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Abstract. A cubic graph is a generalized structure of a fuzzy graph that gives more precision,
flexibility and compatibility to a system when compared with systems that are designed using
fuzzy graphs. In this paper, some properties of an edge regular cubic graph are given. Partic-
ularly, strongly regular, edge regular and bi-regular cubic graphs are defined and the necessary
and sufficient condition for a cubic graph to be strongly regular is studied. Likewise, we have
introduced a partially edge regular cubic graph and fully edge regular cubic graph with suitable
illustrations. Finally, we gave an application of cubic digraph in travel time.
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Abstrak. Graf kubik merupakan suatu struktur perumuman dari graf fuzzy yang memberikan
banyak presisi, fleksibilitas, dan kompatibilitas terhadap suatu sistem yang dirancang menggu-
nakan graf fuzzy. Dalam paper ini, dipelajari beberapa sifat dari suatu graf kubik yang teratur sisi.
Didefinisikan pula graf kubik teratur kuat yang teratur sisi dan bi-regular serta dipelajari syarat
perlu dan syarat cukup bagi suatu graf kubik agar menjadi graf yang teratur kuat. Kemudian,
diperkenalkan graf kubik yang teratur sisi secara parsial dan graf kubik teratur sisi secara penuh
dengan beberapa ilustrasi diberikan. Terakhir, diberikan aplikasi dari graf kubik pada travel time.

Kata kunci: Graf kubik, Graf kubik teratur kuat, Graf kubik bi-regular.
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1. INTRODUCTION

Zadeh introduced the concept of fuzzy set in his seminal paper [22] of 1965. A fuzzy
set of a universe X is a function from X into the unit closed interval [0, 1] of real number.
In [23] Zadeh made an extension of the concept of a fuzzy set by an interval-valued fuzzy
set, i.e., a fuzzy set with an interval-valued membership function. The first definition of
fuzzy graphs was proposed by Kaufmann [5] in 1973. Interval-valued fuzzy sets have been
actively used in real-life applications. For example, Sambuc [14] in medical diagnosis in
thyroidian pathology, Kohout [7] also in medicine, Turksen in preferences modeling [21],
etc. These works and others showed the importance of these sets. Jun et al. [4] intro-
duced cubic sets. The fuzzy graph theory as a generalization of Euler’s graph theory was
first introduced by Rosenfeld [13] in 1975. Later, Bhattacharya [2] gave some remarks
on fuzzy graphs and some operations on fuzzy graphs were introduced by Mordeson and
Peng [8]. The complement of a fuzzy graph was defined by Mordeson [9] and further
studied by Sunitha and Vijayakumar [15]. Hongmei and Lianhua gave the definition of
interval-valued fuzzy graphs [3]. Akram and Dudek defined some operations on interval-
valued fuzzy graphs [1]. Rashmanlou et al. [10, 11, 12] introduced some properties of
highly irregular interval-valued fuzzy graphs, and new concepts of bipolar fuzzy graphs.
Karunambigai et al. [6] introduced edge regular intuitionistic fuzzy graph. Samanta and
Pal [15, 16, 17, 18, 19, 20] defined fuzzy tolerance graph, fuzzy threshold graph, fuzzy k-
competition graph and p-competition fuzzy graph and new concepts of fuzzy planar graph.
The major role of cubic graph theory in computer applications is the development of graph
algorithms. These algorithms are used to solve problems that are modeled in the form of
graphs and the corresponding computer science application problems. One of the most
widely studied classes of cubic graphs is regular cubic graphs. Theoretical concepts of
cubic graphs are highly utilized by computer science applications. Especially in research
areas of computer science such as data mining, image segmentation, clustering, image
capturing and networking. The cubic graphs are more flexible and compatible than fuzzy
graphs due to the fact that they have many applications in networks. They show up in many
contexts. Fore example, r-regular cubic graphs with connectivity and edge-connectivity
equal to r play a key role in designing reliable communication networks. Hence, in this pa-
per some properties of an edge regular cubic graph are given. Particularly, strongly regular,
edge regular and biregular cubic graphs are defined and the necessary and sufficient condi-
tion for a cubic graph to be strongly regular is studied. Also, we have introduced a partially
edge regular cubic graph and fully edge regular cubic graph with suitable illustrations. Af-
ter introductory Section 1, some basic definitions are given in Section 2. In Section 3, the
concepts of regularity of cubic graphs are defined. In Section 4, an application is given in
travel time. At last conclusion is given in Section 5.

