TRANSITIVITY OF THE δ^n -RELATION IN HYPERGROUPS

PEYMAN GHIASVAND AND SAEED MIRVAKILI

Department of Mathematics, Payame Noor University, Tehran, Iran E-mail: mathpnu2015@gmail.com, saeed_mirvakili@pnu.ac.ir

Abstract. The δ^n -relation was introduced by Leoreanu-Fotea et. al. [13]. In this article, we introduce the concept of δ^n -heart of a hypergroup and we determine necessary and sufficient conditions for the relation δ^n to be transitive. Moreover, we determine a family $P_{\sigma}(H)$ of subsets of a hypergroup H and we give sufficient conditions such that the geometric space $(H, P_{\sigma}(H))$ is strongly transitive and the relation δ^n is transitive.

Key words and Phrases: Geometric spaces, Hypergroup, strongly regular relation.

Abstrak. Konsep relasi- δ^n telah diperkenalkan oleh Leoreanu-Fotea et. al. [13]. Dalam artikel ini, diperkenalkan konsep δ^n -heart dari suatu hipergrup dan ditentukan syarat perlu dan cukup bagi relasi- δ^n yang transitif. Lebih jauh, ditentukan juga suatu famili subset $P_{\sigma}(H)$ dari suatu hipergrup H dan diberikan syarat cukup bagi $geometric\ space\ (H, P_{\sigma}(H))$ yang transitif kuat dan relasi- δ^n yang transitif.

Kata kunci: Geometric spaces, Hipergrup, relasi reguler kuat

1. Introduction

The concept of a hyperstructure first was introduced by Marty in [14], and then it studied by many authors, for example see [3, 5, 6, 15, 16]. The notion of fundamental relation on hypergroups was introduced by Koskas [11], and then studied by Corsini [2], Freni [7, 9] and Gutan [10], Vougiouklis [18, 19], Davvaz et. al. [6] and Leoreanu-Fotea et. al. [13]. In [9], Freni firstly proved that the relation β is transitive in every hypergroup. The relation γ and γ^* were firstly introduced and analyzed by Freni [7]. He proved that the relation γ on hypergroup is transitive and $\gamma = \gamma^*$. Also, Freni [8] determined a family $P_{\sigma}(H)$ of subsets of a hypergroup H such that the geometric space $(H, P_{\sigma}(H))$ is strongly transitive. Anavariyeh and

2000 Mathematics Subject Classification: 20N20, 16Y99.Received: 13-06-2017, revised: 14-04-2018 accepted: 17-04-2018.

Davvaz [1] used the notion of strongly transitive geometric space on hypermodules. Mirvakili and Davvaz [17] used the notion of strongly transitive geometric space on arbitrary hyperring and obtained new result in this respect.

Let us recall now some basic notions and results of hypergroup theory. A hyperstructure is a set H together with a function $\cdot: H \times H \longrightarrow \wp^*(H)$ called hyperoperation, where $\wp^*(H)$ denotes the set of all non-empty subsets of H. If $A, B \subseteq H, x \in H$ then we define

$$A \cdot B = \bigcup_{a \in A, b \in B} a \cdot b, \ x \cdot B = \{x\} \cdot B, \ A \cdot x = A \cdot \{x\}.$$

The structure (H, \cdot) is called a *semihypergroup* if $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in H$, and is called a hypergroup if it is a semihypergroup and $a \cdot H = H \cdot a = H$ for all $a \in H$. A non-empty subset K of a hypergroup H is called *left invertible* if for all $(a,b) \in H^2$, the implication $y \in K \circ x \Rightarrow x \in K \circ y$ holds. K is invertible if K is left and right invertible. Suppose that (H, \cdot) and (H', \circ) are two semihypergroup. A function $f: H \longrightarrow H'$ is called a homomorphism if $f(a \cdot b) \subset f(a) \circ f(b)$ for all a and b in H. We say that f is a good homomorphism if for all a and b in $H, f(a \cdot b) = f(a) \circ f(b)$. A non-empty subset K of a hypergroup (H, \cdot) is called a subhypergroup if it is a hypergroup, that is for all $k \in K$, $K \cdot k = k \cdot K = K$. A non-empty subset of a hypergroup (H,\cdot) is called a *complete part* of H if the following implication holds:

$$A \cap \prod_{i=1}^{n} x_i \neq \emptyset \Rightarrow \prod_{i=1}^{n} x_i \subseteq A.$$

If (H,\cdot) is a hypergroup and $R\subseteq H\times H$ is an equivalence relation, we set

$$A\bar{R}B \Leftrightarrow a R b, \forall a \in A, \forall b \in B,$$

for all pairs (A, B) of non-empty subsets of H. The relation R is called strongly regular on the left (on the right) if $x R y \Rightarrow a \cdot x \bar{R} a \cdot y$ ($x R y \Rightarrow x \cdot a \bar{R} y \cdot a$, respectively), for all $(x, y, a) \in H^3$. Moreover, R is called strongly regular if it is strongly regular on the right and on the left. Strongly regular equivalence play in semi-hypergroup theory a role analogous to congruences in semigroup theory. If Ris a strongly regular equivalence on a hypergroup H, then we can define a binary operation \otimes on the quotient set H/R such that $(H/R, \otimes)$ is a group.

