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Abstract. In this paper, we solve a class of fractional variational problems (FVPs)

by using operational matrix of fractional integration which derived from second

order spline (B-spline) basis function. The fractional derivative is defined in the

Caputo and Riemann-Liouville fractional integral operator. The B-spline function

with unknown coefficients and B-spline operational matrix of integration are used to

replace the fractional derivative which is in the performance index. Next, we applied

the method of constrained extremum which involved a set of Lagrange multipliers.

As a result, we get a system of algebraic equations which can be solve easily. Hence,

the value for unknown coefficients of B-spline function is obtained as well as the

solution for the FVPs. Finally, the illustrative examples shown the validity and

applicability of this method to solve FVPs.
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Abstrak. Dalam paper ini, diselesaikan suatu kelas masalah variasional fraksional

(FVPs) dengan menggunakan matriks operasional dari integral fraksional yang

diperoleh dari basis fungsi spline orde-2 (B-spline). Derivatif fraksional didefinisikan

dalam operator integral fraksional Caputo dan Riemann-Liouville. Fungsi B-spline

dengan koefisien tak-tentu dan matriks operasional B-spline dari integral digunakan

untuk menggantikan derivatif fraksional yang berada dalam performance index. Se-

lanjutnya, diaplikasikan metode constrained extremum yang melibatkan sekumpulan

pengali Lagrange. Sebagai hasilnya, diperoleh suatu sistem persamaan aljabar yang

dapat diselesaikan dengan mudah. Dengan demikian, nilai dari koefisien-koefisien

tak-tentu dari fungsi B-spline dapat ditentukan dan soluso dari FVPs dapat diper-

oleh. Akhirnya, beberapa contoh diberikan untuk menunjukkan kevalidan dan ap-

likasi dari metode dalam paper ini untuk menyelesaikan FVPs.

Kata kunci dan frasa: masalah variasional fraksional, fungsi B-spline, matriks op-

erasional integral, fraksional integral Riemann-Liouville, pengali Lagrange

1. INTRODUCTION

Fractional calculus is a branch of mathematical analysis that studies the non-
integer order of differentiation and integration [14]. It is an old mathematical topic
with history as long as ordinary calculus because it has been developed since the
year of 1695 due to some theories discovered by G.W. Leibniz and L Hopital [13].
In the past few decades, fractional calculus has attracted the attention of many
mathematicians and physicists as they realized that the fractional calculus has var-
ious fascinating applications in solving real life problems which include numerous
fields of science, physics, as well as biology. For instance, electrical circuit [3], com-
plex dynamic modeling in biological tissues [16], economics and finance ([15],[25]),
the model of viscoelastic ([12],[17],[18]), chemistry [19], and thermodynamics [24].
Hence, fractional calculus problem has become a significant topic to be studied by
researchers, as example in [20, 21]. In most cases, there is no exact solution for
fractional calculus problem. Therefore, the numerical methods of fractional calcu-
lus problem are needed to find the approximate solution. Among the methods are
including spectral tau method [5], finite different method [28], and others.

On the other hand, the variational problems are the problems that involved
finding the maximum or minimum value of a certain function. Once it contains
fractional order derivative in the performance index, it will become fractional vari-
atonal problems (FVPs). In this paper, we consider FVPs as follow:

Min J =

∫ T

0

L(t, x(t), Dαx(t))dt, (1)

subject to the boundary conditions

y(j)(0) = aj ; y(j)(T ) = bj ; j = 0, 1, . . . , n− 1 (2)

where 0 ≤ t ≤ T , n − 1 < α ≤ n, Dα is a fractional operator and α is a positive
fractional number. We assume that L(t, x(t), Dαx(t)) is continuous functions.
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This FVPs was introduced by Riewe during 1996 where the non-integer order
derivatives were used in non-conservative systems of mechanics [23]. In recent years,
many mathematicians show their interest toward FVPs and solve it using various
type of methods such as Euler Lagrange equation ([1],[2]), Jacobi polynomials [4],
Legendre polynomials [6], Rayleigh-Ritz method [11] and many more. However, all
these methods are based on smooth function (i.e. polynomials are smooth).

