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Şükran Konca1 and Mehmet Küçükaslan2
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Abstract. In this work, via modulus functions, we have obtained a generalization

of statistical convergence of asymptotically equivalent sequences, a new non-matrix

convergence method, which is intermediate between the ordinary convergence and

the statistical convergence. We also have examined some inclusion relations related

to this concept. Addition to all these results, in the last part of the paper, we obtain

very nice results for nonnegative real numbers with respect to the partial order on

the set of real numbers.
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Abstrak. Dalam penelitian ini, dengan menggunakan fungsi modulus, diperoleh

perumuman kekonvergenan statistik dari barisan yang ekivalen secara asimtotis, su-

atu metode kekonvergenan non-matriks baru, yang merupakan pertengahan antara

kekonvergenan biasa dan kekonvergenan statistik. Selain itu, diperoleh juga beber-

apa relasi inklusi yang terkait dengan konsep-konsep di atas. Sebagai tambahan

hasil, pada bagian akhir artikel, diperoleh hasil yang sangat menarik terkait dengan

bilangan riil tak-negatif terhadap urutan parsial pada himpunan bilangan riil.

Kata kunci: Kekonvergenan statistik; Cesaro summability kuat; ruang barisan;
fungsi modulus; barisan ekivalen secara asimtotik.

1. INTRODUCTION

In 1993, Marouf [8] presented definitions for asymptotically equivalent and
asymptotic regular matrices. In 2003, Patterson [11] extended these concepts by
presenting an asymptotically statistical equivalent analog of these definitions and
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natural regularity for nonnegative summability matrices. In 2006, Patterson and
Savaş extended the definitions presented in [12] to lacunary sequences.

The concept of statistical convergence was defined by Steinhaus [15] and Fast
[6] and later reintroduced by Schoenberg [14] independently. Although statistical
convergence was introduced over nearly the last sixty years, it has become an active
area of research in recent years.

The notion of a modulus function was introduced by Nakano [9]. Ruckle [13]
and Maddox [7] introduced and discussed some properties of sequence spaces de-
fined by using a modulus function. In 2014, Aizpuru et al. [1] defined a new concept
of density with the help of an unbounded modulus function and, as a consequence,
they obtained a new concept of nonmatrix convergence, namely, f -statistical con-
vergence, which is intermediate between the ordinary convergence and the statis-
tical convergence and agrees with the statistical convergence when the modulus
function is the identity mapping. Quite recently, Bhardwaj and Dhawan [2], and
Bhardwaj et al. [3], have introduced and studied the concepts of f -statistical
convergence of order α and f -statistical boundedness, respectively, by using the
approach of Aizpuru et al. [1] (see also [4] and [5]).

By using modulus functions, we have defined a generalization of statistical
convergence of asymptotically equivalent sequences and obtained some inclusion
relations related to this concept.

2. DEFINITIONS AND PRELIMINARIES

In this section, we present some definitions and notations needed through-
out the paper. By N and R, we mean the set of all natural and real numbers,
respectively. For brevity, we also mean limk→∞xk by the notation limkxk.

Definition 2.1. [10] A number sequence x = (xk) is said to be statistically con-
vergent to the number ` if for each ε > 0 the set {k ∈ N : |xk − `| ≥ ε} has nat-
ural density zero, where the natural density of a subset K ⊂ N is defined by
d (K) = limn→∞

1
n |{k ≤ n : k ∈ K}|, where |{k ≤ n : k ∈ K}| denotes the number

of elements of K not exceeding n. Obviously, we have d(K) = 0 provided that K
is a finite set of positive integers. If a sequence is statistically convergent to `, then
we write it as S-limkxk = ` or xk → `(S). The set of all statistically convergent
sequences is denoted by S.

Definition 2.2. [8] Two nonnegative sequences x = (xk) and y = (yk) are said to
be asymptotically equivalent if limk

xk

yk
= 1 (denoted by x ∼ y). If the limit is `,

then it will be denoted by x
`∼ y.