Definition 1.1. (See [13]) For any natural number n, we define the relation δ^n on the hypergroup (H,\cdot) , as follows: $\delta^n = \bigcup_{m\geq 1} \delta^n_m$, where for every integer $m\geq 1$, δ^n_m is the relation defined as follows:

$$x\delta_m^n y \Leftrightarrow \exists (x_1, \cdots, x_m) \in H^m, \quad \exists \tau \in \mathbb{S}_m,$$

$$x \in \prod_{i=1}^n x_i, \ y \in \prod_{i=1}^n x_{\tau(i)}^{j_{\tau(i)}} \quad or \quad y \in \prod_{i=1}^n x_{\tau(i)}, \ x \in \prod_{i=1}^n x_i^{j_i}$$

$$where \ \forall i \in \{1, 2, \cdots, m\}, j_i \in \{1, n+1\} \ and \ x_i^{j_i} = x_i \cdot x_i \cdot \cdots \cdot x_i, \ (j_i \ times).$$

Denote by δ^{n*} the transitive closure of δ^{n} . The relation δ^{n*} is a strongly regular relation. The relation δ^{n*} is the smallest equivalence relation on hypergroup H, such that the quotient H/δ^{n*} is an abelian group. Moreover, for all $x \in H$, $[\delta^{n*}(x)]^{n+1} = \delta^{n*}(x)$ hold, which means that $[\delta^{n*}(x)]^n = e$, the identity of the abelian group H/δ^{n*} .

Moreover, we recall the following relation on H, which is included in δ_m^n :

$$x\rho_m^n y \Leftrightarrow \exists (x_1, \cdots, x_m) \in H^m : \ x \in \prod_{i=1}^n x_i, \ y \in \prod_{i=1}^n x_i^{j_i} \quad or \quad y \in \prod_{i=1}^n x_i, \ x \in \prod_{i=1}^n x_i^{j_i}$$

where $\forall i \in \{1, 2, \dots, m\}, j_i \in \{1, n+1\}$ and $x_i^{j_i} = x_i \cdot x_i \cdot \dots \cdot x_i$, $(j_i \text{ times})$.

Set $\rho^n = \bigcup_{m \in \mathbb{N}^*} \rho_m^n$ and let ρ^{n*} be the transitive closure of ρ^n . The relation ρ^{n*} is the smallest equivalence relation on hypergroup H, such that the quotient H/ρ^{n*} is a group and $[\rho^{n*}(x)]^n = e$ which is the identity of the group H/ρ^{n*} .

Example 1.2. (See [13]) Let n = 2 and $H = \mathbb{S}_3 \times \mathbb{S}_3$, where \mathbb{S}_3 be the permutation group of order 3, i.e.,

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}.$$

Then $H/\delta^{n*} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

2. Transitivity conditions of δ^n

Definition 2.1. Let M be a non-empty subset of H. Then, we say that M is a δ^n -part of H if for every $m \in \mathbb{N}$, $(x_1, \dots, x_m) \in H^m$ and for every $\sigma \in \mathbb{S}_m$ and $j_i \in \{1, n+1\}$, if $\left(\prod_{i=1}^m x_i \bigcup \prod_{i=1}^m x_i^{j_i}\right) \cap M \neq \emptyset$ implies that

- $(F_1) \ \prod_{i=1}^m x_i \cap M \neq \emptyset \Rightarrow \ \prod_{i=1}^m x_{\sigma(i)}^{j_{\sigma(i)}} \subseteq M,$
- (F_2) $\prod_{i=1}^m x_i^{j_i} \cap M \neq \emptyset \Rightarrow \prod_{i=1}^m x_{\sigma(i)} \subseteq M.$

Proposition 2.2. Let M be a non-empty subset of a hypergroup H. Then, the following conditions are equivalent:

- (1) M is a δ^n -part of H.
- (2) $x \in M, x\delta^n y \Rightarrow y \in M$.
- $(3) \ x \in M, x\delta^{n*}y \Rightarrow y \in M.$

Proof. $(1 \Rightarrow 2)$ If $(x, y) \in H^2$ is a pair such that $x \in M$ and $x\delta^n y$, then there exist $m \in \mathbb{N}^*, (z_1, z_2, \cdots, z_m) \in H$ and $\sigma \in S_m$ such that (i) $x \in \prod_{i=1}^m x_i, \ y \in \prod_{i=1}^m x_{\sigma(i)}^{j_{\sigma(i)}}$ or (ii) $x \in \prod_{i=1}^m x_i^{j_i}, \ y \in \prod_{i=1}^m x_{\sigma(i)}$, where $j_i \in \{1, n+1\}$. Since M is a δ^n -part of H, if $x \in \prod_{i=1}^m x_i \cap M$, then we get $\prod_{i=1}^m x_{\sigma(i)}^{j_{\sigma(i)}} \subseteq M$ by Definition 2.1(F_1). Thus $y \in M$. If $x \in \prod_{i=1}^m x_i^{j_i} \cap M$, then we have $\prod_{i=1}^m x_{\sigma(i)} \subseteq M$ by Definition 2.1(F_2). Thus $y \in M$.

 $(2\Rightarrow 3)$ Let $(x,y)\in H$ such that $x\in M$ and $x\delta^{n*}y$. Obviously, there exist $k\in \mathbb{N}$ and $(w_0=x,w_1,\cdots,w_{k-1},w_k=y)\in H^k$ such that $x=w_0\delta^nw_1\delta^n\cdots\delta^nw_{k-1},w_k=y$. Since $x\in M$, applying (2) k-times, we obtain $y\in M$.

