers. Then the dim $(I - core \{B_{mnk}(f, x(t))\})$ of the set

$$I - core \{B_{mnk}(f, x(t))\} = r \iff I - core \{f(x(t))\} = I - LIM^{r}B_{mnk}(f, x(t))$$

Proof. Consider

$$\begin{aligned} \dim \left(I - \operatorname{core} \left\{ B_{mnk} \left(f, x\left(t\right)\right) \right\} \right) &= r \\ \Leftrightarrow & \left(I - \lim \, \sup B_{mnk} \left(f, x\left(t\right)\right)\right) - \left(I - \lim \, \inf fx_{mnk}\left(t\right)\right) &= r \\ \Leftrightarrow & I - \operatorname{core} \left\{ x_{mnk}\left(t\right) \right\} &= \left[I - \lim \, \inf fx_{mnk}\left(t\right), \\ & I - \lim \, \sup \, B_{mnk}\left(f, x\left(t\right)\right)\right] \\ &= \left[I - I - \lim \, \sup \, B_{mnk}\left(f, x\left(t\right)\right) - r, \\ & I - \lim \, \inf \, B_{mnk}\left(f, x\left(t\right)\right) + r\right] \\ &= I - LIM^r B_{mnk}\left(f, x\left(t\right)\right). \end{aligned}$$

2r].

Also it is easy to see that

(i) $r > diam (I - core \{B_{mnk}(f, x(t))\}) \iff I - core \{B_{mnk}(f, x(t))\} \subset I - LIM^r B_{mnk}(f, x(t)),$ (ii) $r < diam (I - core \{B_{mnk}(f, x(t))\}) \iff I - LIM^r B_{mnk}(f, x(t)) \subset I - core \{B_{mnk}(f, x(t))\}.$

Theorem 3.8. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t)))$ of real numbers, if $\bar{r} = \inf \{r \ge 0 : I - LIM^r B_{mnk}(f, x(t)) \ne \phi\}$, then $\bar{r} = radius (I - core \{B_{mnk}(f, x(t))\})$.

Proof. If the set $I-core \{B_{mnk}(f, x(t))\}$ is singleton, then $radius (I - core \{B_{mnk}(f, x(t))\})$ is 0 and the triple sequence of Bernstein polynomials of sliding window measurable function is I- convergent, i.e., $I-LIM^0B_{mnk}(f, x(t)) \neq \phi$. Hence we get $\bar{r} = radius (I - core \{B_{mnk}(f, x(t))\}) = 0.$

Now assume that the set $I - core \{B_{mnk}(f, x(t))\}$ is not a single ton. We can write $I - core \{B_{mnk}(f, x(t))\} = [a, b]$ where $a = I - lim \ inf B_{mnk}(f, x(t))$ and $b = I - lim \ sup \ B_{mnk}(f, x(t))$.

Now let us assume that $\bar{r} \neq radius \left(I - core \left\{B_{mnk}\left(f, x\left(t\right)\right)\right\}\right)$.

If $\bar{r} < radius (I - core \{x_{mnk}(t)\})$, then define $\bar{\epsilon} = \frac{b-a}{2} - \bar{r}$. Now, be definition of \bar{r} implies that $I - LIM^{\bar{r}+\bar{\epsilon}}B_{mnk}(f, x(t)) \neq \phi$, given $\epsilon > 0 \exists l \in \mathbb{R} : A = \{(m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x(t)) - f(x(t))| \geq (\bar{r} + \bar{\epsilon}) + \epsilon\} \in I$. Since $\bar{r} + \bar{\epsilon} < \frac{b-a}{2}$ which is a contradiction of the definition of a and b.

If $\bar{r} > radius\left(I - core\left\{B_{mnk}\left(f, x\left(t\right)\right)\right\}\right)$, then define $\bar{\epsilon} = \frac{\bar{r} - \frac{b-a}{2}}{3}$ and $r' = \frac{\bar{r} - b-a}{3}$

 $\bar{r} - 2\bar{\epsilon}$. It is clear that $0 \leq r' \leq \bar{r}$ and by definitions of a and b, the number $\frac{b-a}{2} \in I - LIM^{r'}B_{mnk}(f, x(t))$. Then we get

$$\bar{r} \in \left\{ r \ge 0 : I - LIM^{r}B_{mnk}\left(f, x\left(t\right)\right) \neq \phi \right\},\$$

which contradicts the equality

$$\bar{r} = \inf \left\{ r \ge 0 : I - LIM^{r}B_{mnk}\left(f, x\left(t\right)\right) \neq \phi \right\} \text{ as } r' < r.$$

Corollary 3.9. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials of rough sliding window measurable function of $(B_{mnk}(f, x(t)))$ of real numbers, then $I - core \{B_{mnk}(f, x(t))\} = I - LIM^{2\bar{r}}B_{mnk}(f, x(t))$

Proof. It follows that Theorem 3.7 and Theorem 3.8.

REFERENCES

- S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optimiz, 29(3-4), (2008), 291-303.
- [2] S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz, **29(3-4)**, (2008), 283-290.
- [3] A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews:Discrete Mathematical Structures, 1(2), (2014), 16-25.
- [4] A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2(1), (2014), 6-10.
- [5] A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, *Appl. Math. and Inf. Sci.*, 9 (5), (2015), 2529-2534.
- [6] A. Esi, S. Araci and M. Acikgoz, Statistical Convergence of Bernstein Operators, *Appl. Math. and Inf. Sci.*, **10** (6), (2016), 2083-2086.
- [7] A. J. Datta A. Esi and B.C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, *Journal of Mathematical Analysis*, 4(2), (2013), 16-22.
- [8] S. Debnath, B. Sarma and B.C. Das ,Some generalized triple sequence spaces of real numbers , Journal of nonlinear analysis and optimization, Vol. 6, No. 1 (2015), 71-79.
- [9] E. Dündar, C. Cakan, Rough I- convergence, Demonstratio Mathematica, Accepted.
- [10] H.X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optimiz, 22, (2001), 199-222.
- [11] H.X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz, 23, (2002), 139-146.
- [12] H.X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz, 24, (2003), 285-301.
- [13] A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8 No. (2)(2007), 49-55.
- [14] A. Sahiner, B.C. Tripathy, Some I related properties of triple sequences, Selcuk J. Appl. Math., 9 No. (2)(2008), 9-18.
- [15] N. Subramanian and A. Esi, The generalized tripled difference of χ^3 sequence spaces, Global Journal of Mathematical Analysis, **3** (2) (2015), 54-60.
- [16] N. Subramanian and Ayhan Esi, Triple roughstatistical convergence of sequence of Bernsteinoperators, Int. J. Adv. Applied Sci., 4(2) 2017, 28-34.
- [17] Ayhan Esi and Serkan Araci, Lacunary statistical convergence of Bernsteinoperators equences, Int. J. Adv. Applied Sci., 4(11) 2017, 78-80.