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Abstract. The §"-relation was introduced by Leoreanu-Fotea et. al. [13]. In this
article, we introduce the concept of §"-heart of a hypergroup and we determine
necessary and sufficient conditions for the relation §™ to be transitive. Moreover,
we determine a family P,(H) of subsets of a hypergroup H and we give sufficient
conditions such that the geometric space (H, P;(H)) is strongly transitive and the
relation 0" is transitive.
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Abstrak. Konsep relasi-6" telah diperkenalkan oleh Leoreanu-Fotea et. al. [13].
Dalam artikel ini, diperkenalkan konsep ¢"-heart dari suatu hipergrup dan diten-
tukan syarat perlu dan cukup bagi relasi-d" yang transitif. Lebih jauh, ditentukan
juga suatu famili subset P, (H) dari suatu hipergrup H dan diberikan syarat cukup
bagi geometric space (H, P-(H)) yang transitif kuat dan relasi-6" yang transitif.

Kata kunci: Geometric spaces, Hipergrup, relasi reguler kuat

1. INTRODUCTION

The concept of a hyperstructure first was introduced by Marty in [14], and
then it studied by many authors, for example see [3, 5, 6, 15, 16]. The notion
of fundamental relation on hypergroups was introduced by Koskas [11], and then
studied by Corsini [2], Freni [7, 9] and Gutan [10], Vougiouklis [18, 19], Davvaz et.
al. [6] and Leoreanu-Fotea et. al. [13]. In [9], Freni firstly proved that the relation
[ is transitive in every hypergroup. The relation v and v* were firstly introduced
and analyzed by Freni [7]. He proved that the relation v on hypergroup is transitive
and v = ~v*. Also, Freni [8] determined a family P,(H) of subsets of a hypergroup
H such that the geometric space (H, P,(H)) is strongly transitive. Anavariyeh and
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Davvaz [1] used the notion of strongly transitive geometric space on hypermodules.
Mirvakili and Davvaz [17] used the notion of strongly transitive geometric space on
arbitrary hyperring and obtained new result in this respect.

Let us recall now some basic notions and results of hypergroup theory. A
hyperstructure is a set H together with a function - : H x H — p*(H) called
hyperoperation, where ©*(H) denotes the set of all non-empty subsets of H. If
A,B C H, x € H then we define

A-B= U a-b,r-B={z} B, A-x=A-{z}.
acA, beB

The structure (H, -) is called a semihypergroup if a-(b-¢) = (a-b)-cfor all a,b,c € H,
and is called a hypergroup if it is a semihypergroup and a- H = H - a = H for all
a € H. A non-empty subset K of a hypergroup H is called left invertible if for all
(a,b) € H?, the implication y € K ox = 2 € K oy holds. K is invertible if K is
left and right invertible. Suppose that (H,-) and (H’,0) are two semihypergroup.
A function f : H — H' is called a homomorphism if f(a-b) C f(a) o f(b) for
all @ and b in H. We say that f is a good homomorphism if for all ¢ and b in
H, f(a-b) = f(a) o f(b). A non-empty subset K of a hypergroup (H,-) is called
a subhypergroup if it is a hypergroup, that is for all k € K, K -k =k- K = K.
A non-empty subset of a hypergroup (H,-) is called a complete part of H if the
following implication holds:

i=1 i=1

If (H,-) is a hypergroup and R C H x H is an equivalence relation, we set
ARB = aRb, Yae A, ¥be B,

for all pairs (A, B) of non-empty subsets of H. The relation R is called strongly
regular on the left (on the right) if ¢t Ry = a- ztRa- y(x Ry=1x-a Ry-a,
respectively), for all (z,y,a) € H3. Moreover, R is called strongly regular if it is
strongly regular on the right and on the left. Strongly regular equivalence play in
semi-hypergroup theory a role analogous to congruences in semigroup theory. If R
is a strongly regular equivalence on a hypergroup H, then we can define a binary
operation ® on the quotient set H/R such that (H/R,®) is a group.

Definition 1.1. (See [13]) For any natural number n, we define the relation 6™ on
the hypergroup (H,-), as follows: 6™ = Uy, >107,, where for every integer m > 1, 67,
is the relation defined as follows:

xopy < Iz, ,xm) € H™, ITES,,,
n . n n )
:L'GHl’i, yénxzf(;’; or yGHrT(i), IEHIZ
i=1 i=1 i=1 i=1
where Vi € {1,2,--- ,m},j; € {1,n+ 1} and xZ’ =@ X Ty, (Ji times).