 $(3\Rightarrow 1) \text{ Let } (\prod_{i=1}^m x_i \bigcup \prod_{i=1}^m x_i^{j_i}) \cap M \neq \emptyset \text{ and } x \in (\prod_{i=1}^m x_i \bigcup \prod_{i=1}^m x_i^{j_i}) \cap M.$ If $x \in \prod_{i=1}^m x_i$ then for every $\sigma \in S_m$ and for every $y \in \prod_{i=1}^m x_{\sigma(i)}^{j_{\sigma(i)}}$ where

 $j_i \in \{1, n+1\}$, we have $x\delta^n y$, thus $x \in M$ and $x\delta^{n*}y$. We obtain $y \in M$ by (3), whence $\prod_{i=1}^m x_{\sigma(i)}^{j_{\sigma(i)}} \subset M$. If $x \in \prod_{i=1}^m x_i^{j_i}$ then for every $\sigma \in S_m$ and for every $y \in \prod_{i=1}^m x_{\sigma(i)}$ where $j_i \in \{1, n+1\}$, we have $x\delta^n y$, thus $x \in M$ and $x\delta^{n*}y$. So $y \in M$ by (3), whence $\prod_{i=1}^m x_{\sigma(i)} \subset M$.

Definition 2.3. The intersection of all δ^n -parts which contain M is called δ^n -closure of M in H and it will be denoted by K(M).

Before proving the next theorem, we introduce the following notations:

For every element x of a hypergroup H, set:

$$T_{m}(x) = \bigcup \left\{ \prod_{i=1}^{m} x_{\sigma(i)} | \sigma \in \mathbb{S}_{m}, j_{i} = \{1, n+1\}, x \in \prod_{i=1}^{m} x_{i}^{j_{i}} \right\};$$

$$P_{m}(x) = \bigcup \left\{ \prod_{i=1}^{m} x_{\sigma(i)}^{j_{\sigma(i)}} | \sigma \in \mathbb{S}_{m}, j_{i} = \{1, n+1\}, x \in \prod_{i=1}^{m} x_{i} \right\};$$

$$P_{\sigma}(x) = \bigcup_{m \geq 1} (T_{m}(x) \cup P_{m}(x)).$$

For the preceding notations and definitions, it follows at once the following:

Lemma 2.4. For every $x \in H$, $P_{\sigma}(x) = \{y \in H \mid x \delta^n y\}$.

Proof. For every pair (x, y) of elements of H we have:

$$x\delta^{n}y \Leftrightarrow \exists (x_{1}, \cdots, x_{m}) \in H^{m}, \quad \exists \sigma \in \mathbb{S}_{m}, x \in \prod_{i=1}^{n} x_{i}, \ y \in \prod_{i=1}^{n} x_{\tau(i)}^{j_{\sigma(i)}}$$
or $y \in \prod_{i=1}^{n} x_{\sigma(i)}, \ x \in \prod_{i=1}^{n} x_{i}^{j_{i}} \Leftrightarrow \exists m \in \mathbb{N}^{*} : y \in P_{m}(x)$
or $y \in T_{m}(x) \Leftrightarrow y \in P_{\sigma}(x)$.

Lemma 2.5. Let (H, \circ) be a hypergroup and let M be a δ^{n*} -part of H. If $x \in M$, then $P_{\sigma}(x) \subseteq M$.

Proof. If $y \in P_{\sigma}(x)$, then $x\delta^n y$. Thus there exists $m \geq 1$ such that $x\delta^n_m y$, whence there exists $(x_1, x_2, \cdots, x_m) \in H^m$ and $\sigma \in S_m$, such that (i) $x \in \prod_{i=1}^m x_i, \ y \in \prod_{i=1}^m x_{\sigma(i)}^{j_{\sigma(i)}}$ or (ii) $x \in \prod_{i=1}^m x_i^{j_i}, \ y \in \prod_{i=1}^m x_{\sigma(i)}$, where $j_i \in \{1, n+1\}$. If (i) holds, since $x \in \prod_{i=1}^m x_i \cap M$ and M is a δ^{n*} -part, it follows that $y \in \prod_{i=1}^m x_i^{j_{\sigma(i)}} \subseteq M$ by Definition $2.1(F_1)$, and thus $y \in M$. If (ii) holds, since $x \in \prod_{i=1}^m x_i^{j_i} \cap M$ and M is a δ^{n*} -part, it follows that $y \in \prod_{i=1}^m x_{\sigma(i)} \subseteq M$ by Definition $2.1(F_2)$, and so $y \in M$. Therefore, in any case we have $P_{\sigma}(x) \subseteq M$.

Theorem 2.6. Let H be a hypergroup. The following conditions are equivalent:

- (1) δ^n is transitive;
- (2) for every $x \in H$, $\delta^{n*}(x) = P_{\sigma}(x)$;
- (3) for every $x \in H$, $P_{\sigma}(x)$ is a δ^n -part of H.

Proof. $(1 \Rightarrow 2)$ By Lemma 2.5, for every pair (x, y) of elements of H we have:

$$y \in \delta^{n*}(x) \Leftrightarrow x\delta^{n*}y \Leftrightarrow x\delta^{n}y \Leftrightarrow y \in P_{\sigma}(x).$$

- $(2 \Rightarrow 3)$ By Proposition 2.2, if M is a non-empty subset of H, then M is a δ^n -part of H if and only if it is union of equivalence classes modulo δ^{n*} . Particularly, every equivalence class modulo δ^{n*} is a δ^n -part of H.
- $(3 \Rightarrow 1)$ Let $x\delta^n y$ and $y\delta^n z$. Thus, $x \in P_{\sigma}(y)$ and $y \in P_{\sigma}(z)$ by Lemma 2.4. Since $P_{\sigma}(z)$ is a δ^{n*} -part, by Lemma 2.5, we have $P_{\sigma}(y) \subseteq P_{\sigma}(z)$ and hence $x \in P_{\sigma}(z)$. Therefore, $x\delta^n y$ by Lemma 2.4 and the proof is complete.