Definition 2.3. [11] Two nonnegative sequences x = (xk) and y = (yk) are said to
be asymptotically statistical equivalent of multiple ` provided that for every ε > 0

limn→∞
1
n

∣∣∣{k ≤ n :
∣∣∣xk

yk
− `
∣∣∣ ≥ ε}∣∣∣ = 0 (denoted by x

S`∼ y).

Recall that a modulus function f is a function from [0,∞) to [0,∞) such that
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(1) f(x) = 0⇔ x = 0,
(2) f(x+ y) ≤ f(x) + f(y) for x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0.

Definition 2.4. [1] Let f be an unbounded modulus function. The f -density of a
set K ⊂ N is defined by

df (K) = lim
n→∞

f (|{k ≤ n : k ∈ A}|)
f (n)

in case this limit exists. Clearly, finite sets have zero f -density but in difference
of the natural density, df (N−K) = 1 − df (K) does not hold, in general. But if
df (K) = 0, then df (N−K) = 1.

For example, if we take f(x) = log(x + 1) and K = {2n : n ∈ N}, then
df (K) = df (N−K) = 1. For any unbounded modulus f and K ⊂ N, df (K) = 0
implies that d(K) = 0. But converse need not be true in the sense that a set having
zero natural density may have non-zero f -density with respect to some unbounded
modulus f . For example, if we take f(x) = log(x + 1) and K = {1, 4, 9, ...}, then
d(K) = 0 but df (K) = 1/2. However, d(K) = 0 implies df (K) = 0 is always true
in case of any finite set K ⊂ N, irrespective of the choice of unbounded modulus f
(see, [2]).

Definition 2.5. [1] Let f be an unbounded modulus function. A number sequence
x = (xk) is said to be f -statistically convergent to ` or Sf -convergent to `, if for
each ε > 0

df ({k ∈ N : |xk − `| ≥ ε}) = 0,

that is,

lim
n→∞

f (|{k ≤ n : |xk − `| ≥ ε}|)
f (n)

= 0,

and one writes it as Sf − limkxk = l or xk → l
(
Sf
)
. The set of all f -statistically

convergent sequences is denoted by Sf .

Lemma 2.6. [7] Let f : [0,∞) → [0,∞) be a modulus. Then there is a finite

limt→∞
f(t)
t and equality

lim
t→∞

f (t)

t
= inf

{
f (t)

t
: t ∈ (0,∞)

}
holds.

The well-known space w(f) of strongly Cesaro summable sequences is defined
as [7]

w (f) :=

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

f (|xk − `|) = 0, for some ` ∈ R

}
.
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3. MAIN RESULTS

Definition 3.1. Let f be an unbounded modulus function. Two nonnegative se-
quences x = (xk) and y = (yk) are said to be asymptotically f -statistical equivalent
of multiple ` provided that for every ε > 0

df
({

k ∈ N :

∣∣∣∣xkyk − `
∣∣∣∣ ≥ ε}) = 0,

that is,

lim
n→∞

1

f (n)
f

(∣∣∣∣{k ≤ n :

∣∣∣∣xkyk − `
∣∣∣∣ ≥ ε}∣∣∣∣) = 0

(denoted by x
Sf
`∼ y) and simply asymptotically f -statistical equivalent if ` = 1.

Furthermore, let Sf
` denote the set of x and y such that x

Sf
`∼ y.

Definition 3.2. Two number sequences x = (xk) and y = (yk) are said to be
strong Cesaro asymptotically equivalent of multiple ` with respect to a modulus
function f provided that

lim
n→∞

1

n

n∑
k=1

f

(∣∣∣∣xkyk − `
∣∣∣∣) = 0

(denoted by x
w`(f)∼ y) and simply strong Cesaro asymptotically equivalent if ` = 1.

In addition, let w` (f) denote the set of x and y such that x
w`(f)∼ y.

Theorem 3.3. Let f be any unbounded modulus function for which limt→∞
f(t)
t >

0 and c be a positive constant such that f(xy) ≥ cf(x)f(y) for all x ≥ 0, y ≥ 0. If

x
w`(f)∼ y, then x

Sf
`∼ y.

