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Abstract. Throughout this paper, we present a new strong property of graph so-

called nicely n-distance-balanced notably stronger than the concept of n-distance-

balanced recently given by the authors. We also initially introduce a new graph in-

variant modifying Szeged index and is suitable to study n-distance-balanced graphs.

Looking for the graphs extremal with respect to the modified Szeged index it turns

out the n-distance-balanced graphs with odd integer n are the only bipartite graphs

maximizing the modified Szeged index. This also disproves a conjecture proposed

by Khalifeh et al. [Khalifeh, M.H., Yousefi-Azari, H., Ashrafi, A.R. and Wagner

S.G., Some new results on distance-based graph invariants, European J. Combin.

30 (2009) 1149–1163]. Furthermore, we gather some facts concerning with the

nicely n-distance-balanced graphs generated by some well-known graph products.

To enlighten the reader some examples are provided. Moreover, a conjecture and a

problem are presented within the results of this article.
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Abstrak. Dalam makalah ini, disajikan suatu strong property baru dari graf yang

disebut dengan nicely n-distance-balanced yang ’lebih kuat’ jika dibandingkan den-

gan konsep n-distance-balanced. Pertama, diperkenalkan invarian yang baru untuk

graf yang diperoleh dari modifikasi indeks Szeged, dan digunakan untuk mengkaji

graf yang n-distance-balanced. Dalam pencarian graf ekstremal terhadap indeks

Szeged yang dimodifikasi, ditemukan bahwa graf yang n-distance-balanced dengan

bilangan bulat ganjil n adalah satu-satunya graf bipartit yang memaksimalkan in-

deks Szeged yang dimodifikasi. Hal ini membantah dugaan yang diajukan oleh

Khalifeh et al. [Khalifeh, M.H., Yousefi-Azari, H., Ashrafi, A.R. and Wagner S.G.,

Some new results on distance-based graph invariants, European J. Combin. 30

(2009) 1149–1163]. Selain itu, dikumpulkan juga beberapa fakta mengenai graf

nicely n-distance-balanced yang dibangun oleh ’hasil kali’ yang well-known dari graf.

Kemudian, beberapa contoh disajikan untuk memperjelas konsep yang ada di dalam

paper ini kepada pembaca. Lebih jauh, dugaan dan masalah terbuka terkait hasil-

hasil dalam penelitian ini juga disajikan.

Kata kunci: Nicely n-distance-balanced, indeks Szeged, lexicografis, hasil kali Carte-

sian dan strong product.

1. INTRODUCTION

It is well-known that in graph theory, the distance-balanced graphs are con-
sidered as one of the important class of graphs. The significance of these graphs
is evident from their applications in various areas, especially theoretical computer
science (more precisely, balance in communication networks), and molecular anal-
ysis in chemical studies.

Let G be a finite, undirected and connected graph with diameter d, and let
V (G) and E(G) indicate the vertex set and the edge set of G, respectively. For
a, b ∈ V (G), let d(a, b) = dG(a, b) denote the minimal path-length distance between
a and b. For any pair of vertices a, b of G with d(a, b) = n, we denote

WG
anb = {x ∈ V (G) | d(x, a) < d(x, b)},

and

a n b
WG = {x ∈ V (G) | d(x, a) = d(x, b)}.

Definition 1.1 (Faghani, Pourhadi and Kharazi [5]). A graph G is called n-
distance-balanced (n-DB) if for each a, b ∈ V (G) with d(a, b) = n we have |WG

anb| =
|WG

bna|.

For n = 1 the graph G is simply called distance-balanced (DB), which was
initially introduced by Jerebic, Klavz̆ar and Rall [9]. For recent results on DB
graphs, see [8-15].



46 M. Faghani and E. Pourhadi

We say that G is a nicely n-distance-balanced (NnDB or nicely n-DB for
short) whenever there exists a positive integer γG (or simply γ), such that for any
arbitrary pair of vertices a, b of V (G) with d(a, b) = n, we have

|WG
anb| = |WG

bna| = γG.

The concept of NnDB graphs appears quite naturally in the context of n-DB graphs.
Besides, it is obvious to see that both N1DB and NDB graphs which were defined
by Kutnar and Miklavic̆ [13], are the same.