Hence, the main aim for this paper is to propose a new numerical scheme
based on operational matrix via piecewise function, which is second order of B-
spline function to solve the FVPs. The numerical scheme is through second order
B-spline operational matrix of integration where the fractional derivative is in the
sense of Riemann-Liouville. This B-spline operational matrix of integration was
successfully used in [9] to solve the fractional integro-differential equations and
fractional partial differential equations. Here, we extend it to solve the FVPs. The
approach used in [9] for obtaining fractional integration of B-spline functions is
via Laplace transform. This method is used as approximation of function due to
it properties that have explicit formula, symmetric and also compact support of
B-spline.

This present paper is arranged as follow. In section 2, some necessary pre-
liminaries of fractional integration and derivatives are investigated as well as brief
explanation for B-spline function. In section 3, the derivations for B-spline opera-
tional matrix of integration are discussed here. In section 4, the numerical scheme is
presented to show how the operational matrix of fractional integration derive from
B-spline function and be used to solve FVPs. In section 5, the proposed method is
applied to solve numerical examples of FVPs. Finally, the conclusion for this paper
is given in section 6.

2. PRELIMINARIES

In this section, we briefly describe some important definitions that will be
using in this paper.

2.1. Fractional integration and derivative. The Riemann-Liouville fractional
integration of order α > 0 of f(t) is described as :

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, t > 0 (3)

where Γ(.) is gamma function. Below shows several important properties of Rie-
mann Liouville integral:

IαIβf(t) = Iα+βf(t), α > 0, β > 0 (4)

Iαtβ =
Γ(β + 1)

Γ(β + α+ 1)
tβ+α (5)
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Meanwhile the Caputo fractional derivative of order α > 0 of f(t) is described as :

CDαf(t) =
1

Γ(n− α)

∫ t

0

(t− x)n−α−1fn(x)dx, t > 0 (6)

where n− 1 < α ≤ n, n ε N and n = dαe.

2.2. B-spline function. B-spline is a piecewise polynomial function and possesses
a high degree of smoothness at the knots which is known as the places where the
pieces of polynomial are join together.

Definition 2.1. The cardinal B-splines, Nn(t) of order n are described via this
convolution product:

N1(t) = χ[0,1](t), (7)

Nn(t) = N1(t) ∗Nn−1(t), (n ≥ 2) (8)

Then, the two-scale relationship of order n for the B-spline function is :

Nn(t) =

n∑
k=0

21−n
(
n

k

)
Nn(2t− k) (9)

In this paper, we will using second order B-spline function, hence, n = 2, so from
(9), we have

N2(t) =

2∑
k=0

1

2

(
2

k

)
N2(2t− k) (10)

We use the second order B-spline function to solve FVP as describe in problem
(1). We only focused on domain [0, 1]. Therefore, we define second order B-spline
scaling function, ϕ2,j,k(t) as

ϕ2,j,k(t) = N2,j,k(t)χ[0,1](t). (11)

where N2,j,k = N2(2jt− k) and j is involving in discretization step, which j must
be 2j ≥ 3. Hence, we have the B-spline function of order 2 as in [9].

ϕ2,j,k(t) =


2jt− k ,

k

2j
≤ t < k + 1

2j

2− (2jt− k) ,
k + 1

2j
≤ t < k + 2

2j
0 , otherwise

(12)

where k = 0, 1, . . . , 2j − 2.

