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Abstract. We propose an application of the classical Lagrange Multiplier method

for computing fold bifurcation point of an equilibrium in a one-parameter family of

dynamical systems. We have used the fact that an equilibrium of a system, geo-

metrically can be seen as an intersection between nullcline manifolds of the system.

Thus, we can view the problem of two collapsing equilibria as a constrained opti-

mization problem, where one of the nullclines acts as the cost function while the

other nullclines act as the constraints.

Key words and Phrases: Fold Bifurcation, Constrained Extremum, Dynamical Sys-

tems.

Abstrak. Dalam paper ini kami menyajikan sebuah contoh penggunaan metode

Pengali Lagrange dalam menghitung titik bifurkasi fold dari sebuah ekuilibrium

pada keluarga satu parameter dari sistem dinamik. Kita menggunakan fakta bahwa

titik ekuilibrium dari sistem dapat dipandang sebagai perpotongan dari permukaan-

permukaan nullcline dari sistem dinamik terkait. Akibatnya, kita dapat memandang

permasalahan bertemunya dua ekuilibria kemudian hilang, sebagai masalah opti-

misasi terkendala, dimana salah satu nullcline berfungsi sebagai fungsi biaya dan

nullcline lainnya sebagai kendala.

Kata kunci: Bifurkasi Fold, Ekstremum Terkendala, Sistem Dinamik.
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1. Introduction

The dynamics and bifurcations in a Predator-Prey type of dynamical sys-
tems have been studied extensively in the literature. Originated in the work of
A.J. Lotka (1920) and V. Voltera (1926) (see [2]), the application of this model can
be found in various field of sciences and engineering. To name but a few, in enzyme
kinetics [3], in parasitology [8], in economy [4, 9], in atmospheric science [13], in
optimization ([10, 17], in molecular biology [1].

Fold bifurcation of equilibrium is a co-dimension one phenomena in the theory
of bifurcations (see [14]). It occurs in a family of dynamical systems with one
parameter (or more), already in low dimensional system (even in one dimensional
dynamics). Qualitatively, this bifurcation described the phenomena of collapsing
two equilibria, of different stability type, into one equilibrium of a degenerate type,
and vanishes, as the bifurcation parameter varies through the bifurcation point in
the parameter space.

In this paper we propose by means of an example, the application of the classi-
cal Lagrange Multiplier method for computing the fold bifurcation point. To our
knowledge, some of the first applications of this method are found in [11] and [16].
However, the method has not been explained clearly there. In this paper we focus
on how to apply the Lagrange Multiplier method to compute fold bifurcation point.

Computation for fold bifurcation point is usually done numerically by using
the continuation software, for example AUTO2000 [6]. To do it analytically is quite
involved, i.e. computing equilibrium depending on the bifurcation parameter, lin-
earizing in the vicinity of that equilibrium, and then finding eigenvalues. Using
the method we propose in this paper, the problem reduces to finding maximum or
minimum of a constrained optimization problem which is part of a standard course
in first year mathematics. Furthermore, the bifurcation parameter is not involved
in the computation.

The dynamical system that we are dealing with is three dimensional with many
parameters. Thus the complexity of the computation become significantly increas-
ing in comparison with the two previously mentioned examples in the literature
([11, 16]). The system can be seen as a variant of a Two Prey One Predator model.
Recently, interest on the Two Prey One Predator model has been increasing in
the literature. See for example in [7, 12, 18]. However, as is mentioned earlier our
focus in this paper is not on the dynamical property of the model it self. The model
in this paper serves as a motivating example for applying this classical Lagrange
Multiplier method to compute fold bifurcation point.

The paper is organized as follows. We start with presenting the Lagrange Mul-
tiplier method, and give a simple example that illustrate why this method can be
used to compute fold bifurcation point. We then proceed with the Two Prey One
Predator model and reformulate the system of equations that gives the equilibrium
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for the system as its solution. This system need to be reformulated as a constrained
optimization problem. Applying the method there, we check the result by explic-
itly computing the eigenvalues each equilibria, to show that they are similar with
the situation where we have fold bifurcation. The result is also compared with the
result by using continuation software AUTO2000 [6].

