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Abstract. In this paper some Fejér-type inequalities for superquadratic functions

are established, we also get refinement of some known results when superquadratic

function is positive and hence convex.
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Abstrak. Pada paper ini dinyatakan beberapa ketaksamaan tipe Fejér untuk

fungsi-fungsi superkuadratik, juga diperoleh perhalusan dari beberapa hasil yang

telah diketahui untuk fungsi superkuadratik positif dan konveks.

Kata kunci: Ketaksamaan Hermite-Hadamard, fungsi konveks, fungsi konveks

Wright, ketaksamaan Fejér, fungsi superkuadratik.

1. Introduction

For convex functions the following inequality has great significance in the
field of inequalities: Let f : I −→ R, ∅ 6= I ⊆ R, a, b ∈ I with a < b, be a convex
function then

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
(1.1)

with the inequality reversed if f concave. The inequality (1.1) is known Hermite-
Hadamard inequality.

The weighted generalization of (1.1) is the following inequality:

f

(
a+ b

2

) b∫
a

p(x)dx ≤ 1

b− a

b∫
a

f(x)p(x)dx ≤ f(a) + f(b)

2

b∫
a

p(x)dx, (1.2)
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where f as defined above and p : [a, b]→ R is non-negative integrable and symmet-
ric about x = a+b

2 . The inequality (1.2) is known in literature as Fejér’s inequality.
These inequalities have many extensions and generalizations, see [19]-[13] and [1]-
[6].

Let us now define some mappings related to (1.2) and quote some Fejér-type
inequalities from [3] and [11].

G(t) =
1

2

[
f

(
ta+ (1− t) a+ b

2

)
+ f

(
tb+ (1− t) a+ b

2

)]
,

H(t) =
1

b− a

b∫
a

f

(
tx+ (1− t) a+ b

2

)
dx,

Hp(t) =

b∫
a

f

(
tx+ (1− t) a+ b

2

)
p(x)dx,

L(t) =
1

2 (b− a)

b∫
a

[f (ta+ (1− t)x) + f (tb+ (1− t)x)] dx

and

Lp(t) =
1

2

b∫
a

[f (ta+ (1− t)x) + f (tb+ (1− t)x)] p(x)dx,

where f : [a, b]→ R is a convex function and p : [a, b]→ R is non-negative integrable
and symmetric about x = a+b

2 .

Theorem 1.1. [3] Let f , p, Hg be defined as above. Then Hp is convex, increasing
on [0, 1] and for all t ∈ [0, 1], we have

f

(
a+ b

2

) b∫
a

p (x) dx = Hp(0) ≤ Hp(t) ≤ Hp(1) =

b∫
a

f (x) p (x) dx. (1.3)

Theorem 1.2. [11] Let f , p, Hp be defined as above. Then:

(1) The following inequalities hold:

f

(
a+ b

2

) b∫
a

p (x) dx ≤ 2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx ≤

1∫
0

Hp (t) dt

≤ 1

2

f (a+ b

2

) b∫
a

p (x) dx+

b∫
a

f (x) p (x) dx

 . (1.4)
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(2) If f is differentiable on [a, b] and p is bounded on [a, b] , then for all t ∈ [0, 1]
we have the inequalities

0 ≤
b∫
a

f (x) p (x) dx−Hp(t)

≤ (1− t)

f(a) + f(b)

2
(b− a)−

b∫
a

f (x) dx

 ‖p‖∞ , (1.5)

where ‖p‖∞ = sup
x∈[a,b]

|p(x)|.

(3) If f is differentiable on [a, b], then for all t ∈ [0, 1] we have the inequalities

0 ≤ f(a) + f(b)

2

b∫
a

p (x) dx−Hp(t) ≤

(
f

′
(a)− f ′

(b)
)

(b− a)

4

b∫
a

p (x) dx. (1.6)

Theorem 1.3. [11] Let f , p, Hp, G be defined as above. Then:

(1) The following inequality holds for all t ∈ [0, 1]:

Hp(t) ≤ G(t)

b∫
a

p (x) dx. (1.7)

(2) The following inequalities hold:

2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx ≤ 1

2

[
f

(
3a+ b

2

)
+ f

(
a+ 3b

2

)] b∫
a

p (x) dx

≤ (b− a)

1∫
0

G(t)g((1− t)a+ tb)dt ≤ 1

2

[
f

(
a+ b

2

)
+
f(a) + f(b)

2

] b∫
a

p (x) dx.

(1.8)

(3) If f is differentiable on [a, b] and p is bounded on [a, b] , then for all t ∈ [0, 1]
we have the inequalities:

0 ≤ Hp(t)− f
(
a+ b

2

) b∫
a

p (x) dx ≤ (b− a) |H(t)−G(t)| ‖p‖∞ , (1.9)

where ‖p‖∞ = sup
x∈[a,b]

|p(x)|.

Theorem 1.4. [11] Let f , p, Hp, G, Lp be defined as above. Then:

(1) Lp is convex on [0, 1].
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(2) We have the inequalities:

G(t)

b∫
a

p (x) dx ≤ Lp(t) ≤ (1− t)
b∫
a

f (x) p (x) dx+ t · f(a) + f(b)

2

b∫
a

p (x) dx

≤ f(a) + f(b)

2

b∫
a

p (x) dx, (1.10)

for all t ∈ [0, 1] and

sup
t∈[0,1]

Lp(t) = Lp(1) =
f(a) + f(b)

2

b∫
a

p (x) dx. (1.11)

(3) For all t ∈ [0, 1], we have the inequalities:

Hp(1− t) ≤ Lp(t) (1.12)

and
Hp(t) +Hp(1− t)

2
≤ Lp(t). (1.13)

They used the following Lemma to prove the above results:

Lemma 1.5. [11, p.3] Let f : [a, b] −→ R be convex function and let a ≤ A ≤ C ≤
D ≤ B ≤ b with A+B = C +D. Then

f(A) + f(B) ≤ f(C) + f(D).

