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Abstract. In this paper, we study concepts of lower and upper approximations

edge Cayley graphs and vertex pseudo-Cayley graphs of Cayley graphs with respect

to conjugacy classes. In the following, we discuss the properties of automorphisms

in the Cayley rough graphs.
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1. INTRODUCTION

Pawlak [21, 22, 23] proposed the concept of rough set to handle uncertainty
in data analysis. This concept has been applied in a variety of problems [24, 25, 29].

The theory of rough sets deals with the approximation of an arbitrary subset
of a universe by two definable or visible subsets called lower and upper approxima-
tions. Many mathematicians are attached in studying the relation between rough
sets and algebraic systems. Biswas and Nanda [4] studied the notion of rough sub-
groups. Kuroki and Wang [20] studied the lower and upper approximations with
respect to the normal subgroups. Kuroki [18] defined the concepts of a rough ideal
in a subgroup. Xiao and Zhang [28] introduced the notion of rough prime ideals
in a semigroup. Kuroki and Mordeson [19] studied the structure of rough sets and
rough groups. Davvaz [5] introduced the notion of rough subring and rough ideal
of a ring. Davvaz and Mahdavipour [6] defined the notion of rough submodule
with respect to a submodule of an R-module. Jun [15, 16] studied the roughness of
ideals in BCK-algebras, roughness of Γ-subsemigroups and ideals in Γ-semigroups.
Davvaz and Kazansi [17] introduced and studied the rough prime (primary) ideals
and rough fuzzy prime (primary) ideals in commutative rings. Arthur Cayley in
1878 introduced the definition of Cayley graph. In [26] was introduced the con-
cepts of rough approximations of Cayley graphs and rough edge Cayley graphs and
studied a new definition called pseudo-Cayley graphs containing Cayley graphs was
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proposed. Some studies have been done in the fields of fuzzy graph, rough fuzzy
set and fuzzy rough set which can be found In [7, 8, 10, 11, 12, 13, 14].

2. preliminaries

We first summarize some basic definitions and theorems which can be found
in [9, 26].

A graph Γ is a mathematical structure used to model pairwise relations be-
tween objects from a certain collection. A graph in this context refers to a nonempty
set of vertices and a collection of edges that connect pairs of vertices. The set of
vertices is usually denoted by V (Γ) and the set of edges by E(Γ). The edges can
be directed or undirected. A graph with all directed edges is called directed graph,
otherwise it is called undirected.
Let Γ1 and Γ2 be graphs. The union Γ1 ∪Γ2 of Γ1 and Γ2 is the graph with vertex
set V (Γ1)∪ V (Γ2) and edge set E(Γ1)∪E(Γ2). The intersection Γ1 ∩Γ2 of Γ1 and
Γ2 is graph with vertex set V (Γ1)∩V (Γ2) and edge set E(Γ1∩Γ2) = E(Γ1)∩E(Γ2).
Let G be a finite group and S a subset of G not containing the identity element 1.
We define the Cayley graph Γ = Cay(G,S) of G by V (Γ) = G,

E(Γ) = {{g, sg} : g ∈ G, s ∈ S}.

Let R be a subset of G, if R contains S and SR ⊆ R where SR = {sr : s ∈ S, r ∈ R},
then the pseudo-Cayley graph PCay(R,S) is a graph whose vertices are labelled
with the elements of R, in which there is an edge between two vertices r and rs if
and only if s ∈ S.

Theorem 2.1. [9] A Cayley graph (G,S) is connected if and only if S generates
G.

A subset S of G is called minimal Cayley set if it generates G, and S−{s, s−1}
generates a proper subgroup of G for all s ∈ S.

Theorem 2.2. [26] If Γ1 = Cay(G,S1) and Γ2 = Cay(G,S2) are Cayley graphs,
then
(1) Γ1 ∪ Γ2 = Cay(G,S1 ∪ S2),
(2) Γ1 ∩ Γ2 = Cay(G,S1 ∩ S2).

Theorem 2.3. [26] If Γ1 = Cay(H1, S) and Γ2 = Cay(H2, S) (H1, H2 ≤ G) which
means H1 and H2 are subgroups of G are Cayley graphs, then
(1) Γ1 ∪ Γ2 = Cay(H1 ∪H2, S),
(2) Γ1 ∩ Γ2 = Cay(H1 ∩H2, S).