Definition 2.7. Let (H, \circ) be a hypergroup and $\phi : H \longrightarrow H/\delta^n$ be the canonical projection. We denote by $e = [\delta^{n*}(x)]^n$ for all $x \in H$ the identity of the group H/δ^n . The set $\phi^{-1}(e)$ is called the δ^n -heart of H and it is denoted by D_{δ^n} .

Theorem 2.8. D_{δ^n} is the smallest subhypergroup of H, which is also a δ^n -part of H.

Proposition 2.9. For every non-empty subset M of a hypergroup H, we have:

- (1) $\varphi^{-1}(\varphi(M)) = D(H)M = MD(H);$
- (2) M is a δ^n -part if and only if $\varphi^{-1}(\varphi(M)) = M$.

Proof. 1) For every $x \in D(H)M$, there exists a pair $(a,b) \in D(H) \times M$ such that $x \in ab$. Then $\varphi(x) = \varphi(a) \otimes \varphi(b) = e \otimes \varphi(b) = \varphi(b)$. Therefore $x \in \varphi^{-1}(\varphi(b)) \subset \varphi^{-1}(\varphi(M))$.

Conversely, for every $x \in \varphi^{-1}(\varphi(M))$, there exists an element $a \in M$ such that $\varphi(x) = \varphi(a)$. By the reproducibility, $b \in H$ exists such that $x \in ba$, so $\varphi(a) = \varphi(x) = \varphi(b) \otimes \varphi(a)$, hence $\varphi(b) = e$ and $a \in \varphi^{-1}(e) = D(H)$. Therefore $x \in ba \subset D(H)M$. This proves that $\varphi^{-1}(\varphi(M)) = D(H)M$.

In the same way, we can prove that $\varphi^{-1}(\varphi(M)) = MD(H)$.

For the proof of the sufficiency suppose that $m\delta^{n*}x$ and $m \in M$. Thus $\varphi(x) = \varphi(m) \in \varphi(M)$ and so $x \in \varphi^{-1}(\varphi(M)) = M$. Therefore by Proposition 2.2 it follows that M is a δ^n -part of H.

Definition 2.10. Let z be some element of H. A hypergroup H is called δ^{n*} -strong whenever

- (i) For all $x, y \in H$ if $x\delta^{n*}y$, then $xz \cap yz \neq \emptyset$ and $zx \cap zy \neq \emptyset$ and
- (ii) $\{z\}$ is invertible.

Theorem 2.11. If H is a δ^{n*} -strong hypergroup for some element $z \in H$, then δ^n is transitive.

Proof. By Theorem 2.6, it is enough to show that for all $x \in H, P(x)$ is a δ^{n*} -part of H. According to Proposition 2.9, we have to check that $\varphi^{-1}(\varphi(P(x))) = P(x)$. Let $t \in \varphi^{-1}(\varphi(P(x)))$, thus there exists $h \in P(x)$ such that $\varphi(t) = \varphi(h)$ and hence $\delta^{n*}(t) = \delta^{n*}(h)$. Since $h \in P(x)$, $h\delta^n x$ by Lemma 2.4. Thus $\delta^{n*}(x) = \delta^{n*}(h)$ and so $\delta^{n*}(t) = \delta^{n*}(x)$. Since H is a δ^{n*} -strong hypergroup, we have $xz \cap tz \neq \emptyset$ and

hence there exists $s \in xz \cap tz$. Therefore $x \in tzz$ and $t \in xzz$, because $\{z\}$ is invertible and so $t \in tzzzz$. Since

$$(tzz, t \underbrace{zz\cdots z}_{j_2 \text{ times}} \underbrace{zz\cdots z}_{j_3 \text{ times}}) \in \delta^n$$

where $j_1 = 1, j_2 = n + 1$ and $j_3 = n + 1$, we have $x\delta^n t$ and hence $t \in P(x)$. So we have $\varphi^{-1}(\varphi(P(x))) \subseteq P(x)$; it is obvious that $P(x) \subseteq \varphi^{-1}(\varphi(P(x)))$. Therefore $\varphi^{-1}(\varphi(P(x))) = P(x)$ and the proof is complete.

3. Strongly transitive geometric spaces associated to hypergroups

According to [8], a geometric space is a pair (S, \mathcal{B}) such that S is a non-empty set, whose elements we call points, and \mathcal{B} is a non-empty family of subsets of S, whose elements we call blocks. \mathcal{B} is a covering of S if for every point $y \in S$, there exists a block $B \in \mathcal{B}$ such that $y \in B$. If C is a subset of S, we say that C is a \mathcal{B} -part or \mathcal{B} -subset of S if for every S if S is a subset of S if for every S is a subset of S.

$$B \cap C \neq \emptyset \Rightarrow B \subseteq C$$
.