2. The Lagrange Multiplier Method

Let F and G be real valued functions of two variables with continuous first
partial derivatives on some open set containing the constraint curve G(x, y) = 0
and assume that ∇G 6= 0 any point on this curve. If F has a constrained relative
extremum, then this extremum occurs at a point (x0, y0) on the constraint curve
at which the gradient vectors ∇F (x0, y0) and ∇G(x0, y0) are parallel; that is, there
is some number λ such that

∇F (x0, y0) = λ∇G(x0, y0).

Thus, the point (x0, y0) where relative extremum of function F occurs under
the constraint G = 0, is derived from the solution of system :

{
∇F = λ ∇G
G = 0

(1)

In Figure 1 we have presented a geometric illustration of the situation where
the constrained relative extremum of F is achieved on the level set G = 0. For
the proof of this Lagrange Multiplier method, see [5] or other classical textbook on
multivariable Calculus.

Figure 1. An illustration for Lagrange Multiplier method, where
G = 0 is the constraint, and F is the cost function. Note that since
we can take −G as the constraint, then the direction of ∇G can
be reversed without changing the result.
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Let us consider a very simple example. We want to find the extremum of the
function

F (x, y) = 3xy on the line: G(x, y) = 2x+ y − 1 = 0. (2)

Then, using the Lagrange Multiplier method, we derive a system of algebraic equa-
tions:  3y − 2λ = 0

3x− λ = 0
2x+ y − 1 = 0

This system of equations can be solved easily; we have (x0, y0) = (0.25, 0.5) and
λ = 0.75. In Figure 2, we have presented the geometrical illustration for the
situation. We have plotted three different level sets of F , i.e.: F (x, y) = 0.65,
F (x, y) = 0.375, and F (x, y) = 0.15.

(0.25 , 0.5)

F (x , y) = 0.375

F (x , y) = 0.65

F (x , y) = 0.15

G (x , y) = 0

0.2 0.4 0.6 0.8
x

-0.2

0.2

0.4

0.6

0.8

1.0

y

Figure 2. A simple example of how the Lagrange Multiplier
method is applied to a constrained optimization problem (2). If
the level set of G and F are both nullclines of a dynamical system,
then each of the intersections corresponds to an equilibrium of that
dynamical system.

Applications to computation of fold bifurcation point. Let us now consider
a system of ordinary differential equations

ẋ = f1(x, y)− αf2(x, y)
ẏ = G(x, y),

(3)
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where f1, f2 and G are real valued smooth functions of (x, y) The equilibrium of
(3) can be seen as:

F (x, y) =
f1(x, y)

f2(x, y)
= α and G(x, y) = 0.

We can still assume some smoothness of F except in the neighbourhood of the zeros
of f2.

Let us assume that we have found a solution for the constrained optimization
problem, of:

Max/min F (x, y) subjected to G(x, y) = 0.

We have to assume that the gradient vector of G is non vanishing. In the trivial
case, the vanishing gradient of G corresponds to the case where the level set of
G consists of a single point. Another possibility is when the level set looses its
smoothness, for example in the case where: G(x, y) = x2 − y3 (1− y) at (0, 0).

Using the Lagrange multiplier method, we have (x0, y0, λ0) such that:

∇F (x0, y0) = λ0∇G(x0, y0) and G(x0, y0) = 0.

We set α0 = F (x0, y0). Thus, the point (x0, y0) corresponds to an equilibrium of
(3) for α = α0. Note that since

f1(x, y)− αf2(x, y) = f2(x, y) (F (x, y)− α) ,

then linearizing (3) in the neighbourhood of (x0, y0) gives:

J =

 ∂f2
∂x (F − α0) + f2

∂F
∂x

∂f2
∂y (F − α0) + f2

∂F
∂y

∂G
∂x

∂G
∂y

∣∣∣∣∣∣
(x0,y0)

=

(
f2
∂F
∂x f2

∂F
∂y

∂G
∂x

∂G
∂y

)∣∣∣∣∣
(x0,y0)

,

and since ∇F (x0, y0) = λ0∇G(x0, y0) we have that the determinant of J vanishes.

