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Abstract. Random parameter models have been found to outperform fixed pa-

rameter models to estimate dose-response relationships with independent errors. A

major restriction, however, is that the responses are assumed to be normally and

symmetrically distributed. The purpose of this paper is to analyze Bayesian infer-

ence of random parameter response models in the case of independent responses

with normal and skewed, heavy-tailed distributions by way of Monte Carlo simu-

lation. Three types of Bayesian estimators are considered: one applying a normal,

symmetrical prior distribution, a second applying a Skew-normal prior and, a third

applying a Skew-t-distribution. We use the relative bias (RelBias) and Root Mean

Squared Error (RMSE) as valuation criteria. We consider the commonly applied lin-

ear Quadratic and the nonlinear Spillman-Mitscherlich dose-response models. One

simulation examines the performance of the estimators in the case of independent,

normally and symmetrically distributed responses; the other in the case of indepen-

dent responses following a heavy-tailed, Skew-t-distribution. The main finding is

that the estimator based on the Skew-t prior outperforms the alternative estima-

tors applying the normal and Skew-normal prior for skewed, heavy-tailed data. For

normal data, the Skew-t prior performs approximately equally well as the Skew-

normal and the normal prior. Furthermore, it is more efficient than its alternatives.

Overall, the Skew-t prior seems to be preferable to the normal and Skew-normal for

dose-response modeling.
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Abstrak. Model parameter acak diketahui lebih baik daripada model parameter

tetap untuk menduga hubungan dosis-respons dengan galat acak bebas. Namun

demikian, kendala utama adalah bahwa respons diasumsikan menyebar normal dan

simetrik. Tujuan tulisan ini adalah menganalisa inferensia Bayesian dari model re-

spons parameter acak pada kasus respons menyebar normal dan menjulur berekor

panjang dengan metode simulasi Monte Carlo. Tiga tipe penduga Bayesian dipergu-

nakan: pertama didasarkan pada sebaran prior normal, simetrik, kedua didasarkan

pada sebaran-normal menjulur, dan ketiga didasarkan pada sebaran-t menjulur.

Sebagai kriteria penilaian digunakan nilai bias relatif dan Akar Kuadrat Tengah

Galat. Model yang digunakan adalah model linear Kuadratik dan model nonlinear

Spillman-Mitscherlich. Simulasi pertama mengkaji unjuk kerja penduga pada kasus

respons menyebar bebas, normal, dan simetrik; sedangkan yang lainnya pada kasus

respons menyebar bebas, Skew-t berekor panjang. Temuan utama adalah bahwa

penduga prior t-menjulur lebih baik daripada sebaran prior normal-menjulur dan

normal simetrik pada data menjulur dan berekor panjang. Pada data normal, se-

baran prior t-menjulur dapat disamakan dengan sebaran prior normal-menjulur dan

prior normal. Sebaran prior t-menjulur lebih efisien dari keduanya. Secara umum,

sebaran prior t-menjulur lebih baik daripada sebaran prior normal-menjulur dan

normal bagi pemodelan dosis-respons.

Kata kunci: Model dosis-respons, penduga Bayesian, Gibbs sampler, model param-
eter acak, sebaran normal-menjulur, sebaran t-menjulur.

1. Introduction

The linear Quadratic and the nonlinear Spillman-Mitscherlich model are com-
monly applied to analyze dose-response relationship with independent errors in a
large variety of fields including environmental sciences, biology, public health, and
agricultural sciences (de Souza et al. [7]; Pinheiro et al. [23]; WHO [37]). The
model parameters are usually estimated by means of least squares under the as-
sumptions of fixed parameters and errors that are independently and normally
distributed with constant variances (Lopez-Bellido et al. [17]; Sain and Jauregui
[28]).

A limitation of the standard fixed parameter models is that they preclude
the variability of the parameters that may exist among subjects. A model that
does not have this limitation is the random parameter response model (Makowski
and Wallach [19]; Makowski and Lavielle [20]; Plan et al. [24]; Tumusiime et
al. [34]; Wallach [35]). This model type assumes that the response functions are
common to all subjects, but that the parameters vary between subjects. For this
purpose a random component is associated with the coefficients that represents
inter-individual variability. The random parameter models have been found to
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outperform the fixed parameter models (Boyer et al. [5]; Makowski et al. [18];
Makowski and Wallach [19]; Tumusiime et al. [34]).