2. PRELIMINARIES

A graph is an ordered pair G = (V, E), where V is the set of vertices of G and E is
the set of edges of G. A subgraph of a graph G = (V, E) is a graph H = (W, F), where
W ⊆ V and F ⊆ E. A fuzzy graph G = (σ, µ) is a pair of functions σ : V → [0, 1]
and µ : V × V → [0, 1] with µ(u, v) ≤ σ(u) ∧ σ(v), for all u, v ∈ V , where V is a finite
non-empty set and ∧ denote minimum. We introduce below necessary notions and present
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a few auxiliary results that will be used throughout the paper.
A map λ : X → [0, 1] is called a fuzzy subset of X. For any two fuzzy subsets λ and µ of
X, λ ⊆ µ means that, for all x ∈ X, λ(x) ≤ µ(x). The symbol λ ∧ µ and λ ∨ µ will mean the
following fuzzy subsets of X.
(λ ∧ µ)(x) = λ(x) ∧ µ(x) and (λ ∨ µ)(x) = λ(x) ∨ µ(x), for all x ∈ X.
Let X be a non-empty set. A function A : X → [I] is called an interval-valued fuzzy set
(shortly, an IVF set) in X. Let [I]X stands for the set of all IVF sets in X. For every A ∈ [I]X

and x ∈ X,A(x) = [A−(x), A+(x)] is called the degree of membership of an element x to A,
where A− : X → I and A+ : X → I are fuzzy sets in X which are called a lower fuzzy
set and an upper fuzzy set in X, respectively. For simplicity, we denote A = [A−, A+]. For
every A, B ∈ [I]X , we define A ⊆ B if and only if A(x) ≤ B(x), for all x ∈ X.

Definition 2.1. Let A = [A−, A+], and B = [B−, B+] be two interval-valued fuzzy set in X.
Then we define rmin{A(x), B(x)} =

[min{A−(x), B−(x)},min{A+(x), B+(x)}],
rmax{A(x), B(x)} = [max{A−(x), B−(x)},
max{A+(x), B+(x)}].

Definition 2.2. Let X be a non-empty set. By a cubic set in X, we mean a structure A = {<
x, A(x), λ(x) : x ∈ X >} in which A is an interval-valued fuzzy sets in X and λ is a fuzzy set
in X. A cubic set A = {< x, A(x), λ(x) : x ∈ X >} is simply denoted by A =< A, λ >. The
collection of all cubic sets in X is denoted by CP(X).

Definition 2.3. A cubic graph is a triple G = (G∗, P,Q) where G∗ = (V, E) is a graph,
P = (µ̃P, λP) is a cubic set on V and Q = (µ̃Q, µ̃Q) is a cubic set on V × V such that
µ̃Q(xy) ≤ rmin{µ̃P(x), µ̃P(y)} and λ̃Q(xy) ≥ rmax{λ̃P(x),
λ̃P(y)}

The underlying crisp graph of a cubic graph G = (A, B), is the graph G = (V, E),
where V = {v : µ̃P>0 and λP>0} and E =

{
{u, v} : µ̃Q({u, v})>0, µ̃Q({u, v})>0

}
. V is called

the vertex set and E is called the edge set. A cubic graph maybe also denoted as G = (V, E).

Definition 2.4. A cubic graph G = (G∗, P,Q) is called complete if µ̃Q(xy) = rmin{µP(x), µP(y)}
and λ̃Q(xy) = rmax{λ̃P(x),
λ̃P(y)} for all x, y ∈ V.

Definition 2.5. A cubic graph G = (G∗, P,Q) is called strong if µ̃Q(xy) = rmin{µP(x), µP(y)}
and λ̃Q(xy) = rmax{λ̃P(x), λ̃P(y)} for all xy ∈ E.

Definition 2.6. The complement of a cubic graph G = (A, B) is a cubic graph G =

(G∗, P,Q), where P = (µ̃P, λP) and Q = (µ̃Q, λQ) is defined by: µ̃Q(xy) = rmin{µP(x), µP(y)}−

µ̃Q(xy) and λ̃Q(xy) = λ̃Q(xy) − rmax{λ̃P(x), λ̃P(y)}

Definition 2.7. Let G = (V, E) be a cubic graph.
(i) The neighborhood degree of a vertex v is defined as DN(v) =

(
dNµ̃P

(v), dNλQ
(v)

)
, where

dNµP
(v) =

( ∑
w∈N(µ̃−P)

µ̃−P(w),
∑

w∈N(µ+
P)
µ+

P(w)
)

and dNλQ
(v) =

∑
w∈N(λQ)

λQ(w).

(ii) The degree of a vertex vi is defined by dG(vi) =
(
dµ̃P (vi), dλQ (vi)

)
= (k1, k2), where
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k1 = dµ̃P (vi) =
( ∑

vi,v j

µ̃−Q(viv j),
∑
vi,v j

µ̃+
Q(viv j)

)
and k2 = dλQ (vi) =

∑
vi,v j

λQ(viv j).