If B_1, B_2, \dots, B_n are n blocks of geometric space (S, \mathcal{B}) such that $B_i \cap B_{i+1} \neq \emptyset$, for any $i \in \{1, 2, \dots, n-1\}$, then the n-tuple B_1, B_2, \dots, B_n is called a polygonal of (S, \mathcal{B}) . The concept of polygonal allows us to define on S the following relation.

$$x \approx y \Leftrightarrow x = y \text{ or a polygonal } (B_1, B_2, \cdots, B_n) \text{ exists such that } x \in B_1 \text{ and } y \in B_n.$$

The relation \approx is an equivalence and it is easy to see that it coincides with the transitive closure of the following relation:

$$x \approx y \Leftrightarrow x = y$$
 or there exists $B \in \mathcal{B}$ such that $\{x, y\} \in B$,

so \approx is equal to $\bigcup_{n>1} \sim^n$, where $\sim^n = \sim \circ \sim \circ \cdots \circ \sim n$ times.

Theorem 3.1. [8] For every pair (A, B) of blocks of a geometric space (S, \mathcal{B}) and for any integer $n \in \mathbb{N}$, the following conditions are equivalent:

- (1) $A \cap B \neq \emptyset, x \in B \Rightarrow \exists C \in \mathcal{B} : (A \cup \{x\}) \subseteq C$.
- (2) $A \cap B \neq \emptyset, x \in \Gamma(B) \Rightarrow \exists C \in \mathcal{B} : (A \cup \{x\}) \subseteq C$.
- (3) $A \cap \Gamma(B) \neq \emptyset, x \in \Gamma(B) \Rightarrow \exists C \in \mathcal{B} : (A \cup \{x\}) \subseteq C.$

Theorem 3.2. If (S, \mathcal{B}) is a strongly transitive geometric space, then the relation \sim on S is transitive. Hence $\approx = \sim$.

Let H be a hypergroup and let $P_{\delta}(H)$ be the family of subsets of H defined as follows: for every integer $m \ge 1$ and for every m-tuple $(z_1, z_2, \dots, z_m) \in H^m$, we set

- (1) $B_{\delta}(z_1) = \{z_1, z_1^{n+1}\}.$
- (2) $B_{\delta}(z_1, z_2, \dots, z_m) = \bigcup \left\{ \prod_{i=1}^m z_{\tau(i)}^{j_{\tau(i)}} \mid \tau \in S_m, j_i \in \{1, n+1\} \right\}, \text{ if } m \geq 2.$

where S_m is the symmetric group of all permutations of the set $\{1, 2, \dots, m\}$.

Also, we can consider another geometric space $(H, P_{\rho}(H))$ that defined as follows: for every integer $m \ge 1$ and for every m-tuple $(z_1, z_2, \dots, z_m) \in H^m$, we set

(1) $B_o(z_1) = \{z_1, z_1^{n+1}\}.$

(2)
$$B_{\rho}(z_1, z_2, \dots, z_m) = \bigcup \left\{ \prod_{i=1}^m z_i^{j_i} \mid j_i \in \{1, n+1\} \right\}, \text{ if } m \ge 2.$$

Note that if $z_1 = z_2 = \cdots = z_m = z$ then

$$B_{\delta}(z_1, z_2, \cdots, z_m) = B_{\rho}(z_1, z_2, \cdots, z_m) = \bigcup \left\{ z^{j_1 + j_2 + \cdots + j_m} \mid j_i \in \{1, n+1\} \right\} = B_m^z$$

Corollary 3.3. If for all $x \in H$, $x^{n+1} = x$ then

$$B_{\delta}(z_1, z_2, \cdots, z_m) = \bigcup \left\{ \prod_{i=1}^m z_{\tau(i)} \mid \tau \in S_m \right\}$$

Corollary 3.4. If (H, \circ) is a commutative hypergroup then two geometric spaces $(H, P_{\rho}(H))$ and $(H, P_{\delta}(H))$ are equal.

Lemma 3.5. Let (H, \circ) be a hypergroup. Then

- $(1) B_{\rho}(z_1, z_2, \cdots, z_m) \subseteq B_{\delta}(z_1, z_2, \cdots, z_m).$
- (2) $B_{\delta}(z_1, z_2, \dots, z_m) = \bigcup \{B_{\rho}(z_{\tau(1)}, z_{\tau(2)}, \dots, z_{\tau(m)}) \mid \tau \in S_m \}.$

Proof. It is straightforward.

Lemma 3.6. If (z_1, z_2, \dots, z_m) is a m-tuple of elements of a hypergroup (H, \circ) , Then:

(1) For every $\sigma \in S_m$ we have

$$B_{\delta}(z_1, z_2, \cdots, z_m) = B_{\delta}(z_{\sigma(1)}, z_{\sigma(2)}, \cdots, z_{\sigma(m)}).$$

(2) For every $z \in H$, we have

$$[B_{\delta}(z_1, z_2, \cdots, z_m)] \circ z \subset B_{\delta}(z_1, z_2, \cdots, z_m, z).$$

$$z \circ [B_{\delta}(z_1, z_2, \cdots, z_m)] \subset B_{\delta}(z, z_1, z_2, \cdots, z_m).$$

(3) For every (m+k)-tuple of elements of a hypergroup (H,\circ) , we have

$$B_{\delta}(z_1, z_2, \cdots, z_m) \circ B_{\delta}(x_1, x_2, \cdots, x_k) \subset B_{\delta}(z_1, z_2, \cdots, z_m, x_1, x_2, \cdots, x_k)$$