For the mappings

Hp(t) =
1

b− a

b∫
a

f

(
tx+ (1− t) a+ b

2

)
p(x)dx

and

Q(t) =
1

2

b∫
a

[
f

(
1 + t

2
a+

1− t
2

b

)
p

(
x+ a

2

)
+ f

(
1 + t

2
b+

1− t
2

b

)
p

(
x+ b

2

)]
dx,

the following results hold for Wright convex functions see [13]. These result also
hold for convex functions see [3, Remark 6] or [19].

Theorem 1.6. [13, Theorem 2.5] Let f : [a, b) −→ R be a Wright-convex function
and let p : [a, b) → R be a non-negative integrable and symmetric about x = a+b

2 ,
then H is Wright-convex, increasing on [0, 1] and

f

(
a+ b

2

) b∫
a

p (x) dx = Hp(0) ≤ Hp(t) ≤ Hp(1) =

b∫
a

f (x) p (x) dx. (1.14)
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Theorem 1.7. [13, Theorem 2.7] Let f : [a, b) −→ R be a Wright-convex function
and let p : [a, b) → R be a non-negative integrable and symmetric about x = a+b

2 ,
then Q is Wright-convex, increasing on [0, 1] and

b∫
a

f (x) p (x) dx = Q(0) ≤ Q(t) ≤ Q(1) =
f(a) + f(b)

2

b∫
a

p (x) dx. (1.15)

In [13], the same Lemma 1 was used which also holds for Wright-convex
functions to prove the above results.

Let us now state the definition, some of the properties and results related to
superquadratic functions to be used in the sequel.

Definition 1.8. [16, Defintion 2.1] Let I = [0, a] or [0,∞) be an interval in R. A
function f : I −→ R is superquadratic if for each x in I there exists a real number
C(x) such that

f(y)− f(x) ≥ C(x)(y − x) + f (|y − x|) (1.16)

for all y ∈ I. If −f is superquadratic then f is called subquadratic.

For examples of superquadratic functions see [15, p. 1049].

Theorem 1.9. [16, Theorem 2.3] The inequality

f

(∫
gdµ

)
≤
∫ (

f(g(s)− f
(∣∣∣∣g(s)−

∫
gdµ

∣∣∣∣)) dµ(s), (1.17)

holds for all probability measure µ and all non-negative µ-integrable function g, if
and only if f is superquadratic.

The following is the discrete version of the above theorem which will be helpful
in the sequel of the paper:

Lemma 1.10. [15, Lemma A, p.1049] Suppose that f is superquadratic. Let xr ≥ 0,
1 ≤ r ≤ n, and let x̄ =

∑n
r=1 λrxr where λr ≥ 0 and

∑n
r=1 λr = 1. Then∑n

r=1
λrf(xr) ≥ f(x̄) +

∑n

r=1
λrf (|xr − x̄|) . (1.18)

The following Lemma shows that positive superquadratic functions are also
convex:

Lemma 1.11. [16, Lemma 2.2] Let f be superquadratic function with C(x) as in
Definition 1. Then

(1) f(0) ≤ 0.

(2) If f(0) = f
′
(0) = 0 then C(x) = f

′
(x) whenever f is differentiable at x > 0.

(3) If f ≥ 0, then f convex and f(0) = f
′
(0) = 0.

In [17] a converse of Jensen’s inequality for superquadratic functions was
proved:
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Theorem 1.12. [17, Theorem 1] Let (Ω, A, µ) be a measurable space with 0 <
µ(Ω) < ∞ and let f : [0,∞) → R be a superquadratic function. If g : Ω →
[m,M ] ⊆ [0,∞) is such that g, f ◦ g ∈ L1(µ), then we have for ḡ = 1

µ(Ω)

∫
Ω
gdµ,

1

µ(Ω)

∫
f(g)dµ ≤ M − ḡ

M −m
f(m) +

ḡ −m
M −m

f(M)

− 1

µ(Ω)

1

M −m

∫
Ω

((M − g) f (g −m) + ((g −m) f (M − g)) dµ. (1.19)

The discrete version of this theorem is:

Theorem 1.13. [17, Theorem 2] Let f : [0,∞)→ R be a superquadratic function.
Let (x1, ..., xn) be an n-tuple in [m,M ]

n
(0 ≤ m ≤M <∞) , and (p1, ..., pn) be a

non-negative n-tuple such that Pn =
∑n
i=1 pi > 0. Denote x̄ = 1

Pn

∑n
i=1 pixi, then

1

Pn

∑n

i=1
pif(xi) ≤

M − x̄
M −m

f(m) +
x̄−m
M −m

f(M)

− 1

Pn (M −m)

∑n

i=1
pi [(M − xi) f (xi −m) + (xi −m) f (M − xi)] . (1.20)

Together with Theorems 7 and 8 and for g(x) = x with measure µ defined on
Ω by 1

b−adt, the following theorem was also proved in [17]:

Theorem 1.14. [17, Theorem 8] Let f : [0,∞) → R be superquadratic function
and let 0 ≤ a < b, then

f

(
a+ b

2

)
+

1

b− a

∫ b

a

f

(∣∣∣∣x− a+ b

2

∣∣∣∣) dx ≤ 1

b− a

∫ b

a

f (x) dx

≤ f(a) + f(b)

2

− 1

(b− a)
2

∫ b

a

[(b− a) f (x− a) + (x− a) f (b− x)] dx. (1.21)

The above theorem represents a refinement of (1.1) when superquadratic
function f is positive and hence convex. The following inequality compares S(t) of
Theorem 10 with S(0) and S(1):

Theorem 1.15. [18, Theorem 4.2] Let f : [0,∞) → R be superquadratic function
and let g : [a, b]→ [0,∞) and p : [a, b]→ [0,∞) be integrable functions. Let

S(t) =
1

P

∫ b

a

p (x) f (tg(x) + (1− t)ḡ) dx
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where P =
∫ b
a
p (x) dx and ḡ = 1

P

∫ b
a
p (x) g(x)dx. Then for 0 ≤ t ≤ 1,

S(0) +
1

P

∫ b

a

p (x) f (t |g(x) + ḡ|) dx ≤ S(t)

≤ S(1)− (1− t) 1

P

∫ b

a

p (x) f (|g(x) + ḡ|) dx

− 1

P

∫ b

a

p (x) f ((1− t) |g(x) + ḡ|) dx− 1− t
P

∫ b

a

p (x) f (t |g(x) + ḡ|) dx. (1.22)

By using Lemma 2 and Theorem 9 for n = 2, S. Abramovich, J. Barić, J.
Pečarić established the following results for superquadratic functions in [15, Theo-
rem 1, p. 1051], and those results refine the results in Theorem 5 and Theorem 6
when superquadratic function is positive and hence convex.