One of the objects of this paper is to explore purely metric properties of being
NnDB using the graph invariant Szeged index, which was initially introduced by
Gutman [6] in 1994, and since then investigated in several papers (see for example
[1],[4]). Besides, we suggest a developed version of the Szeged index in the context
of graphs, which is effective to proceed with the investigations on n-DB graphs.
Furthermore, in Section 3, we discuss the NnDB graphs constructed by some well-
known graph products with some illustrative examples.

2. MODIFIED SZEGED INDEX

The study on n-DB graphs motivates us to give a topological invariant as a
generalized form of Szeged index. Using the notation MSzn(G), we define modified
Szeged index of a graph G with respect to n is given as

MSzn(G) =
∑

Γn(G)

|WG
unv| · |WG

vnu|,

where Γn(G) is the set of all pairs of vertices u, v ∈ V (G) with d(u, v) = n. For an
NnDB graph G with constant γ, we have

MSzn(G) = γ2|Γn(G)|. (1)

One can easily see that MSz1(G) coincides to the usual concept of Szeged index
Sz(G).

Assume that G is an arbitrary graph. By the simple inequality 2 ≤ |WG
anb|+

|WG
bna| ≤ |V (G)| and applying the arithmetic geometric mean inequality, we get

|WG
anb| · |WG

bna| ≤
( |WG

anb|+ |WG
bna|

2

)2

≤ |V (G)|2

4
,

where a, b ∈ Γn(G). Now, summing over all the vertices a, b ∈ Γn(G), we
derive that

MSzn(G) ≤ |V (G)|2|Γn(G)|
4

. (2)
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Using (2) for n = 1 together with the fact that Γ1(G) = E(G), we have

Sz(G) = MSz1(G) ≤ |V (G)|2|E(G)|
4

. (3)

Now, we give a characterization of bipartite graphs extremal with respect to the
modified Szeged index as follows.

Proposition 2.1. Let G be a connected bipartite graph. Then, G is NnDB for

some odd integer n if and only if MSzn(G) = |V (G)|2|Γn(G)|
4 .

Proof. As we already obtained that for any graph G, MSzn(G) ≤ |V (G)|2|Γn(G)|
4 ,

let us consider

MSzn(G) =
|V (G)|2|Γn(G)|

4
.

Since G is bipartite and n is odd, then
a n b
WG = ∅ and

|WG
anb| = |WG

bna| =
|V (G)|

2

for a, b ∈ Γn(G). Consequently, G is NnDB with constant γG = |V (G)|
2 . For

the converse, suppose G is NnDB. Then for any a, b ∈ Γn(G), |WG
anb| = |WG

bna|.
Since G is bipartite and n is odd, we also have |WG

anb| + |WG
bna| = |V (G)|. Hence,

Sz(G) = |V (G)|2·|E(G)|
4 .

Now, considering the proof of Proposition 2.1, we have the following imme-
diate consequence inspired by a result of Kutnar and Miklavic̆ [13, Lemma 3.2].

Corollary 2.2. Assume G is bipartite. Then,

G is n-DB ⇐⇒ G is NnDB ⇐⇒ MSzn(G) =
|V (G)|2|Γn(G)|

4
, (4)

for any odd integer n.

In Figure 1, we present a class of nonregular bipartite n-DB graphs with
maximum modified Szeged index.

Figure 1. Nonregular bipartite graphs with 3-DB, 5-DB and 7-DB prop-

erties and maximum modified Szeged index.
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Remark 2.3. Comparing Lemma 3.2 in [13] and previous corollary, we observe
that the former result is more advantageous than the latter. Moreover, for n = 1,
relation (4) assures us that the conjecture proposed by Khalifeh, Yousefi-Azari,
Ashrafi and Wagner [10] is not fulfilled by certain DB graphs. Indeed, for n = 1,
Corollary 2.2 shows that any nonregular bipartite 1-DB graph, for instance Handa
graph, cannot fulfill the Conjecture 2.4. Moreover, considering the counterexample
presented by Aouchiche and Hansen (draw the Figure 2 in [1]), we see that our
obtained result is satisfied by this example. Moreover, our result also answers the
question asked by Chiniforooshan and Wu [2] related to the problem of existence
and characterization of nonregular bipartite graphs with extreme Szeged index.

Conjecture 2.4 ([10]). For a connected graph G,

Sz(G) =
|V (G)|2 · |E(G)|

4
, (5)

if and only if G is bipartite and regular.

As a counterexample to this conjecture as above, Chiniforooshan and Wu [2]
presented a regular bipartite graph with 14 vertices not satisfying (5), which is also
a non-DB graph (draw Figure 1 in [2]).