Theorem 2.4. [26] If Γ1 = Cay(H1, S1) and Γ2 = Cay(H2, S2) (H1, H2 ≤ G) are
Cayley graphs, then Γ1 ∩ Γ2 = Cay(H1 ∩H2, S1 ∩ S2).
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Theorem 2.5. [26] If Γ1 = Cay(G,S1), Γ2 = Cay(G,S2), Ω1 = Cay(G1, S) and
Ω1 = Cay(G2, S) are Cayley graphs, then
(1) Γ1 ⊆ Γ2 if and only if S1 ⊆ S2,
(2) Ω1 ⊆ Ω2 if and only if G1 ⊆ G2.

3. Rough sets with conjugacy class

In this section, we introduce the concept of rough set with respect conjugacy
class in a group and prove some preliminary properties.

In a group G, two elements g and h are called conjugate when h = xgx−1

for some x ∈ G. The relation is symmetric, since g = yhy−1 with y = x−1. When
xgx−1 = h, we say x conjugates g to h.

It can be easily shown that conjugacy is an equivalence relation and therefore
partitions G into equivalence classes. (This means that every element of the group
belongs to precisely one conjugacy class, and the classes Cl(a) and Cl(b) are equal
if and only if a and b are conjugate, and disjoint otherwise.) The equivalence class
that contains the element a in G is,

Cl(a) = {b ∈ G; there exist g ∈ G with b = gag−1}.
Let G be a group. If S is nonempty subset of G, then the sets

Cl = {x ∈ G;xG ⊆ S}, Cl = {x ∈ G;xG ∩ S 6= ∅}
are called, respectively, lower and upper approximations of a set S with respect to
conjugacy classes.

Theorem 3.1. Let G be a group. Let X and Y be any nonempty subsets of G.
Then,
(1) Cl(X) ⊆ X ⊆ Cl(X),

(2) X ⊆ Y implies Cl(X) ⊆ Cl(Y ),

(3) X ⊆ Y implies Cl(X) ⊆ Cl(Y ),

(4) Cl(X ∩ Y ) = Cl(X) ∩ Cl(Y ),

(5) Cl(X ∪ Y ) = Cl(X) ∪ Cl(Y ),

(6) Cl(X ∩ Y ) ⊆ Cl(X) ∩ Cl(Y ),

(7) Cl(X ∪ Y ) ⊇ Cl(X) ∪ Cl(Y ).

Proof. (1) Suppose that x ∈ Cl(X). Then xG ⊆ X, hence x ∈ xG ⊆ X. Therefore,
Cl(X) ⊆ X.
Now suppose that x ∈ X. Then x ∈ xG∩X, So x ∈ Cl(X). Therefore, X ⊆ Cl(X).

(2) Suppose that x ∈ Cl(X). Then xG ⊆ X. Since X ⊆ Y , xG ⊆ Y .
Therefore x ∈ Cl(Y ).
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(3) The proof is similar to (2).

(4) Since (X∩Y ) ⊆ X,Y , according to relation (2), we conclude Cl(X∩Y ) ⊆
Cl(X) and Cl(X ∩ Y ) ⊆ Cl(Y ). Hence Cl(X ∩ Y ) ⊆ Cl(X) ∩ Cl(Y ).

Conversely, let x ∈ Cl(X) ∩ Cl(Y ). Then x ∈ Cl(X) and x ∈ Cl(Y ). So
xG ⊆ X and xG ⊆ Y . Thus xG ⊆ (X ∩ Y ) and so x ∈ Cl(X ∩ Y ), which implies
that Cl(X) ∩ Cl(Y ) ⊆ Cl(X ∩ Y ).

(5) The proof is similar to (4).

(6) Since (X ∩ Y ) ⊆ X,Y , Cl(X ∩ Y ) ⊆ Cl(X) and Cl(X ∩ Y ) ⊆ Cl(Y ), we
have Cl(X ∩ Y ) ⊆ Cl(X) ∩ Cl(Y ).

(7) The proof is similar to (6). �

4. Rough edge Cayley graphs

In this section, we give concept of lower and upper approximations edge Cay-
ley graphs of a Cayley graph with respect to conjugacy classes and in the following,
we bring some necessary properties of them.

Definition 4.1. Let G be a finite group with identity 1, S be a subset of G and
Γ = Cay(G,S) be a Cayley graph. Then the graphs

Γ = Cay(G,Cl(S)), Γ = Cay(G,Cl(S))

are called, respectively, lower and upper approximations edge Cayley graphs of the
Cayley graph Γ = Cay(G,S) with respect to the conjugacy classes.