Theorem 1.16. [15, Theorem 1, p. 1051] Let f be superquadratic integrable func-
tion on [0, b] and p(x) be non-negative integrable and symmetric about x = a+b

2 ,
0 ≤ a < b. Let

Hp(t) =
1

b− a

b∫
a

f

(
tx+ (1− t) a+ b

2

)
p(x)dx.

Then for 0 ≤ s ≤ t ≤ 1, t > 0,

Hp(s) ≤ Hp(t)−
b∫
a

t+ s

2t
f

(
(t− s)

(∣∣∣∣a+ b

2
− x
∣∣∣∣)) p(x)dx

−
b∫
a

t− s
2t

f

(
(t+ s)

(∣∣∣∣a+ b

2
− x
∣∣∣∣)) p(x)dx. (1.23)

As a consequence it was shown in [15, p. 1052] that for superquadratic
function f

f ((1− t)A)) + f ((1 + t)A)

2
− f (A)− f (tA) ≥ 0, A ≥ 0, 0 ≤ t ≤ 1. (1.24)

gives sharp result than the inequality in Theorem 11 for g(x) = x.

Theorem 1.17. [15, Theorem 2, p. 1053] Let f be defined as in Theorem 12. Let
Q(t) be

Q(t) =
1

2

b∫
a

[
f

(
1 + t

2
a+

1− t
2

b

)
p

(
x+ a

2

)
+ f

(
1 + t

2
b+

1− t
2

b

)
p

(
x+ b

2

)]
dx.
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Then for 0 ≤ s ≤ t ≤ 1, we get that

Q(s)−Q(t) ≤ −1

2

b∫
a

[
(b− x) + t+s

2 (x− a)

b− x+ t (x− a)
f

(
t− s

2
(x− a)

)

+
t−s

2 (x− a)

b− x+ t (x− a)
f

(
(b− x) +

t+ s

2
(x− a)

)]
p

(
x+ a

2

)
dx

− 1

2

b∫
a

[
(x− a) + t+s

2 (b− x)

x− a+ t (b− x)
f

(
t− s

2
(b− x)

)

+
t−s

2 (b− x)

x− a+ t (b− a)
f

(
(x− a) +

t+ s

2
(b− x)

)]
p

(
x+ b

2

)
dx

= −
b∫
a

(
1− t+s

2

)
|2x− a− b|+ t+s

2 (b− a)

(1− t) |2x− a− b|+ t (b− a)
f

(
t− s

2
(b− a− |a+ b− 2x|)

)
p (x) dx

−
b∫
a

t−s
2 (b− a− |a+ b− 2x|)

(1− t) |2x− a− b|+ t (b− a)
f

((
1− t+ s

2

)
|2x− a− b|

+
t+ s

2
(b− a)

)
p (x) dx. (1.25)

In this paper we deal with mappings G(t), H(t), Lp(t) and Hp(t) when f is
superquadratic. In case when superquadratic function f is positive and therefore
convex we get refinements of some parts of Theorem 2-Theorem 4.

2. Main Results

In this section we prove our main results by using the same techniques as
used in [11] and [15]. Moreover, we assume that all the considered integrals in this
section exist.

In order to prove our main results we go through some calculations as follows:

From Lemma 2 and Theorem 9 for n = 2, we get that

f(z) ≤ M − z
M −m

f(m) +
z −m
M −m

f(M)− M − z
M −m

f(z−m)− z −m
M −m

f(M − z) (2.1)

and

f(M+m−z) ≤ z −m
M −m

f(m)+
M − z
M −m

f(M)− z −m
M −m

f(M−z)− M − z
M −m

f(z−m)

(2.2)
hold for superquadratic function f , 0 ≤ m ≤ z ≤M , m < M .
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Therefore from (2.1) and (2.2), we have

f(z)+f(M+m−z) ≤ f(m)+f(M)−2
z −m
M −m

f(M−z)−2
M − z
M −m

f(z−m). (2.3)

Now for 0 ≤ t ≤ 1
2 and 0 ≤ a ≤ x ≤ a+b

2 , we obtain from (2.3) the following
inequalities:

By setting z = a+b
2 ,M = 3(a+b)

4 − x
2 ,m = x

2 + a+b
4 in (2.3) we get that

2f

(
a+ b

2

)
≤ f

(
x

2
+
a+ b

4

)
+ f

(
3 (a+ b)

4
− x

2

)
− 2f

(
1

2

(
a+ b

2
− x
))

(2.4)

holds.

Also, by replacing z = x
2 + a+b

4 ,M = tx+ (1− t) a+b
2 ,m = t

(
a+b

2

)
+ (1− t)x

in (2.3), we observe that

2f

(
x

2
+
a+ b

4

)
≤ f

(
t

(
a+ b

2

)
+ (1− t)x

)
+f

(
tx+ (1− t) a+ b

2

)
−2f

((
1

2
− t
)(

a+ b

2
− x
))
(2.5)

holds.

Further, for z = 3(a+b)
4 −x2 ,M = t

(
a+b

2

)
+(1− t) (a+ b− x) ,m = t (a+ b− x)+

(1− t) a+b
2 , we get from (2.3) that

2f

(
3 (a+ b)

4
− x

2

)
≤ f

(
t (a+ b− x) + (1− t) a+ b

2

)
+ f

(
t

(
a+ b

2

)
+ (1− t) (a+ b− x)

)
− 2f

((
1

2
− t
)(

a+ b

2
− x
))

(2.6)

holds.