Proposition 2.1. The point (x0, y0) corresponds to a degenerate equilibrium with

exactly one zero eigenvalue, for α = α0 = f1(x0,y0)
f2(x0,y0)

, assuming the trace of J is non

vanishing, or equivalently:

∂f1
∂x

(x0, y0)− α0
∂f2
∂x

(x0, y0) +
∂G

∂y
(x0, y0) 6= 0

Proof. Since the determinant of J is zero, then one of the eigenvalue is 0 and the
other eigenvalue is the value of the trace of J . �

We end this section with a proposition relating the maximum (or minimum)
point of a constrained optimization problem with fold bifurcation point.

Proposition 2.2. If (x0, y0, λ0) is a maximum point of F (x, y) subjected to G(x, y) =

0, then for α < α0 = f1(x0,y0)
f2(x0,y0)

the system (3) has two equilibria in the neighbourhood

of (x0, y0) in phase space. These equilibria coalesce into a degenerate equilibrium
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point (x0, y0) as α = α0 and disappear as α > α0. The situation is reverse when
(x0, y0, λ0) is a minimum point.

3. The Two Prey One Predator model

Let us consider a system of ordinary differential equations in R3, i.e.:

ẋ = x− 1

k1
x2 − µxz

cx+ 1

ẏ = αx− βy − 1

k2
y2 − ηyz

ay2 + by + 1

ż = −δz +
xz

cx+ 1
+

yz

ay2 + by + 1
.

(4)

Here, x and y represent the population density of prey while z of predator’s. In
this model, we assume that the prey populations come from the same species but
they are classified by their maturity: the young prey (x) and the adult prey (y).
The parameter α is the rate of migration from the young prey class into the adult
prey class. Parameters β and δ measure the mortality rate of adult prey and
predator, respectively. The predation factor is measured by the parameters µ and
η. Parameters: k1 and k2 measure the carrying capacity of the environment with
respect to the prey. We assume the value of all of these parameters are non negative
real numbers.

We have included response functions that measures the predation as rational
functions of the density of prey. For the young prey, the denominator of the response
function is linear, while for the adult prey is quadratic. There are two parameters
in the response function for the adult prey, a and b. They control the saturation
(a) and group defense mechanism (b). These parameters can have negative value.

Let us consider the nullcline manifolds

S1 : 0 = 1− 1

k1
x− µz

cx+ 1

S2 : 0 = αx− βy − 1

k2
y2 − ηyz

ay2 + by + 1

S3 : 0 = −δ +
x

cx+ 1
+

y

ay2 + by + 1
.

(5)

These manifolds are found by taking each of the components of the vector field in
(4) to be zero. However we have ignored two other manifolds, i.e. one is defined by
x = 0 and the other is z = 0, since we are interested on analyzing equilibrium at
x > 0, y > 0 and z > 0. Thus, we divide out the factor x from the first equation
and the factor z from the third equation in (4)

Each of these nullclines defines a surface in R3. In Figure 3 we have presented
a geometric illustration of these surfaces for some values of the parameter, i.e.:
α = 1 , β = 0.95, δ = 1, k1 = 5, k2 = 1.75, µ = 0.3, η = 0.5, a = 4.75, b = −2.5,
and c = 1. There are two points in Figure 3 indicated by solid dots, which are the
intersection between the three nullclines for x > 0, y > 0 and z > 0.



Application of Lagrange Multiplier Method etc. 13

Figure 3. A graph of the surfaces S1, S2, S3 for α = 1, β = 0.95,
δ = 1, k1 = 5, k2 = 1.75, µ = 0.3, η = 0.5, a = 4.75, b = −2.5, and
c = 1.