Definition 2.8. A cubic graph G = (V, E) is said to be
(i) (k1, k2)−regular if dG(vi) = (k1, k2), for all vi ∈ V and also G is said to be a regular
cubic graph of degree (k1, k2).
(ii) bipartite if the vertex set V can be partitioned into two non-empty sets V1 and V2 such
that
(a) µ̃Q(viv j) = 0 and λQ(viv j) = 0, if (vi, v j) ∈ V1 or (vi, v j) ∈ V2
(b) µ̃Q(viv j) = 0, λQ(viv j) > 0, if vi ∈ V1 or v j ∈ V2
(c) µ̃Q(viv j) > 0, λQ(viv j) = 0, if vi ∈ V1 or v j ∈ V2, for some i and j.

Definition 2.9. Let G∗ = (V, E) be a crisp graph and let e = viv j be an edge in G∗. Then,
the degree of an edge e = viv j ∈ E is defined as dG∗ (viv j) = dG∗ (vi) + dG∗ (v j) − 2.

Definition 2.10. (i) The order of G is defined to be O(G) =
(
Oµ̃P ,OλP

)
, where Oµ̃P =∑

u∈V µ̃P(u) and OλP =
∑

u∈V λP(u).
(ii) The size of G is defined to be
S (G) = (S µ̃Q (G), S λQ (G)), where S µ̃Q (G) =

∑
u,v µ̃Q(uv) and S λQ (G) =

∑
u,v λQ(uv).

3. Isomorphic properties of neighborly irregular and highly irregular cubic graphs

In this section, we define weak isomorphism, co-weak isomorphism and isomor-
phism of neighborly irregular cubic graphs and prove that.

Definition 3.1. Let G = (V, E) be a cubic graph.
(i) The degree of an edge ei j ∈ E is defined as
dµ̃Q (ei j) = dµ̃P (vi)+ dµ̃P (v j) − 2µ̃Q(viv j) or dµ̃Q (ei j) =

∑
vivk∈E

k, j

µ̃Q(vivk)+
∑

vkv j∈E
k,i

µ̃Q (vkv j).

dλQ (ei j) = dλP (vi) + dλP (v j) − 2λQ(viv j) or dλQ (ei j) =
∑
vivk∈E

k, j

λQ(vivk)+
∑

vkv j∈E
k,i

λQ(vkv j).

(ii) The minimum edge degree of G is δE(G) = (δµ̃Q (G), δλQ (G)), where δµ̃Q (G) = ∧{dµ̃Q (ei j) |
ei j ∈ E} and δλQ (G) = ∧{dλQ (ei j) | ei j ∈ E}.
(iii) The maximum edge degree of G is ∆E(G) = (∆µ̃Q (G),∆λQ (G)), where ∆µ̃P (G) =

∨{dµ̃Q (ei j) | ei j ∈ E} and ∆λQ (G) = ∨{dλQ (ei j) | ei j ∈ E}.
(iv) The total edge degree of an edge ei j ∈ E is defined as
tdµ̃Q (ei j) =

∑
vivk∈E

k, j

µ̃Q(vivk)+
∑

vkv j∈E
k,i

µ̃Q(vkv j)+µ̃Q(ei j), tdλQ (ei j) =
∑
vivk∈E

k, j

λQ(vivk)+
∑

vkv j∈E
k,i

λQ(vkv j)+

λQ(ei j).
(v) The edge degree of G is defined by dG(ei j) = (dµ̃Q (ei j), dλQ (ei j)) and the total edge
degree of G is defined by tdG(ei j) = (tdµ̃Q (ei j), tdλQ (ei j)).

Example 3.1. Consider the cubic graph G = (V, E) in Figure 3.1, where V = {a, b, c, d}
and E = {ab, ad, bc, bd, cd}. Then
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Figure 1. Cubic graph

dµ̃Q (ac) = [0.7, 1.05], dλQ (ac) = 1.1,dG(uw) = [0.7, 1.05], 1.1, tdµ̃Q (ac) = [0.7 +

0.1 = 0.8, 1.05 + 0.25 = 1.30] and tdλQ (ac) = 1.7 + 0.4 = 2.1. Hence, tdG(ac) =

[0.8, 1.30], 2.1 (ei j = (ui, u j)).

Definition 3.2. Let G = (V, E) be a cubic graph.
(i) If each edge in G has the same degree (l1, l2), then G is said to be an edge regular cubic
graph.
(ii) If each edge in G has the same total degree (t1, t2), then G is said to be a totally edge
regular cubic graph.

Example 3.2. Consider the cubic graph G = (V, E) as in Figure 2, where V = {u1, u2, u3, u4}

and E = {u1u2, u1u3, u3u4, u2u4}. Then
dG(e12) = dG(e24) = dG(e34) = dG(e13) = [0.1, 0.3], 1.1.