Again, by replacing z = t
(
a+b

2

)
+(1− t)x,M = a+b

2 ,m = x in (2.3), we have
that

f

(
t

(
a+ b

2

)
+ (1− t)x

)
+ f

(
tx+ (1− t) a+ b

2

)
≤ f (x)+f

(
a+ b

2

)
−2tf

(
(1− t)

(
a+ b

2
− x
))
−2 (1− t) f

(
t

(
a+ b

2
− x
))
(2.7)

holds.
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Finally, for z = t (a+ b− x) + (1− t) a+b
2 ,M = a + b − x,m = a+b

2 , we get
from (2.3) that

f

(
t (a+ b− x) + (1− t) a+ b

2

)
+ f

(
t

(
a+ b

2

)
+ (1− t) (a+ b− x)

)
≤ f

(
a+ b

2

)
+ f (a+ b− x)− 2tf

(
(1− t)

(
a+ b

2
− x
))

− 2 (1− t) f
(
t

(
a+ b

2
− x
))

(2.8)

holds.

Now we are ready to state and prove our first result based on the calculations
given above.

Theorem 2.1. Let f be superquadratic function on [0, b] and p(x) be non-negative
and symmetric about x = a+b

2 , 0 ≤ a < b. Then we have the following inequalities:

f

(
a+ b

2

) b∫
a

p (x) dx ≤ 2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx−

b∫
a

f

(
1

2

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) dx,

(2.9)

2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx

≤
1∫

0

Hp(t)dt−
1∫

0

b∫
a

f

(∣∣∣∣(1

2
− t
)(

a+ b

2
− x
)∣∣∣∣) p (x) dxdt (2.10)

and

1∫
0

Hp (t) dt ≤ 1

2

f (a+ b

2

) b∫
a

p (x) dx+

b∫
a

f (x) p (x) dx


−

1∫
0

b∫
a

t

(
f (1− t)

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) dxdt−

1∫
0

b∫
a

(1− t) f
(
t

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) dxdt,

(2.11)

where

Hp(t) =

b∫
a

f

(
tx+ (1− t) a+ b

2

)
p(x)dx, t ∈ [0, 1] .
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Proof. Since

f

(
a+ b

2

) b∫
a

p (x) dx =

a+b
2∫
a

2f

(
a+ b

2

)
p (x) dx.

Therefore from (2.4), we get

f

(
a+ b

2

) b∫
a

p (x) dx

≤


a+b
2∫
a

f

(
x

2
+
a+ b

4

)
+ f

(
3 (a+ b)

4
− x

2

) p (x) dx

− 2

a+b
2∫
a

f

(
1

2

(
a+ b

2
− x
))

p (x) dx. (2.12)

By the change of variable x → a + b − x together with the symmetry of p(x), we
get that

a+b
2∫
a

f

(
1

2

(
a+ b

2
− x
))

p (x) dx =

b∫
a+b
2

f

(
1

2

(
x− a+ b

2

))
p (x) dx. (2.13)

By simple techniques of integration, we have that

a+b
2∫
a

[
f

(
x

2
+
a+ b

4

)
+ f

(
3 (a+ b)

4
− x

2

)]
p (x) dx = 2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx.

(2.14)
Therefore from (2.12), (2.13) and (2.14), we get (2.9). By simple techniques of
integration, we have the following identity:

2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx =

a+b
2∫
a

[
f

(
x

2
+
a+ b

4

)
+ f

(
3 (a+ b)

4
− x

2

)]
p (x) dx.
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From (2.5), (2.6), integrating both sides over t on
[
0, 1

2

]
, we get that

2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx ≤

a+b
2∫
a

1
2∫

0

[
f

(
t

(
a+ b

2

)
+ (1− t)x

)

+ f

(
tx+ (1− t) a+ b

2

)
+ f

(
t (a+ b− x) + (1− t) a+ b

2

)
+ f

(
t

(
a+ b

2

)
+ (1− t) (a+ b− x)

)
−4f

((
1

2
− t
)(

a+ b

2
− x
))]

p (x) dtdx.

By the change of variables x → a + b − x and t → 1 − t and the symmetry of
p(x), we obtain (2.10). By simple techniques of integration, we have the following
identity:

1∫
0

Hp(t)dt =

1
2∫

0

a+b
2∫
a

[
f

(
t

(
a+ b

2

)
+ (1− t)x

)

+ f

(
tx+ (1− t) a+ b

2

)
+ f

(
t (a+ b− x) + (1− t) a+ b

2

)
+ f

(
t

(
a+ b

2

)
+ (1− t) (a+ b− x)

)]
p (x) dxdt.

From (2.7) and (2.8) and by the change of variables x → a + b − x and t → 1 − t
and the symmetry of p(x), we get that

1∫
0

Hp(t)dt ≤

1
2∫

0

a+b
2∫
a

[
f (x) + 2f

(
a+ b

2

)
+ f (a+ b− x)

−4tf

(
(1− t)

(
a+ b

2
− x
))
− 4 (1− t) f

(
t

(
a+ b

2
− x
))]

p (x) dxdt

=
1

2

f (a+ b

2

) b∫
a

p (x) dx+

b∫
a

f (x) p (x) dx


−

1∫
0

b∫
a

tf

(
(1− t)

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) dxdt−

1∫
0

b∫
a

(1− t) f
(
t

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) dxdt.

Hence the inequality (2.11) is also proved. This completes the proof of the theorem
as well.

Remark 2.2. If the superquadratic function f is positive and hence convex, then
(2.9) represents a refinement of the first inequality in (1.4) of Theorem 2; (2.10)
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represents a refinement of the middle inequality in (1.4) of Theorem 2 and (2.11)
represents a refinement of the last inequality in (1.4) of Theorem 2.