Consider the equation for S1; we can solve this for z. Then we substitute the
solution into the equation for S2. By doing this, we reduce the problem into two
dimensional problem:

S4 : (x− p)2 −A(y − q)2 = r

S3 : −δ +
x

cx+ 1
+

y

ay2 + by + 1
= 0

(6)

where

p =
ηk1 (cδ − 1)− k1µα− ηδ

2η (cδ − 1)
, q = −βk2

2

A =
k1µ

η (cδ − 1) k2
, r = p2 −Aq2 +

k1δ

cδ − 1
.

(7)

Note that S4 is a quadratic curve family, and in particular for A < 0 and
r > 0 then S4 is an ellipse. To formulate the system of equations as a constrained
optimization problem we choose S4 as the constrained, and reformulate S3 into the
cost function (i.e. function that is being optimized). There are four parameters i.e.
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a, b, c and δ, so that we can have four options for the cost function, namely:

Fδ(x, y) =
x

cx+ 1
+

y

ay2 + by + 1

Fa(x, y) =

(
cx+ 1

x(cδ − 1) + δ
− 1

y
− b
)

1

y

Fb(x, y) = −ay +
cx+ 1

x(cδ − 1) + δ
− 1

y
, or

Fc(x, y) =
ay2 + by + 1

(ay2 + by + 1)δ − y
− 1

x
.

Thus, writing

G(x, y) = (x− p)2 −A(y − q)2 − r,
the fold bifurcation point is found by solving the system of equations:{

∇Fν = λ ∇G
G = 0

(8)

where: ν ∈ {a, b, c, δ}.

However, the computation of a solution for the system (8) in its full generality
is still too cumbersome due to number of the parameters involved. To simplify, we
fix some values for the parameters, i.e.: α = 0.8, a = 7.29, β = 0.75, b = −2.59,
c = 1, δ = 0.8, η = 0.25, k1 = 6, k2 = 4, and µ = 0.75. Clearly, if we choose Fa
as the cost function, then we let a as a free parameter, and similarly for the other
choices. In this paper, we will only do the case for Fa and Fb.

Remark 3.1. Note that from (7) it is clear that the parameter p, A, and r in
the definition of G depends on other parameter, which might be the bifurcation
parameters: δ or c. Thus, if we choose for Fδ or Fc as the cost function, we have to
choose the value of the parameter in such a way such that p, A and r are constant.

4. Numerical Results

In this section, we present two examples of numerical computation of the fold
bifurcation point in system (8) using the Lagrange Multiplier method, i.e. using Fb
and Fa as the cost functions. The case where the cost function is Fb will be done
in details while the other case will be summarized at the end of the section.

The case where b is the bifurcation parameter. Using the above listed value
of the parameters in the previous section, we derive two equilibria at which fold
bifurcation occurs respectively i.e. (x0, y0) = (1.59866, 1.12602) and (x0, y0) =
(0.736391, 0.460349). These results are shown in Figure 4. The z0-component of
these points can be computed by substituting them into S1 in system (5) to have
the equilibria in R3 as follows:
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Figure 4. Graph of the intersection between F and G as the
parameter b varies from left to right b1 = −5, b2 = −3.68591,
b3 = −3.2589, b4 = −2.86798 and b5 = −2.

E1 = (x0, y0, z0) = (1.59866, 1.12602, 2.54168)

E2 = (x0, y0, z0) = (0.736391, 0.460349, 2.03104)
(9)

Furthermore, the fold bifurcation point (in parameter space) is computed by sub-
stituting E1 and E2 into the cost function Fb(x, y), to derive:

b2 = Fb(1.59866, 1.12602) = −3.68591

b4 = Fb(0.736391, 0.460349) = −2.86798
(10)

These results are checked by substituting the coordinate of each of the equi-
libria into the system (4). Let us now look at Figure 4. The level set of Fb(x, y) =
b1 = −5 is the curve on the most left from the family of curves Fb(x, y) = b which
are plotted using thickened lines. The curve intersects the curve G(x, y) = 0 which
is plotted using dashed line, at one point only: E15. As we increases the value of
b to b2 = −3.68591, we have the curve F (x, y) = b2, which is the second curve
from the left in Figure 4. This curve intersects G(x, y) = 0, transversally at the
point labelled as E14 and non transversally at the point labelled as E2, which is
one of the solutions of (8) (see also the formula in (9) and (10)). As we increase
the value of b further to b3 = −3.2589, we are on the third curve from the left of
the family F (x, y) = b. This curve intersect G(x, y) = 0 at three points, labelled
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as: E13, E12 and E21. Similarly, the intersection between F (x, y) = b4 = −2.86798
and G(x, y) = 0, gives us equilibria: E1 and E22, while the intersection between
F (x, y) = b5 = −2 and G(x, y) = 0, gives the equilibrium: E23.