We know that if G is a connected graph without even cycles and contains k
vertices, and u, v ∈ Γn(G), then |WG

unv|+ |WG
vnu| = k for an even integer n. Using

this fact together with the next lemma, we find an equivalent formula for MSz2(G),
where G is a connected graph without even cycles.

In the following we give a condition which will be used further on.

Remark 2.5. For any u, v ∈ Γ2(G), the shortest path connecting x to v (or u)
does not contain the shortest path connecting x to u (or v).

Let us recall that dG(u) is the total distance of vertex u of G, that is,

dG(u) =
∑

v∈V (G)

d(u, v).

Then, we have the following results.

Lemma 2.6. Let G be a connected graph without even cycles. Suppose that Remark
2.5 holds. Then,

|WG
u2v| − |WG

v2u| = dG(v)− dG(u). (6)

Proof. First, we notice that

WG
u2v ∪ WG

v2u ∪ u 2 v
WG = V (G).

Moreover,

dG(u) =
∑

x∈WG
u2v

d(x, u) +
∑

x∈
u2v
WG

d(x, u) +
∑

x∈WG
v2u

d(x, u),
(7)
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dG(v) =
∑

x∈WG
u2v

d(x, v) +
∑

x∈
u2v
WG

d(x, v) +
∑

x∈WG
v2u

d(x, v).
(8)

Subtracting (7) from (8) and taking into account G has no even cycle, we get

d(x, v) = d(x, u) + 1 if x ∈WG
u2v,

d(x, v) = d(x, u)− 1 if x ∈WG
v2u,

d(x, v) = d(x, u) if x ∈
u 2 v
WG,

we straightforwardly arrive at (6). We notice that Remark (2.5) implies that there
is no x ∈WG

u2v with d(x, v) = d(x, u) + 2.

Remark 2.7. Let us focus on Lemma 2.6. Suppose that w is a middle vertex for
the pair u, v ∈ Γ2(G). Relation (6) shows for any connected graph G with no even
cycle satisfying Remark (2.5) we have

|WG
u2v| − |WG

v2u| =
(
|WG

uw|+ |WG
wv|
)
−
(
|WG

vw|+ |WG
wu|
)

(9)

which automatically implies that any DB graph without even cycle and satisfying
Remark (2.5) is a 2-DB graph. Recall that for any arbitrary edge ab ∈ E(G), we
have

|WG
ab| − |WG

ba| = dG(b)− dG(a).

Similarly to Lemma 2.6, we obtain the following result related to graphs
without odd cycles.

Lemma 2.8. If G is a connected bipartite graph and u, v ∈ Γ2(G), then

|WG
u2v| − |WG

v2u| =
1

2

(
dG(v)− dG(u)

)
. (10)

Proof. With the same reasoning of the proof of Lemma 2.6 and applying the
following facts we easily find the conclusion.

dG(u) =
∑

x∈WG
u2v

d(x, u) +
∑

x∈
u 2 v
WG

d(x, u) +
∑

x∈WG
v2u

d(x, u),

dG(v) =
∑

x∈WG
u2v

d(x, v) +
∑

x∈
u 2 v
WG

d(x, v) +
∑

x∈WG
v2u

d(x, v).

d(x, v) = d(x, u) + 2 if x ∈WG
u2v,

d(x, v) = d(x, u)− 2 if x ∈WG
v2u,

d(x, v) = d(x, u) if x ∈
u 2 v
WG.

Suppose that wuv is the middle vertex of the path connecting u, v ∈ Γ2(G).
Clearly, for any graph with no even cycle, this kind of vertex is unique for any pair
of u, v ∈ Γ2(G).

Theorem 2.9. Let G be a connected graph with k vertices.
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(i): If G is a bipartite graph with no even cycle, that is, G is a tree, then

MSz2(G) =
1

4

( ∑
u,v∈Γ2(G)

(k − |Λw|)2 − 1

4

∑
u,v∈Γ2(G)

(dG(v)− dG(u))2

)
;

(ii): If G is a graph without even circles and satisfies (A), then

MSz2(G) =
1

4

( ∑
u,v∈Γ2(G)

(k − |Λw|)2 −
∑

u,v∈Γ2(G)

(dG(v)− dG(u))2

)
.