Theorem 4.2. The graphs Γ and Γ are Cayley graphs.

Proof. Suppose that x ∈ Cl(S). Then xG ⊆ S so we have (g−1xg)−1 = gx−1g−1 ∈
S−1 = S, for all g ∈ G and thus (x−1)G ⊆ S. Therefore x−1 ∈ Cl(S).

Now, let x ∈ Cl(S). Then xG ∩ S 6= ∅ so we have g ∈ G such that t =
gxg−1 ∈ S, so t−1 = g−1x−1g ∈ S−1 = S. On the other hand, we have t−1 =
g−1x−1g ∈ (x−1)G. So t−1 ∈ (x−1)G ∩ S, which implies that (x−1)G ∩ S 6= ∅ and
Therefore x−1 ∈ Cl(S). �

Example 4.3. Let G =< a, b ; b2 = a4 = 1, ab = ba−1 > and Γ = Cay(G,S)
be Cayley graph such that S = {a2, b}. We have Γ = (G, {a2, b, a2b}) and Γ =
Cay(G, {a2}).(See the figure below)
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Theorem 4.4. Let S, S1, S2 be subsets of a group G. Let Γ = Cay(G,S), Γ1 =
Cay(G,S1) and Γ2 = Cay(G,S2) be Cayley graphs. Then we have
(1) Γ ⊆ Γ ⊆ Γ,

(2) Γ1 ∪ Γ2 = Γ1 ∪ Γ2,

(3) Γ1 ∩ Γ2 = Γ1 ∩ Γ2,

(4) Γ1 ⊆ Γ2 ⇒ Γ1 ⊆ Γ2,

(5) Γ1 ⊆ Γ2 ⇒ Γ1 ⊆ Γ2,

(6) Γ1 ∪ Γ2 ⊇ Γ1 ∪ Γ2,

(7) Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ2.

Proof. We will prove (1), (2), (4) and (6). The proof of cases (3), (5) and (7) is
similar.

(1) Since Cl(S) ⊆ S ⊆ Cl(S) then by Theorem 2.5 leads Γ ⊆ Γ ⊆ Γ.

(2) By Theorem 2.3, Γ1 ∪ Γ2 = (G,Cl(S1) ∪ Cl(S2)). Then by Theorem 3.1,
we have Cl(S1), Cl(S2) ⊆ Cl(S1 ∪ S2). So Γ1 ∪ Γ2 ⊆ Γ1 ∪ Γ2.

Conversely, by Theorem 3.1, we have Cl(S1) ∪ Cl(S2) = Cl(S1 ∪ S2). Let
(g, gs) is an arbitrary edge of E(Γ1 ∪ Γ2). Then s ∈ Cl(S1) ∪ Cl(S2), hence s ∈
Cl(S1) or s ∈ Cl(S2). So (g, gs) is an edge in Γ1 or Γ2. Therefore, Γ1 ∪ Γ2 ⊆ Γ1∪Γ2.

(4) If Γ1 ⊆ Γ2, then, we have S1 ⊆ S2 and so Cl(S1) ⊆ Cl(S2). Therefore,
Γ1 ⊆ Γ2.

(6)According to the Theorem 3.1 (7), Cl(S1 ∪ S2) ⊇ Cl(S1) ∪ Cl(S2), thus
Cl(S1 ∪ S2) ⊇ Cl(S1) and Cl(S1 ∪ S2) ⊇ Cl(S2). Therefore, Γ1 ∪ Γ2 ⊇ Γ1 ∪ Γ2.

�

5. Rough vertex pseudo-Cayley graphs

In this section, we give concept of lower and upper approximations edge Cay-
ley graphs of a Cayley graph with respect to conjugacy classes and in the following,
we bring some necessary properties of them.
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Definition 5.1. Let G be a finite group with identity 1, S a subset of G such that
SG = S. Let R be a subset of G and Γ = PCay(R,S) be a pseudo-Cayley graph.
Then

Γ
′

= PCay(Cl(R), S)

is called, upper approximations vertex pseudo-Cayley graph of the pseudo-Cayley
graphs Γ = PCay(R,S).

Theorem 5.2. The graph Γ
′

is pseudo-Cayley graph.

