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Abstract. The steady two dimensional convective boundary layer flow of microp-

olar Jeffrey fluid past a permeable stretching sheet is studied in this paper. The

governing boundary layer equation in the form of partial differential equations are

transformed into nonlinear coupled ordinary differential equations and solved nu-

merically using an implicit finite-difference scheme known as Keller-box method.

The effect of Prandtl number, Deborah number and material parameter specifically

for strong concentration of microelements on the velocity, microrotation and tem-

perature profiles as well as skin friction and heat transfer coefficients are presented

and discussed. An excellent agreement is observed between the present and earlier

published results for some special cases. The results revealed that, the effect of

Deborah number and stretching parameter are increased the heat transfer coeffi-

cient while the opposite trend is observed for the effects of material and velocity slip

parameters. It was also observed that, the values of skin friction increased with the

increment on the values of all studied parameters.
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1. INTRODUCTION

Analysis of non-Newtonian fluids is still a topic of great interest. Scientists
have stimulated in this field of research due to the numerous applications of non-
Newtonian fluids in pharmaceuticals, physiology, fiber technology, food products,
coating of wires, crystal growth etc. Such fluids have a nonlinear relationship be-
tween the stress and the rate of strain at a point and exhibit some worth notice
facts which are due to their elastic nature. Many materials of industrial signifi-
cance, notably polymer systems (melt and solutions) and multi-phase system such
as foams, emulsions, and slurries, which involve a range of non-Newtonian charac-
teristic including shear thinning/shear thickening, shear-dependent viscosity, stress
relaxation, and normal stress difference. Hence, due to the practical and fundamen-
tal association of non-Newtonian fluids to industrial applications, several studies
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] of these fluids in different geometries have been carried
out.

Recently, there are many types of non-Newtonian fluids which have become
very popular in the literature such as micropolar fluid, second grade fluid, Oldroyd-
B fluid, Jeffrey fluid and Casson fluids. Among these, Jeffrey fluid has been proved
relatively as the simpler viscoelastic non-Newtonian fluid which exhibits the shear
thinning characteristics, yield stress and high shear viscosity [11]. Originally, this
rheological model was introduced by Jeffreys [12] to stimulate the earth crustal
flow problems. This model can be degenerates to a Newtonian fluid at a very high
wall shear stress i.e. when the wall stress is much greater than yield stress. Several
recent contributions dealing with the flow of Jeffrey fluid under different effects and
geometry have been studied by many researchers.

Nadeem et al. [13] presented the peristaltic flow of a Jeffrey fluid with variable
viscosity in an asymmetric channel. Some unsteady flows of a Jeffrey fluid between
two side walls over a plane wall has been reported by Khan et al. [14], whereas
Hayat et al. [15] discussed the boundary layer flow of a Jeffrey fluid with convective
boundary conditions. Thermal radiation effect on the mixed convection stagnation-
point flow in a Jeffery fluid and the effects of an endoscope and magnetic field on
the peristalsis involving Jeffrey fluid are also presented by Hayat et al. [16, 17]. On
the other hand, Vajravelu et al. [18] studied the influence of heat transfer on the
peristaltic transport of Jeffrey fluid in a vertical porous stratum. Turkyilmazoglu
and Pop [19] obtained exact analytical solutions for the flow and heat transfer near
the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. Recently,
Zin et al. [20] discussed the influence of Newtonian heating and thermal radiation
on the combined heat and mass transfers for the unsteady free convection MHD
flow of Jeffrey fluid past an oscillating vertical plate.

Even there are a lot of papers studied regarding the Jeffrey fluid, but the
solutions in term of numerical are still few and the solution on this type of fluid
with microrotation effect still hard to find. Basically, micropolar fluid is a subset
of the micromorphic fluid theory, which first introduced by Eringen [21]. This fluid
are theoretically represent fluids that contain rigid randomly oriented particles
suspended in viscous medium which have an essential micro motion in rotation.
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In real life, the fluids that can be classified as micropolar fluid are colloidal fluids,
biological fluids in thin vessels such as human or animal bloods and also polymeric
suspensions. Independent studies of micropolar fluid without Jeffrey fluid term
(called Deborah number) have been done by many researchers in past few decades
[22, 23, 24, 25, 26, 27, 28, 29, 30].