Denote by 6™ the transitive closure of 6. The relation 8™ is a strongly
reqular relation. The relation 0™ is the smallest equivalence relation on hypergroup
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H, such that the quotient H/6™ is an abelian group. Moreover, for all x € H,
[67* (z)]" Tt = §"*(x) hold, which means that [6™*(z)]" = e, the identity of the
abelian group H/6™*.

Moreover, we recall the following relation on H, which is included in )}, :

n n n n
xpmy < Iz, yxym) € H™ : xEHxi, yeHggf or ?JEH%‘, er:Ugi
i=1 i=1 i=1 i=1

where Vi € {1,2,--- ,m},ji e {l,n+1} and ¥ = z; -y - -~ - x;, (ji times).

Set p" = U,nen- P and let p™* be the transitive closure of p™. The relation
P is the smallest equivalence relation on hypergroup H, such that the quotient
H/p™ is a group and [p"*(z)]™ = e which is the identity of the group H/p™*.

T *

Example 1.2. (See [13]) Let n = 2 and H = S3 x S3, where Sz be the permutation
group of order 3, i.e.,

Sz = {(1), (12), (13), (23), (123), (132) }.
Then H/5n* = ZQ X ZQ.

2. TRANSITIVITY CONDITIONS OF §"

Definition 2.1. Let M be a non-empty subset of H. Then, we say that M is a
d"-part of H if for every m € N, (21, -+ ,2Zm) € H™ and for every o € S,, and
jie{l,n+1}, if (H:n:l z UITL, x{) N\ M # 0 implies that

(F) TIy e N M # 0= [I0, 20 € M,

(F2) TI% 2 n M #0= T, 200) € M.

Proposition 2.2. Let M be a non-empty subset of a hypergroup H. Then, the
following conditions are equivalent:

(1) M is a 6™-part of H.
(2) x € M,zé"y =y e M.
(3) zeM,zd™y=yec M.

Proof. (1= 2) If (z,y) € H? is a pair such that z € M and xd"y, then there exist

m € N*, (z1, 22, - : ,Zm) € Hand o € Sy, such that (i) z € [[%, @i, y € [, a:f;’(i))
or (i) z € [T%, =V, y e [T~ To (i), where j; € {1,n 4 1}. Since M is a ¢"-part of

H,if z € [[", z; (| M, then we get [[;-, xi"(i; C M by Definition 2.1(F;). Thus

ye M. If x e [T, «I' M, then we have []\", x,(;) € M by Definition 2.1(F5).
Thus y € M.

(2 = 3) Let (z,y) € H such that x € M and z6™*y. Obviously, there exist k €
Nand (wg = z,wy, - ,wg—1, W =y) € HP* such that © = wod"w10" - - - ™ wp_1, Wi
y. Since x € M, applying (2) k-times, we obtain y € M.

(3= 1) Let (TT7%, 2 UTTi%, 27) M # Oand w € (172, 2 UL, 27) N M.

If € [[;*, ; then for every 0 € S,, and for every y € [[i-, xi"(i)) where
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ji € {1,n + 1}, we have x0"y, thus z € M and x0"*y. We obtain y € M by
(3), whence []i~, xi‘z(jf C M. Ifz e[, ) then for every o € S, and for every
Yy € H:»ilxg(i) where j; € {1,n + 1}, we have z0"y, thus x € M and z6™*y. So
y € M by (3), whence [[;", x5y C M. O

Definition 2.3. The intersection of all 6™-parts which contain M is called §"-
closure of M in H and it will be denoted by K(M).
Before proving the next theorem, we introduce the following notations:
For every element x of a hypergroup H, set:
Tin(z) =U {H?il To(i)| 0 € Sy, ji = {1,n+ 1}z € [T, -’ri},
Pon(e) = U{TIE, #2510 € S = {1+ 1,0 € TT2, )
Py(z) = Ule (T (2) U P ().
For the preceding notations and definitions, it follows at once the following;:

Lemma 2.4. For everyx € H, P,(z) ={y€ H | z §" y}.