Proof. Since S ⊆ R, then S ⊆ Cl(R). Suppose sx ∈ SCl(R) for all s ∈ S and
x ∈ Cl(R), then xG ∩ R 6= ∅, therefore there exists g ∈ G such that gxg−1 ∈ R.
Since Γ is a pseudo-Cayley graph, SR ⊆ R, so s(gxg−1) ⊆ R. From S = SG, it

follows (sx)G ⊆ R which implies that (sx) ∈ Cl(R). Hence Γ
′

is a pseudo-Cayley
graph. �

The following example shows that it is possible that graph Γ
′

isn’t a pseudo-
Cayley graph.

Example 5.3. Let G =< a, b ; b2 = a4 = 1, ab = ba−1 > and R = {1, a, b, a2, a2, a2b, a3, a3b}
be a subset of G and S = {b}. Then Γ

′
= (Cl(R), Cl(R) ∩ S) isn’t pseudo-Cayley

graph.

Theorem 5.4. Let R,R1 and R2 be subsets of a group G and S ⊆ R,R1, R2. Let
Γ = (R,S),Γ1 = (R1, S) and Γ2 = (R2, S) be pseudo-Cayley graphs. Then we have

(1) Γ ⊆ Γ
′

,

(2) Γ1 ∪ Γ2

′

= Γ1

′

∪ Γ2

′

,

(3) Γ1 ⊆ Γ2 ⇒ Γ1

′

⊆ Γ2

′

,

(4) Γ1 ∩ Γ2

′

⊆ Γ1

′

∩ Γ2

′

.

Proof. (1) According to the Theorem 3.1, we have R ⊆ Cl(R). So Γ = (R,S) ⊆
Γ

′
= (Cl(R), S).

(2) We have,

Γ1 ∪ Γ2

′

= (Cl(R1 ∪R2), S)

= (Cl(R1) ∪ Cl(R2), S)

= (Cl(R1), S) ∪ (Cl(R2, S))

= Γ1

′

∪ Γ2

′

.

.
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(3) Since Γ1 ⊆ Γ2,we have R1 ⊆ R2. Theorem 3.1 shows, Cl(R1) ⊆ Cl(R2),

so Γ1

′

⊆ Γ2

′

.

(4) We have,

Γ1 ∩ Γ2

′

= (Cl(R1 ∩R2), S)

⊆ (Cl(R1), S) ∩ (Cl(R2, S))

= Γ1

′

∩ Γ2

′

.

. �

Theorem 5.5. Let R be a subset of a group G and S1, S2 ⊆ R. Then
(1) PCay(Cl(R), S1) ∪ PCay(Cl(R), S2) = PCay(Cl(R), S1 ∪ S2),

(2) PCay(Cl(R), S1) ∩ PCay(Cl(R), S2) = PCay(Cl(R), S1 ∩ S2).

Proof. (1) It is easy to see that

V (PCay(Cl(R), S1) ∪ PCay(Cl(R), S2)) = V (PCay(Cl(R), S1 ∪ S2)) = Cl(R).

We have

e ∈ E(PCay(Cl(R), S1) ∪ PCay(Cl(R), S2))

⇔ e ∈ E(PCay(Cl(R), S1)) or e ∈ E(PCay(Cl(R), S2))

⇔ e = {r, sr} r ∈ Cl(R), s ∈ S1 or S2

⇔ e = {r, sr} r ∈ Cl(R), s ∈ S1 ∪ S2

⇔ e ∈ E(PCay(Cl(R), S1 ∪ S2)).

(2) We have

V (PCay(Cl(R), S1) ∩ PCay(Cl(R), S2)) = V (PCay(Cl(R), S1 ∩ S2)) = Cl(R).

Now, suppose that e ∈ E(PCay(Cl(R), S1) ∩ PCay(Cl(R), S2)), So there exists

r1, r2 ∈ Cl(R), s1 ∈ S1 and s2 ∈ S2, such that

e = {r1, s1r1} = {r2, s2r2}.

We consider the following cases:

Case (1): If r1 = r2 and r1s1 = r2s2, then s1 = s2. So s1, s2 ∈ S1∩S2. which

implies that e ∈ E(PCay(Cl(R), S1 ∩ S2)).

Case (2): If r1 = s2r2 and r2 = s1s2r2, then s1 = s−1
2 . Thus s1, s2 ∈ S1 ∩S2.

So s1r1, s2r2 ∈ (S1 ∩ S2)Cl(R). It follows that e ∈ E(PCay(Cl(R), S1 ∩ S2)).
Hence, we have

E(PCay(Cl(R), S1) ∩ PCay(Cl(R), S2)) ⊆ E(PCay(Cl(R), S1 ∩ S2)).