In cases (i) and (ii), Λw denotes the set of vertices including the vertex wuv and
the vertices connecting to u or v by a shortest path passing through wuv.

Proof. To prove (i), using Lemma 2.8 we get

dG(v)− dG(u) = 2(|WG
u2v| − |WG

v2u|). (11)

Now, from the fact that
u 2 v
WG = Λw, we have

|WG
u2v|+ |WG

v2u| = k − |Λw|.

This together with the equality (11) implies that

|WG
u2v|2 + |WG

v2u|2 =
1

2

(
(k − |Λw|)2 +

1

4
(dG(v)− dG(u))2

)
.

Now,

|WG
u2v| · |WG

v2u| =
1

4

(
(k − |Λw|)2 − 1

4
(dG(v)− dG(u))2

)
.

This shows that

MSz2(G) =
∑

u,v∈Γ2(G)

|WG
u2v| · |WG

v2u|

=
1

4

( ∑
u,v∈Γ2(G)

(k − |Λw|)2 − 1

4

∑
u,v∈Γ2(G)

(dG(v)− dG(u))2

)
,

which completes the proof of (i). To prove the second case we use Lemma 2.6:

dG(v)− dG(u) = |WG
u2v| − |WG

v2u|. (12)

Now, from the fact that
u 2 v
WG = Λw we have

|WG
u2v|+ |WG

v2u| = k − |Λw|.

This together with the equality (12) implies that

|WG
u2v|2 + |WG

v2u|2 =
1

2

(
(k − |Λw|)2 + (dG(v)− dG(u))2

)
.

Now,

|WG
u2v| · |WG

v2u| =
1

4

(
(k − |Λw|)2 − (dG(v)− dG(u))2

)
.
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This yields

MSz2(G) =
∑

u,v∈Γ2(G)

|WG
u2v| · |WG

v2u|

=
1

4

( ∑
u,v∈Γ2(G)

(k − |Λw|)2 −
∑

u,v∈Γ2(G)

(dG(v)− dG(u))2

)
,

which completes the proof of (ii).

Here for illustration, we give an immediate consequence of case (i) of Theorem
2.9 for star graphs.

Example 2.10. Using the notations as before, in the star graph Sk, the central
vertex is wuv for any pendant vertices u, v that are contained in Γ2(Sk). Moreover,
|Λw| = deg(wuv)−1 = k−2. Since dSk

(v) = dSk
(u) for any pair of pendant vertices

u, v, we get

MSz2(Sk) =
1

4

∑
u,v∈Γ2(Sk)

(k − |Λw|)2 = |Γ2(Sk)| =
(
k − 1

2

)
.

Example 2.11. Now, let us compute the formula obtained from case (ii) of Theo-
rem 2.9 for the graph depicted in Figure 2.

Figure 2. A graph G satisfying case (ii) of Theorem 2.9.

The graph shown in Figure 2 is non-cyclic and non-tree and also satisfies
Remark 2.5. For ui, v ∈ Γ2(G), i = 1, 2, the two shortest paths connecting any
vertex to ui and v are only overlapping to each other and not strictly contained in
each other, that is, G satisfies Remark 2.5. Hence, for the pairs (u1, v), (u2, v) ∈
Γ2(G), we obtain

MSz2(G) =
1

4

( ∑
u,v∈Γ2(G)

(k − |Λw|)2 −
∑

u,v∈Γ2(G)

(dG(v)− dG(u))2

)

=
1

4

(
[(4− 1)2 + (4− 1)2]− [(5− 4)2 + (5− 4)2]

)
= 4.

On the other hand,

MSz2(G) =
∑

u,v∈Γ2(G)

|WG
u2v| · |WG

v2u| = (1× 2) + (1× 2) = 4.

Following Lemma 2.8 we see that for any bipartite 2-DB graph G, we have
|{dG(x) : x ∈ V (G)}| = 2. This enables us to formulate a relation for computing
the Wiener index of 2-DB trees.
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Proposition 2.12. If T is a 2-DB tree with k vertices, then

W (G) =
k − 1

4

(
k + dT (u) + dT (v)

)
,

where u, v are two arbitrary adjacent vertices in G.

Proof. Following the formula of Dobrynin and Gutman [3] for the Wiener index
of trees, we have

W (T ) =
1

4

[
k(k − 1) +

∑
v∈V (T )

dT (v) deg(v)

]
.