2.3. Function Approximation. For a fixed j = J , a function of f(t) which is
defined on interval [0, 1] can be approximated by the second order B-spline function
as follow,

f(t) ≈
2j−1∑
k=r

ckϕ2,j,k(t) = CTΦJ(t) (13)
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where the vectors of coefficient, C and ΦJ(t) are shown below with r = −1:

C = [cr, cr+1, . . . , c2j−1]T (14)

ΦJ(t) = [ϕ2,j,r(t), ϕ2,j,r+1(t), . . . , ϕ2,j,2j−1(t)]T . (15)

Then, ck can be find using

ck =

∫ 1

0

f(t)ϕ̃2,j,k(t)dt (16)

where ϕ̃2,j,k(t) is a vector of dual function of ϕ2,j,k(t) for k = r, r + 1, . . . , 2j − 1.
Practically, we can also find the dual function, ϕ̃2,j,k(t) by following equation.

Φ̃J(t) = P−1ΦJ(t) (17)

where Φ̃J(t) = [ϕ̃2,j,r(t), ϕ̃2,j,r+1(t), . . . , ϕ̃2,j,2j−1(t)]T and P is given by
∫ 1

0
ΦJ(t)ΦTJ (t)dt.

3. B-SPLINE OPERATIONAL MATRIX OF FRACTIONAL
INTEGRATION

In this section, we will briefly discuss the derivation of B-spline operational
matrix of fractional integration. For this part, we follow the work in [9]. We use
Laplace transform to calculate the fractional integration for second order B-spline
function with k = 0, 1, . . . , 2j − 2. In this process, we first change ϕn,j,k(t) to unit
step function, we get

ϕ2,j,k(t) = 2j
(
t− k

2j

)
u

(
t− k

2j

)
− 2j+1

(
t− k + 1

2j

)
u

(
t− k + 1

2j

)
+ 2j

(
t− k + 2

2j

)
u

(
t− k + 2

2j

)
.

(18)

From (18), we convert it into Laplace transform:

L{ϕ2,j,k(t)} =
2j

s2

(
e−

k

2j
s − 2e−

k+1

2j
s + e−

k+2

2j
s

)
By using definition from Riemann-Liouville fractional integration (3), we have the
Laplace transform of Iαϕ2,j,k(t) as

L{Iαϕ2,j,k(t)} =
1

Γ(α)
L{tα−1}L{ϕ2,j,k(t)}

= 2j
(

1

sα+2
e−

k

2j
s − 2

sα+2
e−

k+1

2j
s +

1

sα+2
e−

k+2

2j
s

) (19)
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Then, take the inverse Laplace for both sides of equation (19), we will get

Iαϕ2,j,k(t) =
2j

Γ(α+ 2)

[(
t− k

2j

)α+1

u

(
t− k

2j

)
− 2

(
t− k + 1

2j

)α+1

u

(
t− k + 1

2j

)
+

(
t− k + 2

2j

)α+1

u

(
t− k + 2

2j

)] (20)

The unit step function in (20) can be easily rewrite in piecewise function. Hence,

by letting a =
1

2jαΓ(α+ 2)
, the fractional integration of second order B-spline

function is achieved as follow:

Iαϕ2,j,k(t) = a



0 , t <
k

2j

(2jt− k)α+1 ,
k

2j
≤ t < k + 1

2j

(2jt− k)α+1 − 2(2jt− k − 1)α+1 ,
k + 1

2j
≤ t < k + 2

2j
(2jt− k)α+1 − 2(2jt− k − 1)α+1

+(2jt− k − 2)α+1 ,
k + 2

2j
≤ t

(21)

3.1. Operational Matrices. Here we will explain more on operational matrix of
fractional integration for second order B-spline function. First, let Φ̃J be the vector
of dual function of ΦJ where order 2 and r = −1.

Φ̃J = [ϕ̃2,j,r(t), ϕ̃2,j,r+1(t), . . . , ϕ̃2,j,2j−1(t)]T

By using duality principle as in [10], we obtain∫ 1

0

Φ̃J(t)ΦTJ (t)dt = I (22)

where I represent identity matrix.