Theorem 3.1. Let G = (V, E) be a cubic graph on a cycle G∗. Then∑
vi∈V

dG(vi) =
∑

viv j∈E

dG(viv j)

Proof. Let G = (V, E) be a cubic graph and G∗ be a cycle v1v2v3 · · · vnv1. Then
n∑

i=1

dG(vivi+1) =
( n∑

i=1

dµ̃Q (vivi+1),
n∑

i=1

dλQ (vivi+1)
)
. Also µ̃P = {µ−P, µ

+
P} and µ̃Q = {µ−Q, µ

+
Q}

Now we have∑n
i=1 dµ̃Q (vivi+1) =

dµ̃Q (v1v2) + dµ̃Q (v2v3) + · · · + dµ̃Q (vnv1),where vn+1 = v1
= dµ̃P (v1) + dµ̃P (v2)−2µ̃Q(v1v2) + dµ̃P (v2) + dt(v3)
= 2µ̃P(v2v3) + · · · + dµ̃P (vn) +dµ̃P (v1) − 2µ̃Q(vnv1)
= 2dµ̃P (v1) + 2dµ̃P (v2)+ · · · + 2dµ̃P (vn)
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Figure 2. [0.1,0.3],1.1 - edge regular cubic graph

= 2
(
µ̃Q(v1v2) + µ̃Q(v2v3) + · · · + µ̃Q(vnv1)

)
= 2

∑
vi∈V dµ̃P (vi)

−2
∑n

i=1 µ̃Q(vivi+1)
=

∑
vi∈V dµ̃P (vi) +2

∑n
i=1 µ̃Q(vivi+1)

−2
∑n

i=1 µ̃Q(vivi+1)
=

∑
vi∈V µ̃P(vi).

Similarly,
n∑

i=1

dλQ (vivi+1) =
∑
vi∈V

dλP (vi).

Hence,
∑n

i=1 dG(vivi+1) =
(∑

vi∈V dµ̃P (vi),∑
vi∈V dλP (vi)

)
=

∑
vi∈V dG(vi). �

Remark 3.1. Let G = (V, E) be a cubic graph on a crisp graph G∗. Then,
∑

viv j∈E dG(viv j) =(∑
viv j∈E dG∗ (viv j)µ̃Q(viv j),∑

viv j∈E dG∗ (viv j)λQ(viv j)
)
, where dG∗ (viv j) = dG∗ (vi) + dG∗ (v j) − 2, for all viv j ∈ E.

Theorem 3.2. Let G = (V, E) be a cubic graph on a k−regular crisp graph G∗. Then,∑
viv j∈E dG(viv j) =

(
(k − 1)

∑
vi∈V dµ̃P (vi), (k − 1)

∑
vi∈V dλP (vi)

)
.

Proof. By Remark 3.6, we have
∑

viv j∈E dG(viv j)
= (

∑
viv j∈E dG∗ (viv j)µ̃Q(viv j),

∑
viv j∈E

dG∗ (viv j)λQ(viv j))
=

(∑
viv j∈E (dG∗ (vi) + dG∗ (v j) − 2)µ̃Q(viv j),∑

viv j∈E(dG∗ (vi) + dG∗ (v j) − 2)λQ(viv j)
)
. Since G∗ is a regular crisp graph, dG∗ (vi) = k,

for all vi ∈ V and so we have
∑

viv j∈E dG(viv j) =
(
(k + k − 2)

∑
viv j∈E µ̃Q (viv j), (k + k −

2)
∑

viv j∈E λQ(viv j)
)
,
∑

viv j∈E dG(viv j) =
(
2(k−1)

∑
viv j∈E µ̃Q (viv j), 2(k−1)

∑
viv j∈E λQ(viv j)

)
,∑

viv j∈E dG(viv j) =
(
(k − 1)

∑
vi∈V dµ̃Q (vi), (k − 1)

∑
vi∈V dλQ (vi)

)
. �
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Theorem 3.3. Let G = (V, E) be a cubic graph on a crisp graph G∗. Then,
∑

vivi∈E tdG(viv j) =(∑
viv j∈E dG∗ (viv j)µ̃Q(viv j) +

∑
viv j∈E µ̃Q(viv j),∑

viv j∈E dG∗ (viv j)λQ(viv j) +
∑

viv j∈E λQ(viv j)
)
.

Proof. By definition of total edge degree of G, we have
∑

viv j∈E tdG(viv j) =(∑
viv j∈E tdµ̃Q (viv j),

∑
viv j∈E tdλQ (viv j)

)
=

(∑
viv j∈E(dµ̃Q (viv j) + µ̃Q(viv j)),∑

viv j∈E(dλQ (viv j) +λQ(viv j))
)

=
(∑

viv j∈E dµ̃Q (viv j)+∑
viv j∈E µ̃Q(viv j),∑
viv j∈E dλQ (viv j)+

∑
viv j∈E λQ(viv j)

)
.

By Remark 3.6, we get∑
viv j∈E tdG(viv j)

=
(∑

viv j∈E dG∗ (viv j)µ̃Q(viv j) +∑
viv j∈E µ̃Q(viv j),

∑
viv j∈E dG∗ (viv j)λQ(viv j)

+
∑

viv j∈E λQ(viv j)
)
. �

Theorem 3.4. Let G = (V, E) be a cubic graph. Then (tB, fB) is a constant function if and
only if the following are equivalent.
(i) G is a edge regular cubic graph.
(ii) G is totally edge regular cubic graph.