Motivated by the above literature, this article presents the numerical solutions
for the problem of convective boundary layer flow of micropolar Jeffery fluid with
prescribe wall temperature. The governing equations are first transformed into or-
dinary differential equations using appropriated similarity transformation and then
solved by using Keller box method. The solutions of fluid characteristics in term
of skin friction and heat transfer coefficient as well as velocity and temperature
distributions with various values of studied parameters which are Deborah num-
ber, Prandtl number, material parameter, stretching parameter and slip velocity
parameter are presented graphically and in tabular form.

2. PROBLEM FORMULATION

Consider the steady two dimensional boundary layer stagnation point of an
incompressible Jeffrey fluid past a stretching sheet with prescribed wall tempera-
ture. The positive x-coordinate is the distance measured along the sheet and the
positive y-coordinate measures the distance normal to the sheet. It is assumed
that, the temperature of the sheet varies linearly with the distance x along the
sheet, where Tw(x) > T∞ with Tw(x) being the temperature of the sheet and T∞
being the uniform temperature of the ambient fluid. In this problem, the effect
of microrotation is also considered. The constitutive equation of Jeffrey fluid are
given by

T = −pI + S, (1)

S =
µ

1 + λ1
(̄̇γ + λ2̄̈γ). (2)

Here, T is the Cauchy stress tensor, −pI is the indeterminate part of stress, S is
the extra stress tensor, µ is the coefficient of viscosity, λ1 is the ratio of relaxation
to retardation times and λ2 is the retardation time respectively,¯̇γ is the shear rate
and dots over the quantities indicate differentiation with respect to time. It is
worth to mention that, if λ1 = λ2 = 0, the equation (2) reduces to the expressions
of an incompressible viscous fluid. Under the Boussinesq and boundary layer ap-
proximations, the governing equations of momentum, microrotation and energy for
Jeffrey fluid are written as

∂u

∂x
+
∂v

∂y
= 0, (3)
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γ
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∂2N
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− κ
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(
2N +

∂u
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)
, (5)

u
∂T

∂x
+ v

∂T

∂y
=

k∗

ρcp

∂2T

∂y2
. (6)

The appropriate physical boundary conditions are given by

u = cx+ gx
∂u

∂y
, v = 0, N = −n∂u

∂y
, T = Tw, at y = 0,

u = ue → ax, N → 0,
∂u

∂y
→ 0, T → T∞, as y →∞,

(7)

where u and v are the velocity components along the x and y-axes, ν is the kinematic
viscosity, κ is a vortex viscosity, ρ is the fluid density, ue is the velocity outside the
boundary layer, N is the component of microrotation vector normal to the x and
y-axes, γ the spin gradient, j = ν/a is the microinertia density, a is an arbitrary
constants, T is the temperature, k∗ is the thermal conductivity, cp is the specific
heat capacity, c is an arbitrary constants, gx is slip constant depending on the λ1
and n is the concentration of microelements in the range of 0 ≤ n ≤ 1 (see Lok
[25]), respectively. Here, the case of n = 0 is called strong concentration indicated
N = 0 near the wall, represents the concentrated particle flows in which the micro-
elements close to the wall surface are unable to rotate [31] while, n = 1/2 is called
weak concentration and represent the vanishing of the anti-symmetric part of stress
tensor [32]. Following Rees and Bassom [33] and Lok [34], γ is defined as

γ =
(
µ+

κ

2

)
j = µ

(
1 +

K

2

)
j (8)

where µ is a dynamic viscosity and K = κ/µ is denoted as material parameter.
Equation (8) is invoked to allow the field of equations to predict the correct be-
haviour in the limiting case when the microstructure effects become negligible, and
the total spin N reduces to the angular velocity [32]. The complexity of the problem
is reduced by introducing the following similarity transformations,

η = y

√
c(1 + λ1)

ν
, u = cx

∂f

∂η
, v = −

√
cν

1 + λ1
f(η),

N = cx

√
c(1 + λ1)

ν
g(η), θ =

T − T∞
Tw − T∞

.