Proof. For every pair (z,y) of elements of H we have:

n n
"y < Iz1, - ,xm) € H™, Jo €S, € Hmi, y € Hxi?i))
i=1 i=1

ory €[, gy, x € [[, 2] & Im e N* 1y € Py(a)

ory € Ty(z) &y € P,(x).
O

Lemma 2.5. Let (H,o) be a hypergroup and let M be a 6"*-part of H. If x € M,
then P,(x) C M.

Proof. If y € P,(x), then xé™y. Thus there exists m > 1 such that 07y, whence
there exists (21,22, , &) € H™ and o € S,,, such that (i) z € [[[~, 2, y €
I, mff"(i)) or (ii) = € [[, ), y € [II", 2oy, where j; € {1,n+ 1}. If (1) holds,
since z € [[%, ;1M and M is a 6"*-part, it follows that y € [/, xff"(i)) CM
by Definition 2.1(Fy), and thus y € M. If (ii) holds, since z € []\"; sz (M and
M is a 0"*-part, it follows that y € [[;", ;) € M by Definition 2.1(F3), and so
y € M. Therefore, in any case we have P,(x) C M. (|

Theorem 2.6. Let H be a hypergroup. The following conditions are equivalent:

(1) 6™ is transitive;
(2) for every x € H, §"*(x) = P,(z);
(3) for every x € H, Py(x) is a 0™-part of H.
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Proof. (1 = 2) By Lemma 2.5, for every pair (z,y) of elements of H we have:
y € (z) & xd"y o 1"y &y € Py (x).

(2 = 3) By Proposition 2.2, if M is a non-empty subset of H, then M is a §"-
part of H if and only if it is union of equivalence classes modulo 6™*. Particularly,
every equivalence class modulo 6™* is a §"-part of H.

(3 = 1) Let 6™y and y6"z. Thus, z € P,(y) and y € P,(z) by Lemma
2.4. Since P,(z) is a 6™*-part, by Lemma 2.5, we have P,(y) C P,(z) and hence
x € P,(z). Therefore, 6™y by Lemma 2.4 and the proof is complete. O

Definition 2.7. Let (H,o) be a hypergroup and ¢ : H — H/™ be the canonical
projection. We denote by e = [6™*(z)]™ for all x € H the identity of the group
H/&™. The set ¢~'(e) is called the 6"-heart of H and it is denoted by Dgn.

Theorem 2.8. Dgn is the smallest subhypergroup of H, which is also a 6™-part of
H.

Proposition 2.9. For every non-empty subset M of a hypergroup H, we have:

(1) ¢~ (p(M)) = D(H)M = MD(H);
(2) M is a 8™-part if and only if o~ (p(M)) = M.

Proof. 1) For every x € D(H)M, there exists a pair (a,b) € D(H) x M such that
x € ab. Then p(x) = ¢(a) ® p(b) = e @ p(b) = ¢(b). Therefore z € p~1(p(b)) C
¢~ Hp(M)).

Conversely, for every x € p~1(p(M)), there exists an element a € M such
that p(z) = ¢(a). By the reproducibility, b € H exists such that z € ba, so
o(a) = ¢(x) = ¢(b) ® p(a), hence p(b) = e and a € ¢~ '(e) = D(H). Therefore
x € ba C D(H)M. This proves that =1 (p(M)) = D(H)M.

In the same way, we can prove that o~ 1(p(M)) = MD(H).

For the proof of the sufficiency suppose that mé™*x and m € M. Thus
o(z) = p(m) € (M) and so z € ¢~ (¢p(M)) = M. Therefore by Proposition 2.2
it follows that M is a d™-part of H. O

Definition 2.10. Let z be some element of H. A hypergroup H is called §™*-strong
whenever

(i) For all z,y € H if 6™y, then zzNyz # 0 and zx N zy # 0 and
(ii) {z} is invertible.

Theorem 2.11. If H is a §"™*-strong hypergroup for some element z € H, then o™
18 transitive.