Proof. Assume that (µ̃P, λQ) is a constant function. Then µ̃Q(viv j) = c1 and λQ(viv j) =

c2, for every viv j ∈ E, where c1 and c2 are constants. Let G be an (l1, l2)-edge regu-
lar cubic graph. Then, for all viv j ∈ E, dG(viv j) = (l1, l2) and tdG(viv j) = (dµ̃P (viv j) +

µ̃Q(viv j), dλQ (viv j) + λQ(viv j)) = (l1 + c1, l2 + c2), for all viv j ∈ E. Then G is a totally edge
regular. Now, let G be a (t1, t2)−totally edge regular cubic graph. Then tdG(viv j) = (t1, t2),
for all viv j ∈ E. So, we have tdG(viv j) = (dµ̃Q (viv j)+µ̃P(viv j), dλQ (viv j)+ λQ(viv j)) = (t1, t2).
Hence, (dµ̃Q (viv j), dλQ (viv j)) = (t1 − µ̃Q(viv j), t2 − λQ(viv j)) = (t1 − c1, t2 − c2). Then, G is a
(t1 − c1, t2 − c2) edge regular cubic graph.
Conversely, assume that (i) and (ii) are equivalent. We have to prove that (µ̃P, λQ) is a
constant function. Suppose that (µ̃P, λQ) is not a constant function. Then µ̃Q(viv j) ,
µ̃Q(vrvs) and λQ(viv j) , λQ(vrvs) for at least one pair of viv j, vrvs ∈ E. Let G be an
(l1, l2) edge regular cubic graph. Then, dG(viv j) = dG(vrvs) = (l1, l2). Hence for all
viv j ∈ E and for all vrvs ∈ E; tdG(viv j) = (dµ̃Q (viv j)+ µ̃Q(viv j), dλQ (viv j) +λQ(viv j)) =

(l1 +µ̃Q(viv j), l2 +λQ(viv j)) tdG(vrvs) = (µ̃Q(vrvs) +µ̃Q(vrvs), dλQ (vrvs) +λQ(vrvs)) = (l1
+µ̃Q(vrvs), l2 +λQ(vrvs)) Since, µ̃Q(viv j) , µ̃Q(vrvs) and λQ(viv j) , λQ(vrvs), we have
tdG(viv j) , tdG(vrvs). Hence, G is not a totally edge regular that is contradiction to our as-
sumption. Therefore, (µ̃P, λQ) is a constant function. Similarly we can show that (µ̃P, λQ)
is a constant function, when G is a totally edge regular cubic graph. �

Theorem 3.5. Let G = (V, E) be a cubic graph on a k−regular crisp graph G∗. Then,
(tB, fB) is a constant if and only if G is both regular and edge regular cubic graph.
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Figure 3. Strongly regular cubic graph

Proof. Let G = (V, E) be a cubic graph on G∗ and let G∗ be a k−regular crisp
graph. Assume that µ̃Q and λQ are constant functions, i.e., µ̃Q(viv j) = c and λQ(viv j) = t,
for all viv j ∈ E, where c, t are constants. By definition of degree of a vertex we have
dG(vi) = (dµ̃P (vi), dλQ (vi)) =

(∑
viv j∈E µ̃Q(viv j),

∑
viv j∈E λQ (viv j)

)
=

(∑
viv j∈E c,

∑
viv j∈E t

)
for all vi ∈ V . Hence, dG(vi) = (kc, kt). Therefore, G is regular cubic graph. Now,
tdG(viv j) = (tdµ̃Q (viv j), tdλQ (viv j)), where tdt(viv j) =∑
µ̃Q(vivk) +

∑
µ̃P(vkv j) +µ̃Q(viv j)

=
∑

vivk∈E
k, j

c +
∑

vkv j∈E
k,i

c +c = c(k−1)+c(k−1)+c = c(2k−1). Similarly, tdλQ (viv j) = t(2k−1),
for all viv j ∈ E. Hence, G is also totally edge regular cubic graph.

Conversely, assume that G is both regular and edge regular cubic graph. We prove
that (µ̃Q, λQ) is a constant function. Since G is regular, dG(vi) = (c1, c2), for all vi ∈ V .
Also, G is totally edge regular. Hence tdG(viv j) = (t1, t2), for all viv j ∈ E. By definition of
totally edge degree we have tdG(viv j) = (tdµ̃Q (viv j), tdλQ (viv j)), where tdG(viv j) =

dµ̃P (vi) + dµ̃P (v j)− µ̃Q(viv j), for all viv j ∈ E, t1 = c1 + c2 − µ̃Q(viv j). So, µ̃Q(viv j) = 2c1 − t1.
Similarly we have λQ(viv j) = 2c2 − t2, for all viv j ∈ E. Hence, (µ̃P, λQ) is a constant
function. �

Definition 3.3. A cubic graph G = (V = {v1, v2, · · · , vn}, E), is said to be strongly regular,
if it satisfies the following axioms:
(i) G is k = (k1, k2)−regular cubic graph
(ii) The sum of membership values and non-membership values of the common neighbor-
hood vertices of any pair of adjacent vertices and non-adjacent vertices vi, v j of G has the
same weight and is denoted by λ = (λ̃1, λ2), δ = (δ̃1, δ2), respectively.