The model parameters and the random errors are usually based on the as-
sumption of independently, symmetrically, normally distributed response (Boyer et
al. [5]; Makowski and Wallach [19]; Makowski and Lavielle [20]; Plan et al. [24];
Tumusiime et al. [34]). However, the assumption of normality may be too restric-
tive in many applications (Arellano-Valley et al. [1]-[2]; Jara et al. [11]; Ouedraogo
and Brorsen [21]). Lachos et al. [14] proposed skewed linear mixed dose-response
models when there is evidence of departure from symmetry or normality. The
present paper deals with responses that follow the asymmetric heavy-tailed Skew-t
distribution. The paper also considers responses that follow a normal distribution.

Random parameter dose-response models can be estimated by maximum like-
lihood (ML). However, for models that are nonlinear in the parameters, ML may
lead to non-unique solutions (Brorsen [6]; Tembo et al. [33]). In addition, con-
vergence may be problematic even with careful scaling and good starting values.
Alternatively, Bayesian methods for which convergence of nonlinear estimation is
not an issue, can be used (Brorsen [6]; Ouedraogo and Brorsen [21]). An additional
advantage of the use of Bayesian methods is that the results are valid in small
samples, which are quite common in dose-response modeling.

The objective of this paper is to investigate the performance of the Bayesian
estimator with Skew-t prior of the random parameters linear Quadratic and the
nonlinear Spillman-Mitscherlich model when the response follows (i) an asymmetric
heavy-tailed Skew-t distribution, (ii) normal distribution. In addition to the Skew-t
prior, we will also consider the commonly used normal, symmetrical prior, and the
Skew normal prior.

The remainder of the paper is organized as follows. In Section 2, we briefly
introduce the Skew-Normal (SN) and Skew-t (S-t) distribution and specify the
linear Quadratic and nonlinear Spillman-Mitscherlich model which in practice are
most frequently used to model dose-response relationships. Section 3 presents the
Bayesian inference approach as well as the model comparison criteria. Section 4
outlines the simulation framework and Section 5 the simulation results. Conclusions
follow in Section 6.

2. The Skew SN And Skew S-t Distribution and the Linear Quadratic
and Nonlinear Spillman-Mitscherlich Model

2.1. The Independent Skew-Normal (SN) and Skew-t (S-t) Distribution.
Lachos et al. [14] defined the family of Skew normal (SN) distributions as follows.
A p-dimensioal random vector Y is Skew-normally distributed if Y = µ+ U1/2Z,
where µ is a location vector, U is a positive random variable with cumulative dis-
tribution function (cdf) H(u|v) and probability density function (pdf) h(u|v), and
independent of the random vector Z, v is a scalar or vector of parameters indexing
the distribution of U , which is a positive value and Z is a multivariate Skew-normal
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random vector with location 0, scale matrix Σ and Skewness parameter vector λ,
i.e. Z ∼ SNp(0,Σ,λ). When U = u, Y follows a multivariate Skew-normal distri-
bution with location vector µ, scale matrix u−1Σ and Skewness parameter vector
λ, i.e. Y |U = u ∼ SNp(µ, u−1Σ,λ). The marginal pdf of Y in that case is

f(y) = 2

∫ ∞
0

φp(y;µ, u−1Σ)Φ(u−1/2λTΣ−1/2(y − µ))dH(u|v) (1)

where φp(.;µ,Σ) denotes the pdf of the p-variate normal distribution Np(µ,Σ),
with mean vector µ and covariance matrix Σ, and and Φ(.) represents the cdf
of the standard univariate normal distribution. We will use the notation Y ∼
SNp(µ,Σ,λ, H).