Conversely, let e ∈ E(PCay(Cl(R), S1 ∩ S2)), then there exists r ∈ Cl(R) and
s ∈ S1 ∩ S2, such that e = {r, sr}. Since s ∈ S1 ∩ S2, then s ∈ S1 and s ∈ S2.
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Hence we have e ∈ E(PCay(Cl(R), S1)) and e ∈ E(PCay(Cl(R), S2)). So

E(PCay(Cl(R), S1 ∩ S2)) ⊆ E(PCay(Cl(R), S1) ∩ PCay(Cl(R), S2)).

Finally, we have

PCay(Cl(R), S1) ∩ PCay(Cl(R), S2) = PCay(Cl(R), S1 ∩ S2).

�

Theorem 5.6. Let R1 and R2 be subgroups of a group G. Then
(1) PCay(Cl(R1), S) ∪ PCay(Cl(R2), S) = PCay(Cl(R1) ∪ Cl(R2), S),

(2) PCay(Cl(R1), S) ∩ PCay(Cl(R2), S) = PCay(Cl(R1) ∩ Cl(R2), S).

Proof. (1) We have

V (PCay(Cl(R1), S)∪PCay(Cl(R2), S)) = V (PCay(Cl(R1)∪Cl(R2), S)) = Cl(R1)∪
Cl(R2). Also,

e ∈ E(PCay(Cl(R1), S) ∪ PCay(Cl(R2), S))

⇔ e ∈ E(PCay(Cl(R1), S)) or e ∈ E(PCay(Cl(R2), S))

⇔ e = {r, sr} r ∈ Cl(R1) or Cl(R2), s ∈ S

⇔ e = {r, sr} r ∈ Cl(R1) ∪ Cl(R2), s ∈ S

⇔ e ∈ E(PCay(Cl(R1) ∪ Cl(R2), S)).

(2) It is easy to see that

V (PCay(Cl(R1), S)∩PCay(Cl(R2), S)) = V (PCay(Cl(R1)∩Cl(R2), S)) = (Cl(R1)∩Cl(R2)).

If e ∈ E(PCay(Cl(R1), S) ∩ PCay(Cl(R2))), then e ∈ E(PCay(Cl(R1), S)) and

e ∈ E(PCay(Cl(R2), S)). So there exists r1 ∈ Cl(R1), r2 ∈ Cl(R2) and s1, s2 ∈ S,
such that

e = {r1, s1r1} = {r2, s2r2}.
We consider the following cases:

Case (1): If r1 = r2, then r1 = r2 ∈ Cl(R1) ∩ Cl(R2), which implies that

e ∈ E(PCay(Cl(R1) ∩ Cl(R2), S))

Case (2): If r1 = s2r2, then r1 = s2r2 ∈ SCl(R2) ⊆ Cl(R2), which implies

that e ∈ E(PCay(Cl(R1) ∩ Cl(R2), S)). Hence, we have

E(PCay(Cl(R1), S) ∩ PCay(Cl(R2), S)) ⊆ E(PCay(Cl(R1) ∩ Cl(R2), S)).

Conversely, if e ∈ E(PCay(Cl(R1) ∩ Cl(R2), S)), then there exists r ∈
Cl(R1)∩Cl(R2) and s ∈ S, such that e = {r, sr}, hence e ∈ E(PCay(Cl(R1), S)),

e ∈ E(PCay(Cl(R2), S)). Thus

E(PCay(Cl(R1) ∩ Cl(R2), S)) ⊆ E(PCay(Cl(R1), S) ∩ PCay(Cl(R2), S)).

Finally, we have

PCay(Cl(R1), S) ∩ PCay(Cl(R2), S) = PCay(Cl(R1) ∩ Cl(R2), S).
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�

Theorem 5.7. Let R1 and R2 be subsets of a group G, S1 ⊆ R1 and S2 ⊆ R2

Then

PCay(Cl(R1), S1) ∩ PCay(Cl(R2), S2) = PCay(Cl(R1) ∩ Cl(R2), S1 ∩ S2).

Proof. We have
V (PCay(Cl(R1), S1)∩PCay(Cl(R2), S2)) = V (PCay(Cl(R1)∩Cl(R2), S1∩S2)) =

Cl(R1) ∩ Cl(R2).