Proof. Let f be any unbounded modulus function for which limt→∞
f(t)
t > 0 and

c be a positive constant such that f(xy) ≥ cf(x)f(y) for all x ≥ 0, y ≥ 0. For

x
w`(f)∼ y and ε ∈ (0,∞), by the definition of a modulus function (2) and (3) we

have

1
n

n∑
k=1

f
(∣∣∣xk

yk
− `
∣∣∣) ≥ 1

nf

(
n∑

k=1

∣∣∣xk

yk
− `
∣∣∣)

≥ 1
nf

 n∑
k=1

|xk/yk−`|≥ε

∣∣∣xk

yk
− `
∣∣∣


≥ 1
nf
(∣∣∣{k ≤ n :

∣∣∣xk

yk
− `
∣∣∣ ≥ ε}∣∣∣ .ε)

≥ c
nf
(∣∣∣{k ≤ n :

∣∣∣xk

yk
− `
∣∣∣ ≥ ε}∣∣∣) .f (ε)

= 1
f(n)f

(∣∣∣{k ≤ n :
∣∣∣xk

yk
− `
∣∣∣ ≥ ε}∣∣∣) . f(n)n .c.f (ε)
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from where it follows that x
Sf
`∼ y.

Theorem 3.4. If x
S

(f)
`∼ y, then x

S`∼ y.

Proof. Suppose that x
S

(f)
`∼ y. Then by the definition of the limit and the fact that

f being modulus is subadditive, for every p ∈ N, there exists n0 ∈ N such that for
n ≥ n0 we have

f
(∣∣∣{k ≤ n :

∣∣∣xk

yk
− `
∣∣∣ ≥ ε}∣∣∣) ≤ 1

pf (n)

≤ 1
p .p.f

(
n
p

)
= f

(
n
p

)
and since f is increasing, we have

1

n

∣∣∣∣{k ≤ n :

∣∣∣∣xkyk − `
∣∣∣∣ ≥ ε}∣∣∣∣ ≤ 1

p
.

Hence x
S`∼ y.

Now, we give a corollary as a result of Theorem 3.3 and Theorem 3.4.

Corollary 3.5. Let f be an unbounded modulus function such that limt→∞
f(t)
t >

0 and c be a positive constant such that f(xy) ≥ cf(x)f(y) for all x ≥ 0, y ≥ 0. If

x
w`(f)∼ y, then x

S`∼ y.

Theorem 3.6. If x ∈ l∞ (the space of all bounded real-valued sequences) and

x
S

(f)
`∼ y, then x

w`(f)∼ y for any unbounded modulus f .

Proof. Suppose that x = (xk) ∈ l∞ and x
S

(f)
`∼ y. Then we can assume that there

exists a M > 0 such that ∣∣∣∣xkyk − `
∣∣∣∣ ≤M

for all k. Given ε > 0

1
n

n∑
k=1

f
(∣∣∣xk

yk
− `
∣∣∣) = 1

n

n∑
k=1∣∣∣∣ xk

yk
−`

∣∣∣∣≥ε

f
(∣∣∣xk

yk
− `
∣∣∣)+ 1

n

n∑
k=1∣∣∣∣ xk

yk
−`

∣∣∣∣<ε

f
(∣∣∣xk

yk
− `
∣∣∣)

≤ 1
n

∣∣∣{k ≤ n :
∣∣∣xk

yk
− `
∣∣∣ ≥ ε}∣∣∣ .f (M) + 1

n .n.f(ε).

Taking limit on both sides as n→∞, we get

lim
n→∞

1

n

n∑
k=1

f

(∣∣∣∣xkyk − `
∣∣∣∣) =0

in view of Theorem 3.4 and the fact that f is increasing.
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Theorem 3.7. Let f be a modulus function such that limt→∞
f(t)
t > 0. If x

w`(f)∼ y,

then x
w`

∼ y.

Proof. Following the proof of Proposition 1 of Maddox [7], we have

β = lim
t→∞

f (t)

t
= inf

{
f (t)

t
: t > 0

}
.