Note 3.1. Any strongly cubic graph G is denoted by G = (n, k, λ, δ).

Example 3.3. Consider the cubic graph G = (V, E) in Figure 3, where V = {a, b, c} and
E = {ab, bc, ca}.Then, n = 4, k = (k̃1, k2) = ([0.2, 0.4], 1.2),
λ = (λ̃1, λ2, λ

∗) = [(0.4, 0.6), 1.2),
δ = (δ̃1, δ2) = [(0, 0), 0]. Hence, G is a strongly regular cubic graph.

Theorem 3.6. If G = (V, E) is a complete cubic graph with (tA, fA) and (tB, fB) as constant
functions, then G is a strongly regular cubic graph.
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Proof. Let G = (V, E) be a complete cubic graph where V = {v1, v2, · · · , vn}. Since
µ̃P(vi), λQ(vi), ˜µP(viv j) and λQ(viv j) are constant functions, hence, µ̃P(vi) = r, λ(vi) = s,
for all vi ∈ V and µ̃P(viv j) = c and λQ(viv j) = t, for all viv j ∈ E where r, s, c, t are
constants. To prove that G is a strongly regular cubic graph, we have to show that G is
k = (k1, k2)−regular cubic graph and the adjacent vertices have the same common neigh-
borhood λ = (λ1, λ2) and non-adjacent vertices have the same common neighborhood
δ = (δ1, δ2). Now, Since G is complete; dG(vi) = (dµ̃P (vi), dλQ (vi)) =

(∑
viv j∈E µ̃P(viv j),∑

viv j∈E λQ(viv j)
)

= ((n − 1)c, (n − 1)t) Hence, G is an ((n − 1)c, (n − 1)t)−regular cu-
bic graph. Now, since G is complete cubic graph, the sum of membership values and
non-membership values of common neighborhood vertices of any pair of adjacent vertices
λ = ((n−2)r, (n−2)s) are the same and the sum of membership values and non-membership
values of common neighborhood vertices of any pair of non-adjacent vertices δ = 0 are the
same. �

Remark 3.2. If G is a strongly regular disconnected cubic graph then, δ = 0.

Definition 3.4. A cubic graph G = (V, E) is said to be a biregular cubic graph if it satisfies
the following axioms:
(i) G is k = (k1, k2)−regular cubic graph.
(ii) V = V1 ∪ V2 be the bipartition of V and every vertex in V1 has the same neighborhood
degree M = (M1,M1) and every vertex in V2 has the same neighborhood degree N =

(N1,N2), where M and N are constants.

Example 3.4. Consider a cubic graph G = (V, E) in Figure 4, where V = {u1([0.25, 0.35], 0.5),
u2([0.35, 0.45], 0.6),
u3([0.25, 0.35], 0.5), u4([0.35, 0.45], 0.6),
u5([0.35, 0.45], 0.6), u6([0.25, 0.35], 0.5),
u7([0.35, 0.45], 0.6), u8([0.25, 0.35], 0.5)}
and E = {u1u2, u1u4, u1u5, u2u6, u2u3, u3u4, u3u7, u4u8, u5u6, u5u8, u6u7, u7u8}. The mem-
bership values of the edges (u1, u2), (u3, u4), (u5, u8), (u6, u7) is ([0.05, 0.15], 0.6) and
that of (u1, u4), (u2, u3), (u5, u6), (u7, u8) is ([0.15, 0.25], 0.7) and that of (u1, u5), (u2, u6),
(u4, u8), (u3, u7) is
([0.25, 0.35], 0.6). Thenn = 8, k = (k1, k2) = ([0.55, 0.65], 1.9), V1 = {u1, u3, u6, u8}, V2 = {u2, u4, u5, u7}, M =

(M1,M2) = ([1.15, 1.25], 1.8) and N = (N1,N2) = ([0.85, 0.95], 1.5).

Theorem 3.7. If G = (V, E) is a strongly regular cubic graph which is strong then, G is a
(k1, k2)−regular.