Corollary 2.3. Let f be superquadratic function on [0, b]. If p(x) = 1
b−a , x ∈ [a, b],

0 ≤ a < b, then

f

(
a+ b

2

)
≤ 2

b− a

a+3b
4∫

3a+b
4

f (x) dx− 1

b− a

b∫
a

f

(
1

2

∣∣∣∣a+ b

2
− x
∣∣∣∣) dx ≤

1∫
0

H(t)dt

− 1

b− a

1∫
0

b∫
a

f

(∣∣∣∣(1

2
− t
)(

a+ b

2
− x
)∣∣∣∣) dxdt− 1

b− a

b∫
a

f

(
1

2

∣∣∣∣a+ b

2
− x
∣∣∣∣) dx

≤ 1

2

f (a+ b

2

)
dx+

1

b− a

b∫
a

f (x) dx

− 1

b− a

1∫
0

b∫
a

tf

(
(1− t)

∣∣∣∣a+ b

2
− x
∣∣∣∣) dxdt

− 1

b− a

1∫
0

b∫
a

(1− t) f
(
t

∣∣∣∣a+ b

2
− x
∣∣∣∣) dxdt

− 1

b− a

1∫
0

b∫
a

f

(∣∣∣∣(1

2
− t
)(

a+ b

2
− x
)∣∣∣∣) dxdt− 1

b− a

b∫
a

f

(
1

2

∣∣∣∣a+ b

2
− x
∣∣∣∣) dx,

(2.15)

where

H(t) =
1

b− a

b∫
a

f

(
tx+ (1− t) a+ b

2

)
dx, t ∈ [0, 1] .

.

Proof. It follows directly from the above theorem, since for p(x) = 1
b−a , x ∈ [a, b],

Hp(t) = H(t).

Remark 2.4. If the superquadratic function f is positive and therefore convex, then
form Corollary 1 represents a refinement of the inequality (1.3) in [11, Theorem B,
p. 2 ].

To proceed to our next results we again go through some similar calculations
as given before Theorem 14.

For 0 ≤ a ≤ x ≤ a+b
2 , we have that the following inequalities:
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By setting z = tx+ (1− t) a+b
2 ,M = tb+ (1− t) a+b

2 ,m = ta+ (1− t) a+b
2 in

(2.3), we get that

f

(
tx+ (1− t) a+ b

2

)
+ f

(
t (a+ b− x) + (1− t) a+ b

2

)
≤ f

(
tb+ (1− t) a+ b

2

)
+ f

(
ta+ (1− t) a+ b

2

)
− 2t

x− a
b− a

f (b− x)− 2t
b− x
b− a

f (x− a) (2.16)

holds.

Similarly, by replacing z = x
2 + a+b

4 ,M = a+3b
4 ,m = 3a+b

4 in (2.3), we observe
that

f

(
x

2
+
a+ b

4

)
+ f

(
3 (a+ b)

4
− x

2

)
≤ f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)
− 2

x− a
b− a

f (b− x)− 2
b− x
b− a

f (x− a) (2.17)

holds.

Also, for z = 3a+b
4 ,M = 2a+b−x

2 ,m = x+a
2 , we get from (2.3) that

2f

(
3a+ b

4

)
≤ f

(
2a+ b− x

2

)
+ f

(
x+ a

2

)
− 2f

(
a+ b

4
− x

2

)
(2.18)

holds.

Again, for z = a+3b
2 ,M = a+2b−x

2 ,m = x+b
2 , we get from (2.3) that

2f

(
a+ 3b

4

)
≤ f

(
a+ 2b− x

2

)
+ f

(
x+ b

2

)
− 2f

(
a+ b

4
− x

2

)
(2.19)

holds.

Further, for z = x+a
2 ,M = a+b

2 ,m = a, we get from (2.3) that

f

(
x+ a

2

)
+ f

(
2a+ b− x

2

)
≤ f (a) + f

(
a+ b

2

)
− 2

x− a
b− a

f (b− x)− 2
b− x
b− a

f (x− a) (2.20)

holds.

Finally, by replacing z = x+b
2 ,m = a+b

2 ,M = b, in (2.3) we observe that

f

(
x+ b

2

)
+ f

(
a+ 2b− x

2

)
≤ f (b) + f

(
a+ b

2

)
− 2

x− a
b− a

f (b− x)− 2
b− x
b− a

f (x− a) (2.21)

holds.
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Now we are ready to state and prove our next results based on the calculations
done above.

Theorem 2.5. Let f be superquadratic function on [0, b] and p be non-negative
symmetric about x = a+b

2 , 0 ≤ a < b. Let Hp, G be defined as above. Then the
following inequality holds for all t ∈ [0, 1]:

Hp(t) ≤ G(t)

b∫
a

p (x) dx− t

b− a

b∫
a

[(x− a) f (b− x) + (b− x) f (x− a)] p(x)dx.

(2.22)
The following inequalities hold:

2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx

≤ 1

2

[
f

(
3a+ b

2

)
+ f

(
a+ 3b

2

)] b∫
a

p (x) dx

− 1

b− a

b∫
a

[(b− x) f (x− a) + (x− a) f (b− x)] p(x)dx, (2.23)

1

2

[
f

(
3a+ b

2

)
+ f

(
a+ 3b

2

)] b∫
a

p (x) dx

≤ (b− a)

1∫
0

G(t)p((1− t)a+ tb)dt−
b∫
a

f

(∣∣∣∣a+ b

4
− x

2

∣∣∣∣) p(x)dx (2.24)

and

(b− a)

1∫
0

G(t)p((1− t)a+ tb)dt

≤ 1

2

[
f

(
a+ b

2

)
+
f(a) + f(b)

2

] b∫
a

p (x) dx

− 1

b− a

b∫
a

[(x− a) f (b− x) + (b− x) f (x− a)] p(x)dx. (2.25)
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Proof. By using (2.16), symmetry of p and the change of variable x→ a+ b− x,
we get that

Hp(t) =

∫ a+b
2

a

[
f

(
tx+ (1− t) a+ b

2

)
+ f

(
t (a+ b− x) + (1− t) a+ b

2

)]
p(x)dx

≤
∫ a+b

2

a

[
f

(
ta+ (1− t) a+ b

2

)
+ f

(
tb+ (1− t) a+ b

2

)]
p(x)dx

−
∫ a+b

2

a

[
2t
x− a
b− a

f (b− x) + 2t
b− x
b− a

f (x− a)

]
p(x)dx

= G(t)

b∫
a

p (x) dx− t

b− a

b∫
a

[(x− a) f (b− x) + (b− x)f (x− a)] p(x)dx,

for all t ∈ [a, b]. Thus (2.22) is established.