Proof. By Theorem 2.6, it is enough to show that for all x € H, P(z) is a §™*-part
of H. According to Proposition 2.9, we have to check that =1 (p(P(z))) = P(x).
Let t € o~ Y(p(P(z))), thus there exists h € P(z) such that (t) = ¢(h) and hence
d™*(t) = 6™*(h). Since h € P(z), hé"x by Lemma 2.4. Thus §™*(x) = §™*(h) and
so §™*(t) = 6™*(x). Since H is a 0™*-strong hypergroup, we have zz Ntz # () and
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hence there exists s € xz Ntz. Therefore © € tzz and ¢t € xzz, because {z} is
invertible and so t € tzzzz. Since
(tzz,t gz -2 zz---z) € "
o
Jo times j3 times
where j; = 1,50 = n+ 1 and j3 = n + 1, we have 2§"t and hence ¢t € P(z). So

we have ¢~ (p(P(x))) C P(x); it is obvious that P(z) C ¢~ !(¢(P(z))). Therefore
0 1 (p(P(x))) = P(x) and the proof is complete. O

3. STRONGLY TRANSITIVE GEOMETRIC SPACES ASSOCIATED TO HYPERGROUPS

According to [8], a geometric space is a pair (S, B) such that S is a non-empty
set, whose elements we call points, and B is a non-empty family of subsets of S,
whose elements we call blocks. B is a covering of S if for every point y € S, there
exists a block B € B such that y € B. If C is a subset of S, we say that C is a
B-part or B-subset of S if for every B € B,

BNnC#0=BCC.

If By, By,--- , B, are n blocks of geometric space (S, B) such that B; N B;11 # 0,
for any 7 € {1,2,--- ,n — 1}, then the n-tuple By, Ba, -+, B, is called a polygonal
of (S, B). The concept of polygonal allows us to define on S the following relation.

T /&Yy < x=yor a polygonal (By, Bs, -, By,) exists such that z € By and y € B,,.

The relation = is an equivalence and it is easy to see that it coincides with the
transitive closure of the following relation:

x &y < x =y or there exists B € B such that {z,y} € B,
so & is equal to |J,,~; ~", where ~"=~ 0 ~ 0---0 ~ n times.

Theorem 3.1. [8] For every pair (A, B) of blocks of a geometric space (S, B) and
for any integer n € N, the following conditions are equivalent:

(1) ANB#0,x € B=3CcB: (Au{z}) CC.

(2) AnNB#0,zeT(B)=3CeB:(AU{z}) CC.

(3) ANT(B) # 0,z €(B)=3C e B: (AU{z}) CC.

Theorem 3.2. If (S, B) is a strongly transitive geometric space, then the relation
~ on S is transitive. Hence ~=n~.

Let H be a hypergroup and let Ps(H) be the family of subsets of H defined
as follows: for every integer m > 1 and for every m-tuple (21,22, - ,2m) € H™,
we set

(1) Bs(z1) = {z1, 207"} .
(2) Bs(z1, 20, s 2m) = U{n;';lziggy | 7€ S, ji € {L,n+ 1}} ifm > 2.
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where S, is the symmetric group of all permutations of the set {1,2,--- ,m}.

Also, we can consider another geometric space (H,P,(H)) that defined as
follows: for every integer m > 1 and for every m-tuple (21,22, ,2,) € H™, we
set

(1) By(z1) = {21,271}
(2) By(er 20+, 2m) = U{TTI, 27
Note that if 21 = 29 = -+ = 2z,,, = z then
Bs(z1, 22, ,2m) = Bp(z1, 22, , 2m) = U {Zj1+j2+“'+jm | j: €{l,n+ 1}} = B;,

Corollary 3.3. If for all x € H,z"*! =z then

B5(217227"' ,Zm) = U {HZT(Z) | TE Sm}
=1

Corollary 3.4. If (H,o) is a commutative hypergroup then two geometric spaces
(H,P,(H)) and (H,Ps(H)) are equal.

jz‘G{l,n—l—l}},ifmZZ

Lemma 3.5. Let (H,o) be a hypergroup. Then

(1) Bp(217227 tee ,Zm) g B5(217 22y ;Z’rn)'
(2) B(S(Zl; 22, 7Zm) = U {BP(ZT(I)v Zr(2)s" " ?ZT(m)) | T E Sm} .
Proof. Tt is straightforward. O
Lemma 3.6. If (21,29, ,2zm) is a m-tuple of elements of a hypergroup (H,o),
Then:
(1) For every o € Sy, we have
B5(213 22, azm) = BJ(ZU'(l)v Ro(2)s" " aza(m))'
(2) For every z € H, we have
[B&(Zh 29y 7Zm)] oz C Bé('zla 22,00 5 Zmy Z)
Z 0 [B(;(ZlaZQ) T 7zm)] - B5(Z7217Z27 o 7Zm)'
(3) For every (m + k)-tuple of elements of a hypergroup (H,o), we have
B(S(Zla 227 e 7Zm)OB5(I’17 'I27 e 71:](‘,) C B(S(Zl7 227 e Zm71'175172a e 7xk)