Proof. (1) For every permutation $\sigma \in S_m$, we have

$$x \in B_{\delta}(z_{\sigma_{(1)}}, z_{\sigma_{(2)}}, \cdots, z_{\sigma_{(m)}}) \Leftrightarrow \exists \tau \in S_m : x \in \prod_{i=1}^m z_{\tau(\sigma(i))}^{j_{\tau(\sigma(i))}}$$
$$\Leftrightarrow \exists \tau \in S_m : x \in \prod_{i=1}^m z_{\tau\circ\sigma(i)}^{j_{\tau\circ\sigma(i)}}$$
$$\Leftrightarrow x \in B_{\delta}(z_1, z_2, \cdots, z_m).$$

(2) If $w \in [B_{\delta}(z_1, z_2, \cdots, z_m)] \circ z$, then an element $y \in B_{\delta}(z_1, z_2, \cdots, z_m)$ and a $\tau \in S_m$ exist such that $w \in y \circ z$ and $y \in \prod_{i=1}^m z_{\tau(i)}^{j_{\tau(i)}}$. Setting $z = z_{m+1}$ and $j_{m+1} = 1$, if σ is the permutation of S_{m+1} such that:

$$\begin{cases} \sigma(i) = \tau(i), & \forall i \in \{1, 2, \cdots, m\}; \\ \sigma(m+1) = m+1 \end{cases}$$

we have
$$w \in \left(\prod_{i=1}^{m} z_{\sigma(i)}^{j_{\sigma(i)}}\right) \circ z_{m+1} = \prod_{i=1}^{m+1} z_{\sigma(i)}^{j_{\sigma(i)}}$$
.

(3) For every $y \in B_{\delta}(z_1, z_2, \dots, z_m) \circ B_{\delta}(x_1, x_2, \dots, x_k)$, there exist elements $a \in B_{\delta}(z_1, z_2, \dots, z_m)$ and $b \in B_{\delta}(x_1, x_2, \dots, x_k)$ such that $y \in a \circ b$. If $a \in B_{\delta}(z_1, z_2, \dots, z_m)$, a permutation $\sigma \in S_m$ exists such that $a \in \prod_{i=1}^m z_{\sigma(i)}^{j_{\sigma(i)}}$ where $j_i \in \{1, n+1\}$ and if $b \in B_{\delta}(x_1, x_2, \dots, x_k)$, a permutation $\theta \in S_k$ exists such that $b \in \prod_{i=1}^k x_{\theta(i)}^{j_{\theta(i)}}$ where $j_i \in \{1, n+1\}$. Thus

$$y \in a \circ b \subset \left(\prod_{i=1}^m z_{\sigma(i)}^{j_{\sigma(i)}}\right) \circ \left(\prod_{i=1}^k x_{\theta(i)}^{j_{\theta(i)}}\right).$$

Supposing that $x_1 = z_{m+1}, x_2 = z_{m+2}, \dots, x_k = z_{m+k}$, a permutation $\tau \in S_{m+k}$ exists such that

$$y \in \left(\prod_{i=1}^m z_{\sigma(i)}^{j_{\sigma(i)}}\right) \circ \left(\prod_{i=1}^k x_{\theta(i)}^{j_{\theta(i)}}\right) = \prod_{i=1}^{m+k} z_{\tau(i)}^{j_{\tau(i)}},$$

thus

 $y \in B_{\delta}(z_1, z_2, \dots, z_m, z_{m+1}, \dots, z_{m+k}) = B_{\delta}(z_1, z_2, \dots, z_m, x_1, x_2, \dots, x_k).$ Notice that the permutation τ is defined as follows:

$$\begin{cases} \tau(i) = \sigma(i), & \text{if } 1 \le i \le m; \\ \tau(i) = \theta(i). & \text{if } m+1 \le i \le m+k \end{cases}$$

Lemma 3.7. Let (H, \circ) be a hypergroup. Then

(1) If $z_k \in a \cdot b$ then

$$B_{\delta}(z_1, z_2, \dots, z_m) \subseteq B_{\delta}(z_1, z_2, \dots, z_{k-1}, \underbrace{a, a, \dots, a}_{j_k \ times}, \underbrace{b, b, \dots, b}_{j_k \ times}, z_{k+1}, \dots, z_m).$$

(2) If $z_h^{j_k} \subset a^{j_k} \cdot b^{j_k}$ then

$$B_{\delta}(z_1, z_2, \cdots, z_m) \subseteq B_{\delta}(z_1, z_2, \cdots, z_{k-1}, a, b, z_{k+1}, \cdots, z_m).$$

Proof. (1) Let $z_k \in a \cdot b$ and $y \in B_{\delta}(z_1, z_2, \dots, z_m)$. Then there exists $\tau \in S_m$ such that $y \in \prod_{i=1}^m z_{\tau(i)}^{j_{\tau(i)}}$ and $j_i \in \{1, n+1\}$. Setting $\tau(h) = k$, we have

$$y \in \prod_{i=1}^{m} z_{\tau(i)}^{j_{\tau(i)}} = \prod_{i=1}^{h-1} z_{\tau(i)}^{j_{\tau(i)}} \circ z_{k}^{j_{k}} \circ \prod_{i=h+1}^{m} z_{\tau(i)}^{j_{\tau(i)}} \subset \prod_{i=1}^{h-1} z_{\tau(i)}^{j_{\tau(i)}} \circ (a \circ b)^{j_{k}} \circ \prod_{i=h+1}^{m} z_{\tau(i)}^{j_{\tau(i)}}$$

$$\subset \prod_{i=1}^{h-1} z_{\tau(i)}^{j_{\tau(i)}} \circ \underbrace{(a \circ b) \circ (a \circ b) \circ \cdots \circ (a \circ b)}_{j_k \text{ times}} \circ \prod_{h+1}^m z_{\tau(i)}^{j_{\tau(i)}}.$$