By the use of simple techniques of integration, we have that the following
identity:

2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx =

a+b
2∫
a

[
f

(
x

2
+
a+ b

4

)
+ f

(
3 (a+ b)

4
− x

2

)]
p (x) dx.

Therefore from (2.17), by the use of techniques of integration, by the change of
variable x→ a+ b− x and by the symmetry of p, we get that

2

a+3b
4∫

3a+b
4

f (x) p

(
2x− a+ b

2

)
dx ≤

a+b
2∫
a

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
p(x)dx

−

a+b
2∫
a

[
2
x− a
b− a

f (b− x) + 2
b− x
b− a

f (x− a)

]
p(x)dx

=
1

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)] b∫
a

p (x) dx

− 1

b− a

b∫
a

[(x− a) f (b− x) + (b− x)f(x− a)] p(x)dx.

Thus (2.23) is proved.
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Now from the following identity, (2.18) and (2.19), we get that

1

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)] b∫
a

p(x)dx =

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)] a+b
2∫
a

p(x)dx

≤ 1

2

a+b
2∫
a

[
f

(
a+ 2b− x

2

)
+ f

(
x+ b

2

)

+f

(
a+ 2b− x

2

)
+ f

(
x+ b

2

)]
p(x)dx− 2

a+b
2∫
a

f

(
a+ b

4
− x

2

)
p(x)dx. (2.26)

But

(b− a)

1∫
0

G(t)p((1− t)a+ tb)dt

=
b− a

2

 1∫
1
2

f

(
ta+ (1− t)a+ b

2

)
p(ta+ (1− t)b)dt

+

1∫
1
2

f

(
tb+ (1− t)a+ b

2

)
p(ta+(1−t)b)dt+

1
2∫

0

f

(
ta+ (1− t)a+ b

2

)
p((1−t)a+tb)dt

+

1
2∫

0

f

(
tb+ (1− t)a+ b

2

)
p((1− t)a+ tb)dt


=

a+b
2∫
a

1

2

[
f

(
2a+ b− x

2

)
+ f

(
x+ a

2

)
+ f

(
a+ 2b− x

2

)
+ f

(
x+ b

2

)]
p(x)dx.

(2.27)

From (2.26) and (2.27) and by the change of variable x → a + b − x in the last
integral and by the symmetry of p, we get (2.24).

From (2.20) and (2.21) and from (2.27), we get that

(b−a)

1∫
0

G(t)p((1−t)a+tb)dt ≤ 1

2

a+b
2∫
a

[
f (a) + f(b) + 2f

(
a+ b

2

)]
p((1−t)a+tb)dt

− 2

a+b
2∫
a

[
x− a
b− a

f (b− x) +
b− x
b− a

f (x− a)

]
p((1− t)a+ tb)dt. (2.28)
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By the change of variable x→ a+ b− x, we get from (2.28) that

(b− a)

1∫
0

G(t)p((1− t)a+ tb)dt ≤ 1

2

[
f (a) + f(b)

2
+ f

(
a+ b

2

)] b∫
a

p(x)dx

− 1

b− a

b∫
a

[(x− a) f (b− x) + (b− x) f (x− a)] p(x)dx,

which is (2.25) and hence the theorem is proved.

Remark 2.6. If the superquadratic function f is positive and hence convex, then
from (2.22) we get refinement of the inequality (1.7) in Theorem 3; from (2.23) we
get refinement of the first inequality in (1.8) of Theorem 3 and from (2.24) we get
refinement of the middle inequality in (1.8) of Theorem 3 and from (2.25), we get
refinement of the last inequality in (1.8) of Theorem 3.

Corollary 2.7. Let f be superquadratic function on [0, b] and p(x) = 1
b−a , x ∈ [a, b],

0 ≤ a < b. Let G and H be defined as above. Then the following inequality holds
for all t ∈ [0, 1].

H(t) ≤ G(t)− t

(b− a)
2

b∫
a

[(x− a) f (b− x) + (b− x) f (x− a)] dx. (2.29)

The following inequalities hold:

2

b− a

a+3b
4∫

3a+b
4

f (x) dx ≤ 1

2

[
f

(
3a+ b

2

)
+ f

(
a+ 3b

2

)]

− 1

(b− a)
2

b∫
a

[(b− x) f (x− a) + (x− a) f (b− x)] p(x)dx, (2.30)

1

2

[
f

(
3a+ b

2

)
+ f

(
a+ 3b

2

)]
≤

1∫
0

G(t)dt− 1

b− a

b∫
a

f

(∣∣∣∣a+ b

4
− x

2

∣∣∣∣) dx (2.31)

and

1∫
0

G(t)dt ≤ 1

2

[
f

(
a+ b

2

)
+
f(a) + f(b)

2

]

− 1

(b− a)
2

b∫
a

[(x− a) f (b− x) + (b− x) f (x− a)] dx. (2.32)
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Proof. It is a direct consequence of the above theorem.

Remark 2.8. The results of the above corollary refine the results of inequalities
(1.6) and (1.7) from [11, Theorem C, p.2] when superquadratic function f is positive
and hence convex.

Now we state and prove our last result of this section, before we proceed we
go through again some calculations. For x ∈

[
a, a+b

2

]
, t ∈ [0, 1] and by using (2.3),

we have that the following inequalities hold for superquadratic function f :

2f

(
ta+ (1− t)a+ b

2

)
≤ f (ta+ (1− t)x) + f (ta+ (1− t)(a+ b− x))− 2f

(
(1− t)

(
a+ b

2
− x
))
(2.33)

when m = ta+ (1− t)x, M = ta+ (1− t)(a+ b− x), z = ta+ (1− t)a+b
2 and

2f

(
tb+ (1− t)a+ b

2

)
≤ f (tb+ (1− t)x) + f (tb+ (1− t)(a+ b− x))− 2f

(
(1− t)

(
a+ b

2
− x
))
(2.34)

when m = tb+ (1− t)x, M = tb+ (1− t)(a+ b− x) and z = tb+ (1− t)a+b
2 .