Proof. Let G = (V, E) be a strongly regular cubic graph. Then by definition, G is a
(k1, k2)−regular. Since G is strong, we have

µ̃Q(viv j) =

{
0 f or all viv j ∈ E
min(µ̃P(vi), µ̃P(v j)) f or all viv j < E

λQ(viv j) =

{
0 f or all viv j ∈ E
max(λP(vi), λP(v j)) f or all viv j < E.
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Figure 4. Biregular cubic graph

Now, since G is strong, the degree of a vertex vi in G is dḠ(vi) = (d ¯̃µP
(vi), dλ̄P

(vi)), where
d ¯̃µP

(vi) =
∑

vi,v j
¯̃µQ(viv j) =

∑
vi,v j

µ̃P̄(vi) ∧ µ̃P̄(v j) = k1, ∀vi ∈ V Hence, dḠ(vi) = (k1, k2),
for all vi ∈ V . So, G is a (k1, k2)-regular cubic graph. �

Theorem 3.8. Let G = (V, E) be a strong cubic graph. Then G is a strongly regular if and
only if G is a strongly regular.

Proof. Assume that G = (V, E) is a strongly regular cubic graph. Then G is (k1, k2)−regular
and the adjacent vertices and the non-adjacent vertices have the same common neighbor-
hood λ = (λ1, λ2) and δ = (δ1, δ2), respectively. We have to prove that G is a strongly
regular cubic graph. If G is strongly regular cubic graph which is strong then G is a
(k1, k2)−regular cubic graph by Theorem 3.7. Next, let S 1 and S 2 be the sets of all adjacent
vertices and non-adjacent vertices of G. That is, S 1 = {viv j | viv j ∈ E}, where vi and v j

have same common neighborhood λ = (λ1, λ2) and S 2 = {viv j | viv j < E}, where vi and v j

have same common neighborhood δ = (δ1, δ2). Then, S 1 = {viv j | viv j ∈ E}, where vi and
v j have same common neighborhood δ = (δ1, δ2) and S 2 = {viv j | viv j < E}, where vi and
v j have same common neighborhood λ = (λ1, λ2). Which implies G is a strongly regular.
Similarly we can prove the converse. �

Theorem 3.9. A strongly regular cubic graph G is a biregular cubic graph if the adjacent
vertices have the same common neighborhood λ = (λ1, λ2) , 0 and the non-adjacent
vertices have the same common neighborhood δ = (δ1, δ2) , 0.

Proof. Let G = (V, E) be a strongly regular cubic graph. Then we have d(vi) =

(k1, k2), for all vi ∈ V . Assume that the adjacent vertices have the same common neighbor-
hood δ = (δ1, δ2) , 0. Let S be the sets of all non-adjacent vertices. That is S = {viv j | vi

is not adjacent to v j, i , j, vi, v j ∈ V}. Now the vertex partition of G is V1 = {vi | vi ∈ S }
and V2 = {v j | v j ∈ S }. Then V1 and V2 have the same neighborhood degree, since G is a
strongly regular. Hence, G is a bi-regular cubic graph. �

Definition 3.5. (i) If the underlying graph G∗ is an edge regular graph, then G is said to
be a partially edge regular cubic graph.
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(ii) If G is both edge regular and partially edge regular cubic graph, then G is said to be a
full edge regular cubic graph.

Theorem 3.10. Let G be a cubic graph on G∗ such that (tB, fB) is a constant function. If
G is full regular, then G is full edge regular cubic graph.

Proof. Let (µ̃Q, λQ) be a constant function. Then, µ̃Q(viv j) = c1 and λQ(viv j) = c2,
for every viv j ∈ E where c1 and c2 are constants. Suppose that G is full regular cubic graph
then dG(vi) = (k1, k2) = k and dG∗ (vi) = r, for all vi ∈ V , where k and r are constants.
dG∗ (viv j) = dG∗ (vi) + dG∗ (v j) − 2 = 2r − 2 =constant. Hence, G∗ is an edge regular graph.
Now, since G is regular, dG(viv j) = (dµ̃Q (viv j), dλQ (viv j)), for all viv j ∈ E where dµ̃Q (viv j)
= dµ̃P (vi) + dµ̃P (v j) − 2µ̃Q(viv j) = k1 + k1 − 2c1 = 2k1 − 2c1 = constant. Similarly, for
all viv j ∈ E, dλQ (viv j) = 2k2 − 2c2 = constant. Hence, G is an edge regular cubic graph.
Therefore, G is full edge regular cubic graph. �

Theorem 3.11. Let G be a t−totally edge regular cubic graph and t1−partially edge reg-

ular cubic graph. Then S (G) =
qt

1 + t1
, where q = |E|.

Proof. The size of cubic graph G is

S (G) =
( ∑

viv j∈E

µ̃Q(viv j),
∑

viv j∈E

λQ(viv j)
)
.