Now suppose that e ∈ E(PCay(Cl(R1), S1)∩PCay(Cl(R2), S2)), then e ∈ E(PCay(Cl(R1), S1))

and e ∈ E(PCay(Cl(R2), S2)). So there exist r1 ∈ Cl(R1), r2 ∈ Cl(R2), s1 ∈
S1, s2 ∈ S2 such that

e = {r1, s1r1} = {r2, s2r2}.
We consider the following cases:

Case (1): If r1 = r2, then r1 = r2 ∈ Cl(R1) ∩ Cl(R2). On the other hand,

s1r1 = s2r2, thus s1 = s2 ∈ S1∩S2. Hence e ∈ E(PCay(Cl(R1))∩Cl(R2), S1∩S2).

Case (2): If r1 = s2r2, then r1 = s2r2 ∈ SCl(R2) ⊆ Cl(R2). Hence r1 ∈
Cl(R1)∩Cl(R2). From s1r1 = r2, we have s1s2 = 1, so s1 = s−1

2 , then s1 ∈ S1∩S2.
Similarly, s2 ∈ S1 ∩ S2.
It follows e ∈ E(PCay(Cl(R1) ∩ Cl(R2), S1 ∩ S2)). Hence

E(PCay(Cl(R1), S1)∩PCay(Cl(R2), S2)) ⊆ E(PCay(Cl(R1)∩Cl(R2), S1 ∩S2)).

Conversely, if e ∈ E(PCay(Cl(R1) ∩ Cl(R2), S1 ∩ S2)), then there exists

r ∈ Cl(R1) ∩ Cl(R2) and s ∈ S1 ∩ S2, such that e = {r, sr}. Therefore, r ∈
Cl(R1), Cl(R2) and s ∈ S1, S2. Hence, e ∈ E(PCay(Cl(R1), S1)) and e ∈ E(PCay(Cl(R2), S2)),
and so

E(PCay(Cl(R1)∩Cl(R2), S1 ∩S2)) ⊆ E(PCay(Cl(R1), S1)∩PCay(Cl(R2), S2)).

Finally, we have

PCay(Cl(R1), S1) ∩ PCay(Cl(R2), S2) = PCay(Cl(R1) ∩ Cl(R2), S1 ∩ S2).

�

Theorem 5.8. Let f be a automorphism of group G. let Γ = Cay(G,Cl(S)) and
Γ = Cay(G,Cl(S)), then
(1) Cay(G,Cl(S)) ∼= Cay(G,Cl(f(S)))

(2) Cay(G,Cl(S)) ∼= Cay(G,Cl(f(S))).

Proof. (1) We show that f is a automorphism between groups. Let e ∈ E(Cay(G,Cl(S))).
Then there exist g ∈ G and s ∈ Cl(S), such that e = {g, gs}. Thus sG ⊆ S, and
there exist g ∈ G such that sg ∈ S. It follows f(s)f(g) ∈ f(S). Hence f(s) ∈
Cl(f(S)) which implies that f(e) = {f(g), f(g)f(s)} ∈ E(Cay(G,Cl(f(S)))).
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(2) Let e ∈ E(Cay(G,Cl(S))). Then there exist g ∈ G and s ∈ Cl(S), such
that e = {g, gs}. Hence sG ∩ S 6= ∅, and there exist t ∈ sG ∩ S and g ∈ G
such that sg = t. Then f(s)f(g) = f(t) ∈ f(s)G and f(t) ∈ f(S), therefore,
f(s)G ∩ f(S) 6= ∅ and f(s) ∈ Cl(f(S)). Thus f(e) = {f(g), f(g)f(s)}. Finally
f(e) ∈ E(Cay(G,Cl(f(S)))). �

Remark 5.9. According to the following example, we show Cay(G,Cl(S)) ∼=
Cay(G,Cl(S

′
)), but Cay(G,S) � Cay(G,S

′
).

Example 5.10. Let G =< a, b ; b2 = a4 = 1, ab = ba−1 > and S = {a2} and

S
′

= {a2, b} be subsets of G. Then Cl(S) = Cl(S
′
) = {a2}.

6. CONCLUDING

The theory of rough set is an extension of set theory. Many mathematicians
are interested in studying the relationship between rough sets and algebraic systems.
In this paper, we studied the properties of the rough approximations of Cayley and
pseudo-Cayley graphs. Also, we gave rough vertex pseudo-Cayley graphs and prove
some theorems.
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