Theorem 2.9. Let f be superquadratic function on [0, b] and p(x) be non-negative
and symmetric about x = a+b

2 , 0 ≤ a < b. Let G, Lp be defined as above, then we
have the following inequality:

G(t)

b∫
a

p (x) dx ≤ Lp(t)−
b∫
a

f

(
(1− t)

∣∣∣∣x− a+ b

2

∣∣∣∣) p(x)dx, (2.35)

for all t ∈ [0, 1].

Proof. By using the techniques of integration, under the assumptions on p, we
have that the following identity:

G(t)

b∫
a

p (x) dx =

a+b
2∫
a

[
f

(
ta+ (1− t)a+ b

2

)
+ f

(
tb+ (1− t)a+ b

2

)]
p (x) dx,
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holds for all t ∈ [0, 1]. By using (2.33) and (2.34), we have that

G(t)

b∫
a

p (x) dx ≤ 1

2

a+b
2∫
a

[f (ta+ (1− t)x) + f (ta+ (1− t)(a+ b− x))] p (x) dx

+
1

2

a+b
2∫
a

[f (tb+ (1− t)x) + f (tb+ (1− t)(a+ b− x))] p (x) dx

− 2

a+b
2∫
a

f

(
(1− t)

(
a+ b

2
− x
))

p (x) dx. (2.36)

By the change of variable x→ a+ b− x, under the assumptions on p, we get from
(2.36) that

G(t)

b∫
a

p (x) dx ≤ Lp(t)−
b∫
a

f

(
(1− t)

∣∣∣∣x− a+ b

2

∣∣∣∣) p(x)dx.

Hence (2.35) is proved.

Remark 2.10. If superquadratic function f is positive and therefore convex, then
Theorem 17 refines the first inequality in (1.10) of Theorem 4.

Corollary 2.11. Let f be superquadratic function on [0, b] and p(x) = 1
b−a , x ∈

[a, b], 0 ≤ a < b. Let G and L be defined as above, then

G(t) ≤ L(t)− 1

b− a

b∫
a

f

(
(1− t)

∣∣∣∣x− a+ b

2

∣∣∣∣) dx,

for all t ∈ [0, 1].

Proof. It follows directly from the above theorem, since for p(x) = 1
b−a , x ∈ [a, b],

Lp(t) = L(t).

Remark 2.12. If superquadratic function f is convex, then the above corollary
refines the first inequality in (1.9) from [11, Theorem D, p.3].

3. Inequalities For Differentiable Superquadratic Functions

In this section we give results when f is a differentiable superquadratic func-
tion, those results refine the inequalities (1.5), (1.6) of Theorem 2 and refine the
inequality (1.9) of Theorem 3 when superquadratic function f is positive and hence
convex.
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Theorem 3.1. Let f be superquadratic function on [0, b] and p(x) be non-negative
and symmetric about x = a+b

2 , 0 ≤ a < b. If f is differentiable on [a, b] such that

f(0) = f
′
(0) = 0 and p is bounded on [a, b], then we the following inequalities:

b∫
a

f (x) p (x) dx−Hp(t) ≤ (1− t)

f(a) + f(b)

2
(b− a)−

b∫
a

f (x) dx

 ‖p‖∞
−

b∫
a

f

(
(1− t)

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) dx, (3.1)

where ‖p‖∞ = sup
x∈[a,b]

|p(x)| and

f(a) + f(b)

2

b∫
a

p (x) dx−Hp(t)

≤


(
f

′
(a)− f ′

(b)
)

(b− a)

4
− f

(∣∣∣∣a− b2

∣∣∣∣)
 b∫
a

p (x) dx

−
b∫
a

f

(
t

(∣∣∣∣a+ b

2
− x
∣∣∣∣)) p(x)dx. (3.2)

Proof. By integration by parts, we have

∫ a+b
2

a

(
a+ b

2
− x
)[

f
′
(a+ b− x)− f

′
(x)
]
dx

=

∫ b

a

(
a+ b

2
− x
)
f

′
(x) dx =

f(a) + f(b)

2
(b− a)−

∫ b

a

f(x)dx. (3.3)

Using the substitution rules and by the assumptions on p, we have

b∫
a

f (x) p (x) dx =

a+b
2∫
a

[f (x) + f (a+ b− x)] p (x) dx (3.4)

and

Hp(t) =

a+b
2∫
a

[
f

(
tx+ (1− t) a+ b

2

)
+ f

(
t (a+ b− x) + (1− t) a+ b

2

)]
p (x) dx.

(3.5)
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By the assumptions on f , we have[
f (x)− f

(
tx+ (1− t) a+ b

2

)]
p(x) + [f (a+ b− x)

− f

(
t (a+ b− x) + (1− t) a+ b

2

)]
p (x)

≤ (1− t)
(
a+ b

2
− x
)
f

′
(x) p (x) + (1− t)

(
a+ b

2
− x
)
f

′
(a+ b− x) p (x)

− 2f

(
(1− t)

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) = (1− t)

(
a+ b

2
− x
)[

f
′
(a+ b− x)

− f
′
(x)
]
p (x)− 2f

(
(1− t)

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) ≤ (1− t)

(
a+ b

2
− x
)

[
f

′
(a+ b− x)− f

′
(x)
]
‖p‖∞ − 2f

(
(1− t)

∣∣∣∣a+ b

2
− x
∣∣∣∣) p (x) , (3.6)

for all t ∈ [0, 1] and x ∈
[
a, a+b

2

]
.

Now from (3.3), (3.4), (3.5) and (3.6), under the assumptions on p and by
the change of variables x→ a+ b− x, in the last integral, we get (3.1).

By the assumptions on f and form Lemma 3, we get that

f(a)− f
(
a+b

2

)
2

≤ a− b
4

f
′
(a)− 1

2
f

(∣∣∣∣a− b2

∣∣∣∣)
and

f(b)− f
(
a+b

2

)
2

≤ b− a
4

f
′
(b)− 1

2
f

(∣∣∣∣a− b2

∣∣∣∣) .