Setting that $z_k'=a$ and $z_{m+1}'=b, z_{m+2}'=a, z_{m+3}'=b, z_{m+3}'=a, \cdots, z_{m+2j_k-2}'=a, z_{m+2j_k-1}'=b$, and a permutation $\sigma \in S_{m+1}$ exists such that

$$y \in \left(\prod_{i=1}^{h-1} z_{\sigma(i)}^{j_{\sigma(i)}}\right) \circ z_{\sigma(h)}' \circ z_{\sigma(h+1)}' \circ z_{\sigma(h+2)}' \circ \cdots \circ z_{\sigma(h+2j_i-1)}' \circ \left(\prod_{i=h+2j_i}^{m+2j_i-1} z_{\sigma(i)}^{j_{\sigma(i)}}\right),$$

thus $y \in B_{\delta}(z_1, \dots, z_{k-1}, z'_k, z_{k+1}, \dots, z_m, z'_{m+1}, z'_{m+2}, \dots, z'_{m+2j_{i-1}})$. Moreover,

$$B_{\delta}(z_{1}, \dots, z_{k-1}, z'_{k}, z_{k+1}, \dots, z_{m}, z'_{m+1}, z'_{m+2}, \dots, z'_{m+2j_{i}-1})$$

$$= B_{\delta}(z_{1}, \dots, z_{k-1}, z'_{k}, z'_{m+1}, z'_{m+2}, \dots, z'_{m+2j_{i}-1}, z_{k+1}, \dots, z_{m})$$

$$= B_{\delta}(z_{1}, \dots, z_{k-1}, a, b, a, b, \dots, a, b, z_{k+1}, \dots, z_{m})$$

$$= B_{\delta}(z_{1}, \dots, z_{k-1}, \underbrace{a, a, \dots, a}_{j_{k} \text{ times}}, \underbrace{b, b, \dots, b}_{j_{k} \text{ times}}, z_{k+1}, \dots, z_{m}).$$

Therefore, we have

$$B_{\delta}(z_1, z_2, \dots, z_m) \subseteq B_{\delta}(z_1, z_2, \dots, z_{k-1}, \underbrace{a, a, \dots, a}_{j_k \text{ times}}, \underbrace{b, b, \dots, b}_{j_k \text{ times}}, z_{k+1}, \dots, z_m).$$

We notice that, if h = m then the permutation σ is defined as follows:

$$\begin{cases} \sigma(i) = \tau(i), & \forall i \in \{1, 2, \dots, m\}; \\ \sigma(m+1) = m+1, & \sigma(m+2) = m+2, \dots, \sigma(m+2j_i-1) = m+2j_i-1. \end{cases}$$

while, if $1 \leq h < m$, then σ is such that:

$$\begin{cases} \sigma(i) = \tau(i), & \text{if } 1 \le i \le h; \\ \sigma(m+1) = m+1; \\ \sigma(i) = \tau(i-2j_i). & \text{if } h+1 \le i \le m+2j_i-1. \end{cases}$$

(2) The proof follows the same argument exploited in Lemma 3.1 of [8]. \Box

Corollary 3.8. If (H, \circ) is a hypergroup and $z_k \in a \cdot b$ then

$$B_{\delta}(z_1, z_2, \cdots, z_m) \subseteq B_{\delta}(z_1, z_2, \cdots, z_{k-1}, B_{i_k}^a, B_{i_k}^b, z_{k+1}, \cdots, z_m).$$

Corollary 3.9. Let (z_1, z_2, \dots, z_m) be a m-tuple of elements of a hypergroup (H, \circ) . If an integer $k \geq 1$, a k-tuple $(x_1, x_2, \dots, x_k) \in H^k$ and an element $k' \in \{1, 2, \dots, m\}$ exist such that $z_{k'}^{j_{k'}} \in B_{\delta}(x_1, x_2, \dots, x_k)$, then

$$B_{\delta}(z_1, z_2, \dots, z_m) \subseteq B_{\delta}(z_1, z_2, \dots, z_{k'-1}, x_1, x_2, \dots, x_k, z_{k'+1}, \dots, z_m).$$

Lemma 3.10. Let (H, \circ) be a commutative hypergroup. If there exists an integer $k \geq 1$, a k-tuple $(x_1, x_2, \dots, x_k) \in H^m$ and element $k' \in \{1, 2, \dots, m\}$ such that $z_{k'} \in \prod_{i=1}^k x_i$, then

$$B_{\rho}(z_1, z_2, \cdots, z_m) \subseteq B_{\rho}(z_1, z_2, \cdots, z_{k'-1}, x_1, x_2, \cdots, x_k, z_{k'+1}, \cdots, z_m).$$

Theorem 3.11. If (H, \circ) is a hypergroup and for every $t_k, (x_1, x_2, \cdots, x_{k'}) \in H^{k'}$ and $t_k \in \prod_{i=1}^{k'} x_i$ we have $t_k^{j_k} \subset \prod_{i=1}^{k'} x_i^{j_k}$ where $j_k \in \{1, n+1\}$, Then the geometric space $(H, P_{\delta}(H))$ is strongly transitive.