Consider the disjoint sets E1, E2 of vertices of T . Since T is bipartite and 2-DB,
we obtain

W (T ) =
1

4

[
k(k − 1) +

∑
v∈V (E1)

dT (v) deg(v) +
∑

v∈V (E2)

dT (v) deg(v)

]
.

Since |{dG(x) : x ∈ V (G)}| = 2, all vertices in either E1 or E2 are labeled by the
same total distance, that is, dT (u) = dT (v) for u, v ∈ V (Ei), i = 1, 2, and so we
have

W (T ) =
1

4

[
k(k − 1) + dT (u0)

∑
u∈V (E1)

deg(u) + dT (v0)
∑

v∈V (E2)

deg(v)

]

=
1

4

[
k(k − 1) + dT (u0)|E(T )|+ dT (v0)|E(T )|

]
=
k − 1

4

(
k + dT (u0) + dT (v0)

)
,

where u0 and v0 can be chosen as two arbitrary adjacent vertices in T .

To end this section, we would like to present a conjecture with respect to the
following graph invariants, the modified Szeged index with n = 2 and the Wiener
index of trees. The upper and lower bounds in (13) are attainable for some trees,
such as graphs S3 and P3 for upper and lower bounds, respectively; however, it
seems that the lower and upper bounds can not be improved and replaced by a
sharp inequality for the graphs with large order.

Conjecture 2.13. Let T be an arbitrary tree, then we have

MSz2(T ) ≤W (T ) ≤ 3MSz2(T ). (13)

3. NnDB PROPERTY UNDER WELL-KNOWN PRODUCTS

In this section, we study the nicely n-distance-balanced graphs generated by
the lexicographic, Cartesian and strong products. Note that such graph products,
constructed from two graphs G and H, have the vertex set V (G) × V (H). Let
(a, u) and (b, v) be two distinct vertices in V (G) × V (H). We recall that (a, u)
and (b, v) are adjacent in the lexicographic product G[H], if ab ∈ E(G) or if a = b
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and uv ∈ E(H). They are also adjacent in the Cartesian product G�H if they
coincide in one of the two coordinates and are adjacent in the other coordinate. In
the strong product G � H, (a, u) and (b, v) are adjacent if and only if a = b and
u, v are adjacent in H, or u = v and a, b are adjacent in G, or a, b are adjacent in
G and u, v are adjacent in H.

In the next results we use an equivalent definition for n-DB graphs of “dis-
tance partition”:

Dn
i,j(u, v) = {x ∈ V (G) | d(x, u) = i, d(x, v) = j}, ∀u, v ∈ Γn(G).

According to the definition of n-DB graph, we have

WG
unv =

d−1⋃
i=0

n⋃
j=1

Dn
i,i+j(u, v), ∀u, v ∈ Γn(G),

where d is the diameter of G. Then G is n-DB if and only if

d−1∑
i=0

n∑
j=1

|Dn
i,i+j(u, v)| =

d−1∑
i=0

n∑
j=1

|Dn
i+j,i(u, v)|, ∀u, v ∈ Γn(G).

Furthermore, G is NnDB if and only if

d−1∑
i=0

n∑
j=1

|Dn
i,i+j(u, v)| =

d−1∑
i=0

n∑
j=1

|Dn
i+j,i(u, v)| = γG, ∀u, v ∈ Γn(G)

for some integer γG.

In order to prove the next result, we define G as a non-adjacent (k, l)-regular
graph if any non-adjacent vertices x, y ∈ V (G) have the same degree of k and
|Dr

1,1(x, y)| = l, where r = d(x, y). Here, we give the following results related to
NnDB graphs deduced by using the lexicographic product for n = 2, 3.

Theorem 3.1. Suppose that the graphs G and H are connected and G is a non-
complete graph. Then G[H] is N2DB if and only if G is N2DB and H is either the
empty graph or the complete graph.

Proof. Let us choose a pair of vertices from V (G)× V (H). Assume first the case
where the vertices are (a, x), (a, y) such that dG[H]((a, x), (a, y)) = 2, so d(x, y) ≥ 2.
Recall that

dG[H]((g, h), (ǵ, h́)) =


dG(g, ǵ) if g 6= ǵ,

1 if g = ǵ and hh́ ∈ E(H),

2 if g = ǵ and hh́ /∈ E(H).