When λ = 0, the class of SN distributions reduces to the class of normal
independent (N) distributions (Lachos et al. [15]; Lange and Sinsheimer [16]; Rosa
et al. [27]), i.e., the class of thick-tailed distributions represented by the pdf

f0(y) =

∫ ∞
0

φp(y;µ, u−1Σ)dH(u|v)

We will use the notation Y ∼ Np(µ,Σ, H) for this case.

In the mixture model (1), when U = 1, Y is a multivariate Skew-normal dis-
tribution (SN) with location vector µ and covariance matrix Σ, and and Skewness
parameter vector λ, i.e., Y ∼ SNp(µ,Σ,λ). The pdf of Y is

f(y) = 2φp(y;µ,Σ)Φ(λTy0)

where y0 = Σ−1/2(y − µ).

A convenient stochastic representation of Y for simulation purposes, partic-
ularly data generation, follows from Bandyopadhyay et al. [3]-[4]:

Y = µ+ ∆T + Γ−1/2T1 (2)

where ∆ = Σ−1/2δ, Γ = Σ1/2(I − δδT )Σ1/2 = Σ−∆∆T , I denotes the identity

matrix and δ = λ/(1+λTλ)1/2, λ = ( Γ+∆∆T )1/2∆
[1−∆T (Γ+∆∆T )1∆]

, Σ = Γ+∆∆T , T = |T0|,
T0 ∼ N1(0, 1) and T1 ∼ Np(0, Ip).

When U ∼ Gamma( v2 ,
v
2 ), v > 0, Y follows a multivariate Skew-t distri-

bution (St) with v degrees of freedom, i.e., Y ∼ Stp(µ,Σ,λ,v). The pdf of Y
is

f(y) = 2tp(y;µ,Σ,v)T (

√
v + p

v + d
A; v + p),y ∈ Rp,

where tp(.;µ,Σ,v) and T (.;v) denote the pdf of the p-variate Student-t distri-
bution and the cdf of the standard univariate t-distribution, respectively, A =

λTΣ−1/2(y − µ) and d = (y − µ)TΣ−1(y − µ) is the Mahalanobis distance. As
v ↑ ∞, we get the Skew-normal distribution. When λ = 0, the Skew-t distribution
reduces to the Student-t distribution.
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2.2. The Linear Quadratic and nonlinear Spillman-Mitscherlich Model.
We first consider the general mixed model in which the random errors and the
random parameters are independent and jointly normally distributed. The model
reads:

Yi = ηi(Xi,ϕi) + ε,ϕi = Aiβ +Bibi (3)

where

bi ∼ Nq(0, Diag(D),λ, H), εi ∼ Nn(0,σ2
eIni

, H)

where the subscript i is the subject index, i = 1, ..., n; Yi = (yi1, ...., yini
)T is a

ni × 1 vector of observed continuous responses for sample unit i, ηi(Xi,ϕi) =
(η(Xi1,ϕi), ...,η(Xni ,ϕi))

T with η(.) the nonlinear or linear function of random
parameters ϕi, and covariate vector Xi, Ai and Bi are known design matrices of
dimensions ni × p and ni × q, respectively, β is the p× 1 vector of fixed parameter
components (means), bi = (b1i, ..., bqi)

T is the vector of random parameter com-
ponents, and εi = (εi1, ...., εin)T is the vector of random errors, Ini denotes the
identity matrix. The matrices D = D(α) with unknown parameter α is the q × q
unstructured dispersion matrix of bi, σ

2
e the unknown variance of the error term

and λ is the skewness parameter vector corresponding to the random components
bi.

We assume that E(bi) = E(εi) = 0, and the bi and εi are uncorrelated, i.e.
Cov(bi, εi) = 0. The model takes the within-subjects errors εi to be symmetrically
distributed and the random parameter bi to be asymmetrically distributed with
mean zero (Bandyopadhyay et al. [4]; Lachos et al. [14]-[15]). When η(.) is
a nonlinear parametric function, we have the SN-NonLinear Mixed Model (SN-
NLMM); if η(.) is a linear parametric function, we have the SN-Linear Mixed
Model (SN-LMM).