Adding these inequalities we get

f(a) + f(b)

2
− f

(
a+ b

2

)
≤

(
f

′
(a)− f ′

(b)
)

(b− a)

4
− f

(∣∣∣∣a− b2

∣∣∣∣) .

Thus

f(a) + f(b)

2

b∫
a

p (x) dx− f
(
a+ b

2

) b∫
a

p (x) dx

≤


(
f

′
(a)− f ′

(b)
)

(b− a)

4
− f

(∣∣∣∣a− b2

∣∣∣∣)
 b∫
a

p (x) dx. (3.7)

From (1.23) of Theorem 12, for s = 0, we get

f

(
a+ b

2

) b∫
a

p (x) dx ≤ Hp(t)−
b∫
a

f

(
t

(∣∣∣∣a+ b

2
− x
∣∣∣∣)) p(x)dx. (3.8)
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From (3.7) and (3.8), we have

f(a) + f(b)

2

b∫
a

p (x) dx−Hp(t) ≤


(
f

′
(a)− f ′

(b)
)

(b− a)

4
− f

(∣∣∣∣a− b2

∣∣∣∣)
 b∫
a

p (x) dx

−
b∫
a

f

(
t

(∣∣∣∣a+ b

2
− x
∣∣∣∣)) p(x)dx.

Therefore (3.2) is also established. This completes the proof of the theorem.

Remark 3.2. The Inequalities (3.1) and (3.2) represent refinements of the inequal-
ities (1.5) and (1,6) of Theorem 2, when the superquadratic function f is positive
and hence convex. Obviously when p(x) = 1

b−a , x ∈ [a, b], then from the above
theorem, we get the following results:

1

b− a

b∫
a

f (x) dx−H(t) ≤ 1− t
b− a

f(a) + f(b)

2
− 1

b− a

b∫
a

f (x) dx


− 1

b− a

b∫
a

f

(
(1− t)

∣∣∣∣a+ b

2
− x
∣∣∣∣) dx

and

f(a) + f(b)

2
−H(t) ≤

(
f

′
(a)− f ′

(b)
)

(b− a)

4

− f
(∣∣∣∣a− b2

∣∣∣∣)− 1

b− a

b∫
a

f

(
t

(∣∣∣∣a+ b

2
− x
∣∣∣∣)) dx,

which represent refinements of the inequalities (1.4) and (1.5) in [11, Theorem B,
p. 2], when superquadratic function f is positive and hence convex.

Now we give our last result and summarize the results related to it in the
remark followed by Theorem 19.

Theorem 3.3. Let f be superquadratic function on [0, b] and p(x) be non-negative
and symmetric about x = a+b

2 , 0 ≤ a < b. If f is differentiable on [a, b] such that

f(0) = f
′
(0) = 0 and p is bounded on [a, b], then for all t ∈ [0, 1], we have the

inequality:

Hp(t)−f
(
a+ b

2

) b∫
a

p (x) dx ≤ (b−a) [H(t)−G(t)] ‖p‖∞−
b∫
a

f

(∣∣∣∣a+ b

2
− x
∣∣∣∣) p(x)dx,

(3.9)
where ‖p‖∞ = sup

x∈[a,b]

|p(x)|.
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space0.2mm Proof. By integration by parts we have

t

a+b
2∫
a

[(
x− a+ b

2

)
f

′
(
tx+ (1− t)a+ b

2

)

+

(
x− a+ b

2

)
f

′
(
t (a+ b− x) + (1− t)a+ b

2

)]
dx

= t

b∫
a

(
x− a+ b

2

)
f

′
(
tx+ (1− t)a+ b

2

)
dx = (b− a) [G(t)−H(t)] . (3.10)

By using the assumptions on f , we have that[
f

(
tx+ (1− t)a+ b

2

)
− f

(
a+ b

2

)]
p(x)

+

[
f

(
t (a+ b− x) + (1− t)a+ b

2

)
− f

(
a+ b

2

)]
p(x)

≤ t
(
x− a+ b

2

)
f

′
(
tx+ (1− t)a+ b

2

)
p(x)

+ t

(
a+ b

2
− x
)
f

′
(
t (a+ b− x) + (1− t)a+ b

2

)
p(x)− 2f

(∣∣∣∣a+ b

2
− x
∣∣∣∣) p(x)

= t

(
a+ b

2
− x
)[

f
′
(
t (a+ b− x) + (1− t)a+ b

2

)
−f

′
(
tx+ (1− t)a+ b

2

)]
p(x)− 2f

(∣∣∣∣a+ b

2
− x
∣∣∣∣) p(x)

≤ t
(
a+ b

2
− x
)[

f
′
(
t (a+ b− x) + (1− t)a+ b

2

)
− f

′
(
tx+ (1− t)a+ b

2

)]
‖p‖∞ − 2f

(∣∣∣∣a+ b

2
− x
∣∣∣∣) p(x), (3.11)

hold for all t ∈ [0, 1] and x ∈
[
a, a+b

2

]
.

Integrating (3.11) over x on
[
a, a+b

2

]
, using (3.10), by the change of variable

x→ a+ b− x in the last integral, under the assumptions on p, we get

Hp(t)−f
(
a+ b

2

) b∫
a

p(x)dx ≤ (b− a) [G(t)−H(t)] ‖p‖∞−
b∫
a

f

(∣∣∣∣a+ b

2
− x
∣∣∣∣) p(x)dx.

This completes the proof of the theorem.

Remark 3.4. The result of Theorem 18 refines the inequality (1.9) of Theorem
3, when superquadratic function f is positive and hence convex and if p(x) = 1

b−a ,

x ∈ [a, b] and superquadratic function f is positive and therefore convex, then we
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have the following inequality:

H(t)− f
(
a+ b

2

)
≤ G(t)−H(t)− 1

b− a

b∫
a

f

(∣∣∣∣a+ b

2
− x
∣∣∣∣) p(x)dx

the above inequality represents a refinement of the inequality (1.8) from [11, Theo-
rem C, p.3].
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