Let (u, v) be a vertex from V (G) × V (H). We consider two cases on the pair
(a, u): if d(a, u) ≥ 2, then inspired by the definition of distance in the lexicographic
product, we have dG[H]((a, x), (u, v)) = dG[H]((a, y), (u, v)) = d(a, u), which implies
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(u, v) ∈ D2
i,i((a, x), (a, y)), where i = d(a, u). Furthermore, if d(a, u) ≤ 1, then

dG[H]((a, x), (u, v)) ≤ 2 and dG[H]((a, y), (u, v)) ≤ 2. Therefore, among the sets

D2
i,i+1((a, x), (a, y)), D2

i+1,i((a, x), (a, y)), D2
i,i+2((a, x), (a, y)), D2

i+2,i((a, x), (a, y)),

for i ≥ 0 only the following sets may be nonempty:

D2
1,2((a, x), (a, y)) = {(a, v) | v ∈ N(x) \N(y)}
=⇒ |D2

1,2((a, x), (a, y))| = deg(x) + 1− |Dr
1,1(x, y)|,

D2
2,1((a, x), (a, y)) = {(a, v) | v ∈ N(y) \N(x)}
=⇒ |D2

2,1((a, x), (a, y))| = deg(y) + 1− |Dr
1,1(x, y)|,

(14)

where N(x) denotes all the neighbors of vertex x and r = d(x, y) ≥ 2. On the other
hand,

|D2
1,2((a, x), (a, y))| = |D2

2,1((a, x), (a, y))| = k − l + 1

if and only if H is a non-adjacent (k, l)-regular graph for some integers k, l. More-
over,

diam(G[H])−1∑
i=0

2∑
j=1

|D2
i,i+j((a, x), (a, y))| =

diam(G[H])−1∑
i=0

2∑
j=1

|D2
i+j,i((a, x), (a, y))|

= k − l + 1,

(15)

where (a, x), (a, y) ∈ Γ2(G[H]). Now suppose that (a, x), (b, y) ∈ V (G) × V (H),
where a 6= b and d((a, x), (b, y)) = 2. Clearly, we have d(a, b) = 2. For this case, we
have

D2
2,1((a, x), (b, y)) = (D2

2,1(a, b)× V (H)) ∪ {(b, v) | v ∈ N(y)}
= [D2

2,1(a, b)× V (H)] ∪ [{b} ×N(y)],

D2
1,2((a, x), (b, y)) = (D2

1,2(a, b)× V (H)) ∪ {(a, v) | v ∈ N(x)}
= [D2

1,2(a, b)× V (H)] ∪ [{a} ×N(x)],

D2
2,3((a, x), (b, y)) = {(u, v) | u ∈ S2(a) ∩ S3(b)}

= [S2(a) ∩ S3(b)]× V (H) = D2
2,3(a, b)× V (H),

D2
3,2((a, x), (b, y)) = {(u, v) | u ∈ S3(a) ∩ S2(b)}

= [S3(a) ∩ S2(b)]× V (H) = D2
3,2(a, b)× V (H),

D2
3,1((a, x), (b, y)) = {(u, v) | u ∈ S1(b) ∩ S3(a)}

= [S1(b) ∩ S3(a)]× V (H) = D2
3,1(a, b)× V (H),

D2
1,3((a, x), (b, y)) = {(u, v) | u ∈ S3(b) ∩ S1(a)}

= [S3(b) ∩ S1(a)]× V (H) = D2
1,3(a, b)× V (H),
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where Si(u) is the set of all vertices v with d(u, v) = i. In general, we observe that
for i ≥ 2

D2
i+1,i((a, x), (b, y)) = D2

i+1,i(a, b)× V (H), D2
i,i+1((a, x), (b, y)) = D2

i,i+1(a, b)× V (H),

D2
i+2,i((a, x), (b, y)) = D2

i+2,i(a, b)× V (H), D2
i+2,i((a, x), (b, y)) = D2

i+2,i(a, b)× V (H).