Proof. (1) For every permutation o € Sy,, we have

Jr(oG
T € B5 (200, 2oy s Zo(my) € 3T € Sy 1T € I, ZT(;((Z.))))
jrocr 3
Sdre S,z e H:’;l ZTOJ((Z.))
< x € Bs(z1,22, yZm)-
(2) f w € [Bs(z1,22,"** ,2m)] 0z, then an element y € Bs(z1, 22, - , 2m) and

aT €S, exist such that w € yo z and y € H;ll zi}ia) Setting z = z,,4+1 and

Jm+1 = 1, if o is the permutation of S,,,+1 such that:

o(i)=71(), Vie{l,2,---,m};
om+1)=m+1
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Jo (i) _ +1 _Jo(i)
we have w € (Hgl A ) ozmi1 = [[[17 2,75 -
(3) For every y € Bs(z1, 22, ,2m) 0 Bs(x1,x9, -+ ,x)), there exist elements

a € Bs(z1,22, "+ y2m) and b € Bs(z1,22, - ,x) such that y € aob. If a €
Bs(z1,22,+* ,2m), & permutation o € S, exists such that a € HZ 1 i‘z()) where
Ji € {1 n+1} and if b € Bs(x1,x2, - , k), a permutation § € Sy exists such that

bellr 1xff(i’) where j; € {1,n+ 1}. Thus
mo k
Jo (i Jo(i
yeaobc (Hzaé))) ° (H o?i)>>
i=1 i=1

Supposing that 1 = 241,22 = Zmt2, " , Tk = Zm+k, & permutation 7 € Sy, 4k
exists such that

m ) m—+k
ve ()« (T ) - T0 0
i=1

thus

Yy S 35(217 22y )vaszrlv tee ,Zerk) - B5(Zlv 22y 3 Zmy L1, T2, " ;xk)'
Notice that the permutation 7 is defined as follows:

T(’L) =o(i), ifl<i<m;
0(). ifm+1<i<m+k

O
Lemma 3.7. Let (H,o) be a hypergroup. Then
(1) If z, € a- b then
35(2:17223”' ,Zm) g B5(Zl7227"' y Rk—1,A,Qy " -~ 7a7b)b’.” 3b,zk+1"' 7Zm)'
—_———— ——
Jk times  jp times
(2) If zik C a’* - bI* then
35(213227 e ,Zm) g 35(21722, e 7Zk‘—17a7ba Zk-‘rl Tt 7Zm)~
Proof. (1) Let zx € a-band y € Bs(21,22, -, 2m)- Then there exists 7 € S, such

that y € [T, f;? and j; € {1,n + 1}. Setting 7(h) = k, we have

h—1 m m
S _ JT(q) JT(@) %(;) Jr(i)
yeHm =[[ =@ eat o 11 24 CH o(aoby o [ =
=1 i=h-+1 i=h+1
h—1 m .
JT(1) Jr (i)
C Z ) o(aob)o(aob)o---o(aob)o 2y -
=1 h+1

Jr times
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: ! ! ! ! ! !
Setting that 2 = a and 2;, 1 =, 25,10 =, 25,43 = b, 25,43 = Q.+, 25,105 o =
a, Z;n+2jk,71 = b, and a permutation o € S,,11 exists such that

h—1 m+2j;—1
Jo (i) / / / / Jo (i)
ye H 2,05 | © Zoh) © Zo(ht1) © Za(ha2) O © Zo(hy2ji—1) © H Zotiy |
i=1 i=h+2j;
/ ’ / /
thus y € Bs(21,** , 2k—1, 24y Zk+15" " s Zms Zmg1s Fmt2s " s Zmaj,—1)- Moreover,
/ / / /
B(S(Zla T 5 Rk—15 Ry R+l 3 2my Bt 1 B2y 7Zm+2ji71)
_ o / /
- Bé(zla C s Rk—1, R Zm-i,-la Zm+2, T azm+2ji717 Zk+1y" " 7Zm)
:BS(Zla"' 7zk71,a7baa,b7"' ,avbazk+1,"' azm)
:B5(217"' s Rk—1, Ay Gy * + - 7a7b7b7"' 7b72}€+17"' ,Zm).
—_——— ———
Ji times  jj times
Therefore, we have
Bs(21, 22, y2m) C Bs(21,22, 5 2k-1,0,Gy -+, 0, 0,0, b, 21, 2).
—_———— ——