By the definition of β, we have f(t)
t ≥ β for all t ≥ 0. Since β > 0, we have

t
f(t) ≤ β

−1. Hence

1
n

n∑
k=1

∣∣∣xk

yk
− `
∣∣∣ = 1

n

n∑
k=1

∣∣∣xk

yk
− `
∣∣∣ 1

f
(∣∣∣ xk

yk
−`

∣∣∣)f
(∣∣∣xk

yk
− `
∣∣∣)

≤ β−1 1
n

n∑
k=1

f
(∣∣∣xk

yk
− `
∣∣∣)

from where it follows that x
w`

∼ y.

Theorem 3.8. For any modulus f , if x
w`

∼ y, then x
w`(f)∼ y.

Proof. The proof can be done in a similar manner as in (Theorem 3.4, [2]).

The following corollary is a result of Theorem 3.7 and Theorem 3.8.

Corollary 3.9. Let f be any modulus such that limt→∞
f(t)
t > 0. Then x

w`(f)∼ y

⇔ x
w`

∼ y.

3.1. Sf
` -Equivalence of sequences. Let x = (xn) and y = (yn) be sequences of

nonnegative real numbers. We use the notation ”x ≺ y” if xn ≤ yn holds for all
n ∈ N. In this part, we present some nice results for nonnegative real numbers
with respect to the partial order on the set of real numbers. So it will be assumed
that the sequences given in this part are nonnegative real numbers unless otherwise
stated.

Theorem 3.10. Let f be an unbounded modulus. If z ≺ x and x − z
Sf

`′∼ y then

x
Sf
`∼ y implies z

Sf

(`−`′)∼ y.

Proof. Suppose that x − z
S`′

f

∼ y. We need z ≺ x to guarantee the sequence
x− z = xk − zk to be a sequence of nonnegative real numbers. Then∣∣∣∣zkyk − (`− `′)

∣∣∣∣ ≤ ∣∣∣∣xkyk − `
∣∣∣∣+

∣∣∣∣xk − zkyk
− `′

∣∣∣∣ (1)

holds for all k ∈ N. Then for a given ε > 0 the following inequality∣∣∣∣{k ≤ n :

∣∣∣∣zkyk − (`− `′)
∣∣∣∣ ≥ ε}∣∣∣∣ ≤ ∣∣∣∣{k ≤ n :

∣∣∣∣xkyk − `
∣∣∣∣ ≥ ε

2

}∣∣∣∣+∣∣∣∣{k ≤ n :

∣∣∣∣xk − zkyk
− `′

∣∣∣∣ ≥ ε

2

}∣∣∣∣
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is satisfied. Since f is an unbounded increasing modulus, then we obtain the
following

f
(∣∣∣{k ≤ n :

∣∣∣ zkyk
− (`− `′)

∣∣∣ ≥ ε}∣∣∣)
f (n)

≤
f
(∣∣∣{k ≤ n :

∣∣∣xk

yk
− `
∣∣∣ ≥ ε

2

}∣∣∣)
f (n)

+
f
(∣∣∣{k ≤ n :

∣∣∣xk−zk
yk
− `′

∣∣∣ ≥ ε
2

}∣∣∣)
f (n)

.

Hence, the desired result is obtained while taking the limit for n→∞.

Corollary 3.11. Let f be an unbounded modulus. If y ≺ z and x
Sf

`′∼ z − y then

x
Sf
`∼ y implies x

Sf

1/`′′∼ z where `′′ := 1/`+ 1/`′.

4. CONCLUDING REMARKS

In this work, we have obtained a generalization of statistical convergence of
asymptotically equivalent sequences, a new non-matrix convergence method, which
is intermediate between the ordinary convergence and the statistical convergence
with respect to modulus functions. Theorem 3.10 and Corollary 3.11 remain true
if ”z ≺ x” in Theorem 3.10 and ”y ≺ z” in Corollary 3.11 when both of them are
satisfied for all n ∈ N except a set which has zero f -density.
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