(16)

Therefore, using all relations in (16), we get

diam(G[H])−1∑
i=0

2∑
j=1

|D2
i,i+j((a, x), (b, y))| =

diam(G[H])−1∑
i=0

2∑
j=1

|D2
i+j,i((a, x), (b, y))|

⇔
diam(G)−1∑

i=0

2∑
j=1

|D2
i,i+j((a, b)| =

diam(G)−1∑
i=0

2∑
j=1

|D2
i+j,i((a, b)| = γG|V (H)|

and it holds if and only if G is N2DB. Besides, the above equalities together with
(15) shows that G[H] is N2DB if and only if G is N2DB and H is either the
empty graph or the complete graph. We remark that the previous case, that is,
(a, x), (a, y), is removed if we have d(x, y) ≤ 1, and it means H should be as one of
forms as above. More precisely, G[H] is N2DB if and only if we have

γG|V (H)| = k − |Dr
1,1(x, y)|+ 1,

but

γG|V (H)|+ |Dr
1,1(x, y)| ≥ |V (H)| ≥ k + 1,

and the equality happens if k = |V (H)|−1, that is, when H is the complete graph.
Also, notice that both of the terms {a}×N(x) and {b}×N(y) have been ignored in
the recent sums since they are included in D2

0,2(a, b)×V (H) and D2
2,0(a, b)×V (H),

respectively, which is impossible.

By ignoring the second case in the previous proof, we easily conclude an
immediate consequence as follows.

Theorem 3.2. Suppose that G is a complete graph and H is an arbitrary connected
graph. Then G[H] is N2DB with γG[H] = k−l+1 if and only if H is a non-adjacent
(k, l)-regular graph for some integers k, l.

Proof. By considering (a, x), (b, y) such that dG[H]((a, x), (b, y)) = 2, if a 6= b,
then dG(a, b) = 2, which contradicts the fact that G is complete. Thus, we take the
pair (a, x), (a, y) such that dG[H]((a, x), (a, y)) = 2. So, xy /∈ E(H). If we choose
(u, v) ∈W(a,x),(a,y), then u = a and v ∈ N(y) \N(x). Therefore,

|W(a,x),(a,y)| = |W(a,y),(a,x)| ⇐⇒ |N(y) \N(x)| = |N(x) \N(y)|
⇐⇒ deg(x)−Dr

1,1(x, y) + |{(a, x)}|
= deg(y)−Dr

1,1(x, y) + |{(a, b)}|,
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where r = d(x, y). This means that G[H] is N2DB if and only if H is a non-adjacent
(k, l)-regular graph. Moreover, γG[H] = k − l + 1 and the result follows.

Remark 3.3. As observed in the recent result, the N2DB property is not invariant
under the lexicographic product. Figure 3 shows K3[P3] is NDB and N2DB. We
notice that P3 is a non-adjacent (1, 1)-regular graph and γK3[P3] = 1 − 1 + 1 =
1 (see also Theorem 3.2). Also in this figure, P3[K3] is N2DB with γP3[K3] =
γP3
|V (K3)| = 3, whereas it is not NDB. This also illustrates that the lexicographic

product is not commutative (see also Hammack, Imrich, and Klavz̆ar [7]).

Figure 3. Lexicographic products K3[P3] and P3[K3].

Theorem 3.4. Suppose G and H are connected graphs. Then G[H] is N3DB if
and only if G is N3DB and H is a k-regular graph.

Proof. Assume that G is N3DB and H is a regular graph. Following the proof of
Theorem 3.1, if we choose (a, x), (a, y) ∈ V (G)×V (H) so that dG[H]((a, x), (a, y)) =
3, then it contradicts the definition of distance in lexicographic product. Suppose
then that (a, x), (b, y) ∈ V (G)×V (H), where a 6= b and d((a, x), (b, y)) = 3. Clearly,
we have d(a, b) = 3. For this case we have

D3
2,1((a, x), (b, y)) = D3

2,1(a, b)× V (H), D3
1,2((a, x), (b, y)) = D3

1,2(a, b)× V (H),

D3
2,3((a, x), (b, y)) = [D3

2,3(a, b)× V (H)] ∪ [{a} × (V (H)−N(x)) \ (a, x)],

D3
3,2((a, x), (b, y)) = [D3

3,2(a, b)× V (H)] ∪ [{b} × (V (H)−N(y)) \ (b, y)],

D3
3,1((a, x), (b, y)) = [D3

3,1(a, b)× V (H)] ∪ [{b} ×N(y)],

D3
1,3((a, x), (b, y)) = [D3

1,3(a, b)× V (H)] ∪ [{a} ×N(x)],

D3
4,1((a, x), (b, y)) = D3

4,1(a, b)× V (H), D3
1,4((a, x), (b, y)) = D3

1,4(a, b)× V (H),

D3
2,5((a, x), (b, y)) = [D3

2,5(a, b)× V (H)] ∪ [{a} × (V (H)−N(x))],

D3
5,2((a, x), (b, y)) = [D3

5,2(a, b)× V (H)] ∪ [{b} × (V (H)−N(y))].