Proof. Let $B_{\delta}(z_1, z_2, \dots, z_m)$ and $B_{\delta}(y_1, y_2, \dots, y_s)$ be two block of $P_{\delta}(H)$ such that

$$B_{\delta}(z_1, z_2, \cdots, z_m) \cap B_{\delta}(y_1, y_2, \cdots, y_s) \neq \emptyset$$
 and $y \in B_{\delta}(y_1, y_2, \cdots, y_s)$.

Let $b \in B_{\delta}(z_1, z_2, \dots, z_m) \cap B_{\delta}(y_1, y_2, \dots, y_s)$. A pair $(a, c) \in H$ of elements of H exists such that $z_m \in a \circ y$ and $y \in b \circ c$. Since $y \in B_{\delta}(y_1, y_2, \dots, y_s)$, by Lemma 3.6 and Lemma 3.7, we have

$$y \in b \circ c \subset [B_{\delta}(z_{1}, z_{2}, \cdots, z_{m})] \circ c \subset B_{\delta}(z_{1}, z_{2}, \cdots, z_{m}, c)$$

$$\subset B_{\delta}(z_{1}, z_{2}, \cdots, z_{m-1}, a, y, c)$$

$$\subset B_{\delta}(z_{1}, z_{2}, \cdots, z_{m-1}, a, y_{1}^{j_{y}}, y_{2}^{j_{y}}, \cdots, y_{s}^{j_{y}}, c)$$

where $j_y \in \{1, n+1\}.$

Moreover, since $b \in B_{\delta}(y_1, y_2, \dots, y_s)$, we obtain

$$B_{\delta}(z_{1}, z_{2}, \cdots, z_{m}) \subset B_{\delta}(z_{1}, z_{2}, \cdots, z_{m-1}, a, y)$$

$$\subset B_{\delta}(z_{1}, z_{2}, \cdots, z_{m-1}, a, b, c)$$

$$\subset B_{\delta}(z_{1}, z_{2}, \cdots, z_{m-1}, a, y_{1}^{j_{y}}, y_{2}^{j_{y}}, \cdots, y_{s}^{j_{y}}, c).$$

Therefore $B_{\delta}(z_1, z_2, \cdots, z_m) \cup \{y\} \subset B_{\delta}(z_1, z_2, \cdots, z_{m-1}, a, y_1^{j_y}, y_2^{j_y}, \cdots, y_s^{j_y}, c)$ and the geometric space $(H, P_{\delta}(H))$ is strongly transitive.

Corollary 3.12. If (H, \circ) is a hypergroup and for every $x \in H, x^{n+1} = x$, then the geometric space $(H, P_{\delta}(H))$ is strongly transitive.

Proof. Since for every $x \in H$, $x^{n+1} = x$, thus by Corollary 3.3 we have

$$B_{\delta}(z_1, z_2, \cdots, z_m) = \bigcup \left\{ \prod_{i=1}^m z_{\tau(i)} \mid \tau \in S_m \right\}.$$

Hence the proof follows the same argument exploited in Theorem 3.4 of [8].

Theorem 3.13. If (H, \circ) is a commutative hypergroup, Then the geometric space $(H, P_{\rho}(H))$ is strongly transitive.

REFERENCES

- S. M. Anvariyeh, B. Davvaz, Strongly transitive geometric spaces associated to hypermodules, Journal of Algebra, 322 (2009), 1340-1359.
- [2] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
- [3] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, 2003.
- [4] P. Corsini and V. Leoreanu, About the heart of a hypergroup, Acta Univ. Carolin., 37 (1996) 17-28.

- [5] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
- [6] B. Davvaz, M. Karimian , On the γ^* -complete hypergroups, European J. Combin., 28 (2007) 86-93.
- [7] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra, 30(8) (2002) 3977-3989.
- [8] D. Freni, Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory, Comm. Algebra, 32(8) (2004) 969-988.
- [9] D. Freni, Une note sur le coeur d'un hypergroupe et sur la clôure β^* de β , Riv. Mat. Pura Appl., 49(8) (1970) 307-312.
- [10] M. Gutan, Properties of hyperproducts and the relation β in quasihpergroups, Ratio Mathmatica, 12 (1997) 19-34.
- [11] M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49 (1970) 155-192.
- [12] M. Krasner, A class of hyperrings and hyperfields, Intern. J. Math. Math. Sci., 6(2) (1983) 307-312.
- [13] V. Leoreanu-Fotea, M. Jafarpour and S. Sh. Mousavi, The relation δ^n and multisemi-direct hyperproducts of hypergroups, Comm. Algebra, 40 (2012) 3597-3608.
- [14] F. Marty, Sur une generalization de la notion de groupe, 8^{iem} congres Math. Scandinaves, Stockholm, (1934) 45-49.
- [15] S. Mirvakili, S. M. Anvariyeh and B. Davvaz, Transitivity of Γ-relation on hyperfields, Bull. Math. Soc. Sci. Math. Roumanie, Tome 51(99) No. 3 (2008) 233-243.
- [16] S. Mirvakili, S.M. Anvariyeh and B. Davvaz, On α -relation and transitivity conditions of α , Comm. Algebra, 36 (2008) 16951703.
- [17] S. Mirvakili and B. Davvaz, Strongly transitive geometric spaces: applications to hyperrings, Revista Unión Matemática Argentina, 53(1) (2012) 43-53.
- [18] T. Vougiouklis, Hyperstructures and Their Representations, Hadronice Press, Inc., Palm Harber, USA, (1994).
- [19] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, (1991) 203-211.