Since G is t−totally edge regular cubic graph i.e., tdG(viv j) = t and G∗ is t1−partially edge
regular cubic graph i.e. dG∗ (viv j) = t1. Thus,

∑
tdG(viv j) =

(∑
viv j∈E dG∗ (viv j)µ̃Q(viv j),∑

viv j∈E dG∗ (viv j) λQ(viv j)
)

+ S (G). qt = t1S (G) + S (G). Hence, S (G) =
qt

1 + t1
. �

4. CUBIC DIGRAPH IN TRAVEL TIME

In modern age, planning efficient routes is essential for industry and business, with
applications as varied as product distribution, laying new fiber optic lines for broadband
internet, and suggesting new friends within social network websites such as Facebook.
When we visit a website like Google Maps and looking for directions from one city to
another city in USA, we are usually asking for a shortest path between the two cities. These
computer applications use representations of the road maps as graphs, with estimated travel
times as edge weights. The travel time is a function of traffic density on the road or the
length of the road. The traffic density is a fuzzy, while the length of a road is a crisp
quantity. In a road network, crossings are represented by vertices, roads by edges and
traffic density on the road is usually calculated between adjacent crossings. These factors
can be represented as a cubic set. Any model of a road network can be represented as a
cubic digraph D = (C,R),where C is a cubic set of crossings(vertices) at which the traffic
density is calculated and connectivity conditions as truth-membership degree with intervals
µ̃P(x) and falsity membership degree λP(x)
C =

{
(a, [0.2, 0.3], 0.4), (b, [0.3, 0.5], 0.6), (c, [0.5, 0.7], 0.8),

(d, [0.4, 0.6], 0.7), (e, [0.2, 0.5], 0.6), ( f , [0.3, 0.4], 0.5), (g, [0.4, 0.6], 0.7)
}

and R is a cubic set of roads (edges) between crossings whose truth membership degree
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µ̃P(x) and false membership degree λP(x) can be calculated as:
µ̃Q(xy) ≤ min{µ̃P(x), µ̃P(y)}
λP(xy) ≥ max{λP(x), λP(y)} for all xy ∈ E.

Figure 5. Cubic digraph of a road network

Figure 6. Weighted digraph of a road network
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The cubic digraph D = (C,R) of the travel time is given in Figure 5. The cubic out
neighborhood are given in Table 4.
The final weights on edges can be calculated by finding the score function of cubic edges
as
si = (µ̃R)i + 1 − (λR)i. The final weighted digraph given in Figure 6 which can be used for
finding the shortest or optimal path between two locations (vertices) by any of the known
methods, like Floyd’s algorithm, Djikstra’s and A star algorithm. Weighted relations are
given in Table 4.

Crossings N+(crossings)
a {f,([0.1,0.2],0.6)}
b {a,([0.1,0.2],0.7), g,([0.2,0.3],0.65)}
c {b,([0.2,0.4],0.85)}
d {c,([0.3,0.4],0.85)}
e {d,([0.1,0.3],0.8)}
f {c,([0.2,0.3],0.85), e,([0.1,0.3],0.7)}
g {a,([0.1,0.2],0.6), f,([0.1,0.5],0.7)}

Crossings N+(crossings)
a {f,0.7}
b {a,0.6 , g,0.85}
c {b,0.75}
d {c,0.85}
e {d,0.6}
f {c,0.65, e,0.7}
g {a,0.7, f,0.9}

The following algorithm generates the weighted digraph, WR, for given cubic di-
graph and resolves to obtain the optimal path from a source vertex to destination vertex.

5. CONCLUSION

Fuzzy graph theory has numerous applications in modern science and technology,
especially in the fields of operations research, neural networks, and decision making. Since
the cubic models give more precision, flexibility and compatibility to the system as com-
pared to the classical and fuzzy models, in this paper the definition of partial edge regular
and fully edge regular cubic graph are given and some properties of edge regular cubic
graph are studied. Also, we have introduced the condition under which edge regular cubic
graph and totally edge regular cubic graph are equivalent. In our future work, we are going
to extend the properties of strongly edge regular cubic graph in matrix representation.
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Algorithm 1 Cubic digraphs in road networks
1: void cubic shortest path()
2: C = cubic set of crossings;
3: number of crossings = count(C);
4: R = Empty cubic set of roads;
5: for(int c = 0; c < number of crossings ; c++){
6: for(int c′ = 0; c′ < number of crossings ; c′++){
7: if (C(x) is adjacent to C(y)){
8: µ̃PRcc′ ≤ min(µ̃Q(c), µ̃Q(c′);
9: λPcc′ ≥ max(λQ(c), λQ(c′);

10: }

11: }

12: }

13: R = cubic set of edges;
14: R = cubic relation (Adjacency matrix of F × F);
15: WG = Weighted relation (Adjacency matrix of F × F);
16: no. of Edges = Count(R);
17: for(int i=0 ; i < no. of Edges ; i++){
18: si = (µ̃R)i + 1 − (λR)i
19: c = Adjacent from Node of Ri;
20: c′ = Adjacent from Node of Ri;
21: WRcc′ = si;
22: }
23: print WR
24: Calculated optimal path using WR
25: }
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