Theorem 3.1. If the matrix P2 = [pi,r] is describe as :

P2 =

∫ 1

0

ΦJ(t)ΦTJ (t)dt, (23)

then we have :
(a) P2 which is a (2j + 1)(2j + 1) symmetric matrix :

P2 =
1

6(2j)


2 1 0 . . . 0
1 4 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 4 1
0 . . . 0 1 2
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(b) The vector of dual function for Φ̃J(t) can be obtained by using linear combination
of ΦJ(t) [27] which interpret as :

Φ̃J(t) = (P−12 ΦJ(t))

Proof. The following formula is simple to be applied for proving the theorem [9] :

pi,k =

∫ 1

0

ϕn,j,i(t)ϕn,j,k(t)dt,

where j ≥ n, i, k = r, . . . , 2j − 1 and r = 1− n.

Theorem 3.2. Consider vector of second-order B-spline, ΦJ(t) and let α > 0, then

IαΦJ(t) = FαΦJ(t) (24)

where Fα is the B-spline operational matrix of fractional integration and is defined
as follow:

Fα = E2P
−1
2 (25)

where element of E2 is given as ei,k,

ei,k =

∫ 1

0

(Iαϕ2,j,k(t))ϕ2,j,i(t)dt (26)

and P2 =
∫ 1

0
ΦJ(t)ΦTJ (t)dt

Proof. Multiply both sides of equation (24) with ΦTJ (t) and integrate from 0 to
1, we have ∫ 1

0

FαΦJ(t)ΦTJ (t)dt =

∫ 1

0

IαΦJ(t)ΦTJ (t)dt

By using equation (23), we have

FαP2 =

∫ 1

0

IαΦJ(t)ΦTJ (t)dt

Then, Fα =
∫ 1

0
IαΦTJ (t)ΦJ(t)dtP−12 . Hence, let E2 =

∫ 1

0
IαΦJ(t)ΦTJ (t)dt, we have

Fα = E2P
−1
2

where each of element E2 is ei,k =
∫ 1

0
(Iαϕ2,j,k(t))ϕ2,j,i(t)dt.

4. THE NUMERICAL SCHEME

In this section, we describe in details on how to solve the FVPs in (1) and (2)
by applying the operational matrix of fractional integration which is derived from
second order B-spline function.

Firstly, we approximate Dαx(t) with B-spline function, ΦJ(t),

Dαx(t) ' CTΦJ(t) (27)
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where C is the unknown coefficients of B-spline function and both of C and ΦJ(t)
are given in (14) and (15) respectively. After that, by doing integration for (27),
we get

IαDαx(t) ' CT IαΦJ(t)

x(t) ' CTFαΦJ(t) +

n−1∑
i=0

xi
ti

i!

(28)

where Fα is the second order B-spline operational matrix of integration. From
equation (27) and (28), we can approximate the performance index of FVPs in (1)
as follow:

J =

∫ 1

0

L

[
t, CTFαΦJ(t) +

n−1∑
i=0

xi
ti

i!
, CTΦJ(t)

]
dt (29)

The integral in (29) may be solved by any numerical integration such as Gauss
quadrature. Alternative, we can solve the integral by using Maple as it is more
convenient to be use and computer oriented. Then, let assume

J∗ = J + λ(x(t)− bj) (30)

where λ is refer as unknown Lagrange multiplier and bj is the initial boundary
condition given in (2).

λ = [λ1, λ2, . . . , λn]T (31)

In this way, the J∗ we get in (30) is expanded by unknown coefficient of B-
spline function, c1, c2, . . . , cn and also unknown Lagrange multiplier as in (31). So,
by employing the necessary conditions of optimality (32) for the performance index
and the boundary condition (2), we can reduce the problem of FVPs to a system
of algebraic equations which can easily solved using any numerical methods.

δJ∗

δc1
= 0,

δJ∗

δc2
= 0, . . . ,

δJ∗

δcn
= 0,

δJ∗

δλn
= 0 (32)

Once we get the value for coefficients, we can simply calculate the value for
J using equation (29).