(9)

Substitution of the equation (9) into equation (3) until equation (6) give,
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+ β
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K
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+ f
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− ∂f
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g(η)−K

[
2g(η) +

∂f2

∂η

]
= 0, (11)

∂θ2

∂η
+ Pr f(η)

∂θ

∂η
= 0, (12)

subjected to the boundary conditions

f = 0,
∂f

∂η
= 1 + k

∂2f

∂η2
, g = −n∂

2f

∂η2
, θ = 1, at η = 0,

∂f

∂η
= δ,

∂2f

∂η2
= 0, g = 0, θ = 0 as η →∞,

(13)

where β is the Deborah number, δ is the stretching stretch parameter, k is velocity
slip parameter and Pr is the Prandtl number which are defined as

β = λ2c, δ =
a

c
, k = gx

√
c(1 + λ1)

ν
, Pr =

µcp
k
. (14)

The physical quantities of principal interest such as the skin friction coefficient Cf
and the local Nusselt number Nux are defined as

Cf =
τw(x)

ρu2w
and Nux =

qw(x)x

k (Tw − T∞)
(15)

where the τw(x) is the shear stress at the wall and qw(x) is the heat flux from the
surface of the sheet, are given as

τw (x) =

(
[µ+ κ]

∂u

∂y
+ κN

)
y=0

and qw (x) = −k
(
∂T

∂y

)
y=0

. (16)

Using variables (9), we get

CfRe1/2x = [1 + (1− n)K]
∂2f

∂η2
(τ, 0) ,

Nux

Re1/2x

= −∂θ
∂η

(τ, 0) . (17)

where Rex is the Reynolds number.

3. RESULT AND DISCUSSION

Equations (10) to (12) subject to the boundary conditions (13) were solved
numerically using an implicit finite difference method known as Keller box. This
method has been found to be very suitable in dealing with nonlinear parabolic
problems and practically used by many researchers [29–30, 35–36]. The effects of
Prandtl number Pr, material K, velocity slip k, Deborah number β and stretching
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parameters δ are analyzed for the viscous and incompressible micropolar Jeffrey
fluids. The present results for the heat transfer coefficient, −θ′ (0) with various val-
ues of Prandtl number Pr are compared with those in Turkyilmazoglu and Pop [19]
for the limiting cases without the influence of material parameter K, concentration
of microelements n and velocity slip k parameter at the fixed values of Deborah
number and stretching parameter in order to validate the numerical results. It is
seen from Table 1, the obtained numerical results using the proposed numerical
method are in an excellent agreement with those published previously.

Table 1. Comparison the values of heat transfer coefficient
−θ′ (0) at K = 0, k = 0, n = 0, β = 2, δ = 1

Pr Turkyilmazoglu and Pop [19] Present

2 1.12837917 1.128732

5 1.78412412 1.785519

10 2.52313252 2.527078

Figure 1 depicts the influence of Prandtl number on the temperature pro-
file θ (η). It is observed that, the temperature profiles rapidly decreases with the
increasing values of Prandtl number. This behaviour is expected due to the fact
that for the smaller values of Pr, fluid possesses high thermal conductivity and
heat diffuses away from the surface faster than at the higher values of Pr. Thus,
the boundary layer becomes thinner and consequently decreases the temperature
when Pr is increased. It is obvious that, a large Prandtl number is important for
non-Newtonian fluid however, from the figure, an identical behaviour is observed
on the temperature profile regardless of whether the Prandtl number is small or
large. Therefore, the values of Prandtl number, Pr is fixed to unity as Pr = 0.71
for all figures in this problem.