(17)
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About the other such sets, we observe that for i ≥ 4

D3
i−1,i((a, x), (b, y)) = D3

i−1,i(a, b)× V (H),

D3
i,i−1((a, x), (b, y)) = D3

i,i−1(a, b)× V (H),

D3
i−2,i((a, x), (b, y)) = D3

i−2,i(a, b)× V (H),

D3
i−2,i((a, x), (b, y)) = D3

i−2,i(a, b)× V (H),

D3
i−1,i+2((a, x), (b, y)) = D3

i−1,i+2(a, b)× V (H),

D3
i+2,i−1((a, x), (b, y)) = D3

i+2,i−1(a, b)× V (H).

(18)

Consequently, we get the equality

diam(G[H])−1∑
i=0

3∑
j=1

|D3
i,i+j((a, x), (b, y))| =

diam(G[H])−1∑
i=0

3∑
j=1

|D3
i+j,i((a, x), (b, y))|, (19)

which is equal to

diam(G)−1∑
i=0

3∑
j=1

|D3
i,i+j(a, b)| =

diam(G)−1∑
i=0

3∑
j=1

|D3
i+j,i(a, b)| = γG|V (H)|, (20)

and it happens when the hypothesis holds. Therefore, G[H] is N3DB with γG[H] =
γG|V (H)|. To give more details about not considering the second terms in some
unions of (17), we notice that these sets are repeated and they are included in
D3

i,j(a, b)× V (H) for some appropriate i, j. To prove the converse, using (19) and
(20), one can easily show that the above equalities hold if N3DB and k-regularity
properties are achieved by G and H, respectively.

Example 3.5. In Figure 4, the top resulting graph, describes the N3DB graph
P4[C5] with constant γP4[C5] = γG|V (H)| = 2 · 5 = 10. However, this graph is
neither DB nor 2-DB. The bottom resulting graph shows the lexicographic product
graph C5[P4], which is not n-DB graph for any integer n.
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Figure 4. Graphs P4[C5], C5[P4] derived by the lexicographic product [·].

To investigate the nicely 2-distance-balanced property of the Cartesian prod-
uct of graphs, we observe that using this kind of graph product with N2DB graphs
cannot be generated a non-trivial N2DB graph. To illustrate this fact, consider the
cycle C4, which is a regular graph with the N2DB property. The Cartesian product
C4 × C4 is not even a 2DB graph. Indeed, in Figure 5, for the vertices a, b with
d(a, b) = 2, we have

|WC4×C4

a2b | = 5, |WC4×C4

b2a | = 4

Figure 5. Graph C4 × C4 .
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Similarly, we can construct a non-NnDB graph generated from the Cartesian
product of two NnDB graph for all n ≥ 3. The graph Pn+1×C2n is not n-DB since
it has at least two vertices c, d with d(c, d) = n satisfying

|WPn+1×C2n

cnd | < |WPn+1×C2n

dnc |.

To be clarified, see Figure 6.

Figure 6. Graph Pn+1 × C2n.

To discuss about NnDB graphs generated by the strong product, we have the
same fact. For instance, considering G = Pn+1 � C2n, we observe that this graph
is not NnDB, whereas both Pn+1 and C2n are NnDB. Moreover, the graph G does
not have the n-DB property for n > 2. See the following graphs as examples.
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Figure 7. The non-N2DB Graph P3 �C4, non-N3DB Graph P4 �C6 and

the non-N4DB Graph P5 � C8.

In Figure 7, we have

|WP3�C4

e2f | = |WP3�C4

f2e | = 2, |WP3�C4

g2f | = |WP3�C4

f2g | = 3, |WP3�C4
g2e | = |WP3�C4

e2g | = 4,

and

|WP4�C6

a3b | = |WP4�C6

b3a | = 7, |WP4�C6

c3d | = |WP4�C6

d3c | = 10,

but |WP4�C6

c3b | = 14, |WP4�C6

b3c | = 7,

and

|WP5�C8
i4j | = 10, |WP5�C8

j4i | = 21.

Based on the discussion as above the following problem arises naturally.

Problem 3.6. Find a class of non-trivial NnDB graphs generated by either Carte-
sian or strong products. Find necessary (or sufficient) conditions for this class of
graphs.
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