In Table 1 we have listed the coordinate of all of the equilibria found by
varying b sequently : b1 7−→ b2 7−→ b3 7−→ b4 7−→ b5. As we can see from the
Table 1, there is a change of stability between E15 to E14. The explanation for
this is due to the occurrence of Hopf bifurcation which cannot be explained by
the method we propose in this paper. However, the eigenvalues for E2, E12 and
E21 give a strong indication that indeed fold bifurcation occurs as the parameter
b passes through: −3.68591. Similarly, as b passes through: −2.86798 we have
another strong indication that fold bifurcation occurs.

b Equilibrium (x, y, z) Eigenvalues of Jacobian System

−5 E15 (0.44, 0.17, 1.78) λ1,2 = −0.013± 0.85i, λ3 = −3.44

−3.6859 E14 (0.51, 0.24, 1.84) λ1,2 = 0.009± 0.55i, λ3 = −1.76

E2 (1.59, 1.12, 2.54) λ1 = 0.065, λ2 = 0, λ3 = −1.05

−3.2589 E13 (0.56, 0.29, 1.88) λ1,2 = 0.013± 0.65i, λ3 = −1.35

E21 (2.01, 1.38, 2.66) λ1,2 = 0.026± 0.23i, λ3 = −1.31

E12 (1.08, 0.75, 2.28) λ1 = 0.374, λ2,3 = −0.503± 0.20i

−2.8679 E22 (2.15, 1.46, 2.69) λ1,2 = 0.018± 0.26i, λ3 = −1.37

E1 (0.73, 0.46, 2.03) λ1 = 0.084, λ2 = 0, λ3 = −0.63

−2 E23 (2.35, 1.58, 2.71) λ1,2 = 0.002± 0.02i, λ3 = −1.46

Table 1. Variation of the real part of the eigenvalues of the Jacobian

of system (4)

As a comparison, we also present the computation of fold bifurcations using
pseudo-arclength continuation technique (see [6]). The bifurcation diagram com-
puted using this method is plotted in Figure 5. It is evident that the two fold bifur-
cations occur at b0 = −2.867978 and at b0 = −3.685906, which match the result us-
ing Lagrange Multiplier method. Similarly, for the other choice of cost function, i.e.
Fa, have found fold bifurcations for a = 6.70936, at (0.779315, 0.499127, 2.06428),
and a = 6.25962 at (1.40171, 0.990878, 2.45417).
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Figure 5. A curve of equilibria in (b, x)-plane which indicates two
fold bifurcation points (F1 and F2) as the parameter b varies

5. Concluding Remarks

We have proposed an application of Lagrange Multiplier method in finding
fold bifurcation point for two dimensional system of ordinary differential equations.
For our example of Two Prey One Predator model, the number of parameters in
the system is quite large so that we decided to fixed arbitrary value for all but one
of the parameters in the system. The result is then compared to the one using the
continuation software AUTO2000 [6] and shows a remarkable agreement between
the two results.

To prove that the extremum of a constrained optimization problem indeed
corresponds to a fold bifurcation in the dynamical systems, is a subject of future
investigation. What we have done in this paper is to show that geometrically what
happen in a neighbourhood of a maximum (or minimum) point of a constraint
optimization problem is similar to the one in the neighbourhood of fold bifurca-
tion in phase space. Furthermore, it is interesting to extend our observation to
higher dimensional case. What we mean by this is applying the Lagrange multi-
plier method with more than one constraint, rather than reducing the problem to
two dimensional setting.
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