Figures 2 until 7 represent the distribution of velocity f ′ (η), microrotation
g (η) and temperature θ (η) at a fixed value of n = 0 for different values of the phys-
ical parameters of interest. The case n = 0 corresponds to the boundary condition
indicating the no spin condition, which is happens when the particle density is suf-
ficiently large, so that the microelements close to the wall are not able to rotate as
stated by Jena and Mathur [31]. Figures 2 to 4 show the distribution of velocity,
microrotation and temperature for different values of Deborah number. It can be
seen that, the velocity increased when the values of Deborah number are increased
whereas the opposite behaviour is noticed for the temperature profile. The fact
that the larger value of Deborah number corresponds to the higher relaxation time
and decrease the values of temperature. It is also observed that the microrotation
profile decreases near the sheet but twist the pattern between 1.5 < η < 2.5 where
the profiles start to increase and become zero far away from the sheet. These results
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Figure 1. The temperature profiles for various values of Pr when
n = 0.

Figure 2. The velocity profiles for various values of β.

also support the computation for this investigation since it satisfies the boundary
condition applied.

The effects of material parameter K on the velocity f ′ (η), microrotation g (η)
and temperature profiles θ (η) are illustrated in figures 5 to 7. It is observed that,
an increase of K, leads to decrease the velocity of fluid while it increases the rate
of temperature. Meanwhile, figure 6 depicted the rate of microrotation where it
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Figure 3. The microrotation profiles for various values of β.

Figure 4. The temperature profiles for various values of β.

is increases gradually with K until one maximum value and later slowly decreases
until asymptotically zero.

The influence of Deborah number β on the variation of heat transfer coef-
ficient −θ′ (0) with Pr for both cases, strong (n = 0) and weak (n = 0.5) concen-
trations is shown in figure 8. It is noticed that, when the values of β increase,
its lead to decrease the values of −θ′ (0) but the contradict behavior is noticed for
the increment of the values of Pr. From these results, it can be concluded that,
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Figure 5. The velocity profile for various values of K.

Figure 6. The microrotation profile for various values of K.

the Deborah number retarded the heat transfer of fluid while the values of Prandtl
number boosted the transfer of heat.

Table 2 presented the rate of reduced skin friction f ′′ (0) and heat transfer
coefficient −θ′ (0) with various values of studied parameter. As values of Deborah
number and stretching parameter increased, both values of skin friction and heat
transfer coefficient. Besides that, it is also noticed that, the increment values in
the velocity slip and material parameters led to boost the rate of skin friction and
reduce the rate of heat transfer coefficient.
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Figure 7. The temperature profile for various values of K.

Figure 8. Distribution of −θ′ (0) with various values of β, Pr and n.

4. CONCLUSION

In this paper, the convective boundary layer flow of micropolar Jeffrey fluid
past a permeable stretching sheet has been investigated. The governing partial dif-
ferential equation of respective problem are first transformed into ordinary differ-
ential equation using appropriates similarity transformation. The results have been
computed using Keller box method. From investigations, results clearly show that
the Prandtl number, Deborah number, and material parameter for the prescribe
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Table 2. The values of reduced skin friction f ′′ (0) and heat trans-
fer coefficient −θ′ (0) with various parameters at n = 0 and Pr =
0.71

β K δ k f ′′ (0) −θ′ (0)

0.5 0.5 0.2 0.1 -0.675724 0.512421

1.0 -0.601075 0.528987

2.0 -0.505441 0.550805

4.0 -0.402150 0.574847

6.0 -0.344527 0.588323

0.5 0.2 -0.682562 0.513064

0.3 -0.680675 0.512893

0.5 -0.675724 0.512421

0.2 -0.675724 0.512421

0.5 -0.501184 0.574805

1.0 0.000000 0.672384

2.0 1.598869 0.841754

5.0 9.074552 1.225625

0.1 -0.675724 0.512421

0.5 -0.489112 0.466707

0.8 -0.407196 0.444855

1.0 -0.366811 0.433568

wall temperature together with strong concentration of microelements microrota-
tion (n = 0) affect the fluid flow characteristics in term of velocity, temperature,
microrotation as well as the heat transfer of the fluid.
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