Jr times  ji times
We notice that, if h = m then the permutation o is defined as follows:
U(Z) :7—(7’)? VZE {1a2a 7m}7
om+1)=m+1, c(m+2)=m+2,--- ,0(m+2j; —1) =m+ 25, — 1.
while, if 1 < h < m, then o is such that:
o) =73), f1<i<h
om+1)=m+1,
o(i)=7(i—25). ifh+1<i<m+2j—L
(2) The proof follows the same argument exploited in Lemma 3.1 of [§]. O

Corollary 3.8. If (H,o) is a hypergroup and z € a - b then

b
B[S(Z]_,ZQ,"' 7Zm) g B5(Z]_7227"' azkflaB;‘l‘k7Bjk7Zk:+1"' 7zm)-

Corollary 3.9. Let (21,22, ,2m) be a m-tuple of elements of a hypergroup
(H,o). If an integer k > 1, a k-tuple (z1,72, -, 7)) € H* and an element
k' €{1,2,---,m} exist such that z}5' € Bs(x1,22, - ,x)), then

B5(217Z2a"' 7Zm) - B5(217227"' y Rk =1, L1, T2, s Thky Rk/+1 """ ,Zm).

Lemma 3.10. Let (H,o) be a commutative hypergroup. If there exists an integer

k> 1, a k-tuple (1,22, - ,xx) € H™ and element k' € {1,2,--- ,m} such that
k

2k € [[;_; @i, then

By(z1,22, - ,2m) C Bp(21, 22, , 21,1, 2,y Thy Zh/1 " 5 Zm)-
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Theorem 3 11. If (H,o) is a hypergroup and for every ty, (x1,x9, -+ ) € HY

and ty, € Hz L i we have t* C HZ L 2)F where ji € {1,n+41}, Then the geometric
space (H, Ps(H)) is strongly transitive.

Proof. Let Bs(z1,22, -+ ,2m) and Bs(y1,y2, -+ ,ys) be two block of Ps(H) such
that

B5(21,ZQ,"' azm) mBﬁ(yl,yQW" 7ys) #Q and (/NS Bé(ylay%"' ays)~

Let b € Bs(z1,22, s 2m) N Bs(y1,y2, -+ ,Ys). A pair (a,c) € H of elements of H
exists such that z,, € aoy and y € boc. Since y € Bs(y1,¥2, - ,¥s), by Lemma
3.6 and Lemma 3.7, we have

y€E€boc C[Bs(z1,22,  + ,2m)] oc C Bs(z1,22,* ,Zm, C)
CB5(21;227'” 7Zm—1aaayvlc) ] )
- 35(21,227 e 7Zm—1aa7y{y7y;y7 e 7ygy7c)
where j, € {1,n+ 1}.
Moreover, since b € Bs(y1, Y2, - ,Ys), We obtain
B(S(Zlv 22y 7Zm) C B(;(Zl, 22, 5, Zm—1, ayy)
CB6(217227"’ 7Zm—1;a7b7lc) ) .
- B5(217227 e 7ZTYL—11a7y{y7y%yv e 7Z/L79y70)-
Therefore B5(21a 22y ,Zm)U{y} - Bﬁ(zla 22y 72m717a71/{ya ygya T 79?70)
and the geometric space (H, Ps(H)) is strongly transitive. O

Corollary 3.12. If (H,o) is a hypergroup and for every x € H, "' = x, then the
geometric space (H, Ps(H)) is strongly transitive.

Proof. Since for every x € H,z"+! = z, thus by Corollary 3.3 we have

B(;(zl,z%... ,Zm) :U{HZT(i) |7'€ Sm}
=1

Hence the proof follows the same argument exploited in Theorem 3.4 of [8]. (]

Theorem 3.13. If (H,o) is a commutative hypergroup, Then the geometric space
(H,P,(H)) is strongly transitive.
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