5. NUMERICAL EXAMPLE

In this section, we will provide two problems for FVPs and solve it by using
our proposed scheme which is via second order B-spline function.

Example 1: We consider the problem based on example given in paper by
Mohammed, O. H. [22].

J =

∫ 1

0

(
(Dαx(t))2 +Dαx(t)

)
dt (33)
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subject to the boundary condition

x(0) = x0, x(1) = unspecified 0 < α ≤ 1, (34)

The exact solution for α = 1 is

x(t) =
−x2

4
(35)

In paper [22], a scheme via hat basis function is applied to obtain the nu-
merical solution for FVPs. Here, we compare our present result and result in [22]
with the exact solution as shown in TABLE (1). From this comparison, we can see
that our new numerical scheme gives more accurate result. Figure (1) shows the
comparison of our numerical solution of equation (33) for α = 1, 0.5 and 0.6 with
the exact solution. The numerical solution is comparable with those in [22].

Table 1. Comparison of numerical solution of equation (33) using
our present method and hat basis function with the exact solution
for α = 1.

t Our method, N = 9 Hat basis function [22] Exact solution

0.000 -0.0000000000 0 0.0000000000
0.125 -0.0040716105 -0.003909 -0.0039062500
0.250 -0.0156096076 -0.016 -0.0156250000
0.375 -0.0352224584 -0.035 -0.0351562500
0.500 -0.0625209798 -0.063 -0.0625000000
0.625 -0.0976837660 -0.098 -0.0976562500
0.750 -0.1406403837 -0.141 -0.1406250000
0.875 -0.1914149097 -0.191 -0.1914062500
1.000 -0.2500000000 -0.250 -0.2500000000

Example 2: We consider the following problem as in paper by Ezz-Eldien,
S. S.[7].

Min J =

∫ 1

0

(D
1
2x(t) +D

3
2x(t) + x(t)− g(t))2dt (36)

where g(t) = t3 +
6

Γ( 7
2 )
t
5
2 + 8√

π
t
3
2 + 1 and x(0) = 1, x′(0) = 0, x(1) = 2, x′(1) = 3.

The exact solution is x(t) = t3 + 1.

In TABLE (2), the absolute error of x(t) is listed with different value of N
using our present method. Meanwhile, TABLE (3) shows the absolute error for the
performance index by using the proposed method which is B-spline function.

6. CONCLUSION

In this paper, we have constructed a new numerical scheme based on second
order B-spline function for a type of Fractional Variational Problems, FVPs. In our
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Figure 1. Comparison of our numerical solutions for Example 1
when α = 1, 0.5 and 0.6 with the exact solution

Table 2. Comparison of absolute errors for x(t) with different
value of N for Example 2.

t N = 5 N = 9 N = 17

0.0 4.64396E-12 1.97000E-12 3.85518E-13
0.1 7.17682E-03 1.05002E-03 3.04161E-04
0.2 8.35365E-03 2.61284E-03 4.10309E-04
0.3 1.48077E-02 3.85609E-03 5.43256E-04
0.4 2.05389E-02 3.62480E-03 1.15415E-03
0.5 2.27014E-03 4.41441E-04 4.04515E-05
0.6 2.95628E-02 4.76539E-03 1.74005E-03
0.7 2.08555E-02 8.20811E-03 1.41740E-03
0.8 2.64014E-02 9.40113E-03 1.55819E-03
0.9 4.02007E-02 7.06316E-03 2.59205E-03
1.0 3.43952E-10 -5.70000E-10 -4.45600E-11

approach, we used operational matrix of fractional integration of B-spline function
which derive via Laplace transform to reduce the FVPs into the system of algebraic
equation. The two numerical examples show that the scheme able to give high
accuracy result.
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Table 3. The abolute error for the performance index by the
present method for Example 2.

Method N = 5 N = 9 N = 17

Present method 0.0051313 0.0003663 0.0000249
Exact 0
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