The general framework (3) gives the linear Quadratic and the nonlinear
Spillman-Mitscherlich mixed model as follows:
1. The linear Quadratic mixed model:

Yi = γ1 + (γ2 + b2i)Xi + (γ3 + b3i)X
2
i + b1i + εi, (4)

where for i = 1, 2, .., n, Yi is the response, Xi the dose, γ1 is the intercept ; γ2

the fixed linear response coefficient; γ3 the fixed quadratic response coefficient;
b1i, b2i, and b3i are the random response coefficients; and εi is the random error
term (Park et al. [22]; Tumusiime et. al. [34]). In this case, Γ = (γ1, γ2, γ3)T ;
bi = (b1i, b2i, b3i)

T ; bi ∼ Stq(0,Σ,λ,v) and εi ∼ tq(0,Σ,v).
2. The nonlinear Spillman-Mitscherlich mixed model:

Yi = β1 + (β2 + b2i)exp((−β3 + b3i)Xi) + b1i + εi, (5)

where the variables are as in (4), β1 is the fixed maximum or potential response
obtainable by the stimulus; β2 is the fixed response increase induced by the stimulus;
β3 the ratio of successive increment in ouput β1 to total output Y ; b1i, b2i, and
b3i are the random components; and εi is the random error term (Tumusiime et.
al. [34]); β = (β1, β2, β3)T ; bi = (b1i, b2i, b3i)

T ; bi ∼ Stq(0,Σ,λ,v) and εi ∼
tq(0,Σ,v).
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3. Bayesian Inference, Gibbs Sampler, and Simulation Evaluation
Criteria

3.1. Prior distributions and joint posterior density. As explained in the In-
troduction, we apply Bayesian inference to overcome the limitations of maximum
likelihood. In spite of its advantages, Bayesian analysis also has some limitations. A
mayor limitation which has hampered widespread implementation of the Bayesian
approach, is that obtaining the posterior distribution often requires the integra-
tion of high-dimensional functions which can be analytically difficult. For simple
models, the likelihood functions are standard, and, if one uses conjugate priors,
deriving the posterior density analytically poses no major problems (This is the
main reasons why conjugate priors are widely employed in Bayesian analysis). But
Bayesian estimation quickly becomes challenging when working with more com-
plicated models (possibly high-dimensional), or when one uses non-conjugate pri-
ors. Then analytical solution is not easy or may even be impossible. As a way
out, Bayesian estimation using Markov Chain Monte Carlo (MCMC) simulation
can be applied. Given a complex multivariate distribution, it is simpler to sam-
ple from a conditional distribution than to marginalize by integrating over a joint
distribution. The MCMC approach proceeds on the basis of sampling from the
complex distribution of interest. The algorithm departs from the previous sample
value to generate the next sample value, thus generating a Markov chain. Specifi-
cally, let θ be the parameter of interest and let y1, ...., yn be the numerical values
of a sample from the distribution f(y1, ...., yn|θ). Suppose we sample (with re-
placement) some S independent, random θ-values from the posterior distribution
f(θ|y1, ...., yn) : θ(1), ..., θ(S) ∼ i.i.d f(θ|y1, ...., yn). Then the empirical distribution
of θ(1), ..., θ(S) approximates f(θ|y1, ...., yn) with the approximation improving with
increasing S. The empirical distribution of θ(1), ..., θ(S) is known as a Monte Carlo
approximation to f(θ|y1, ...., yn). Let g(θ) be (just about) any function of θ. The
law of large numbers says that if θ(1), ..., θ(S) are i.i.d samples from f(θ|y1, ...., yn)
then:

1

S

∑S

s=1
g(θs)→ E[g(θ)|y1, ..., yn] =

∫ ∞
−∞

g(θ)f(θ|y1, ...., yn)dθ (6)

as S →∞. For further details we refer to Gelman et al. [8].

To further illustrate the procedure, consider a multidimensional parameter
θ for the case of n i.i.d observations from a Normal (µ, σ2) with unknown mean
and variance (i.e. θ = (µ, σ2)). We illustrate how to use the Markov Chain prin-
ciple to simulate values from the joint posterior distribution (µ, σ2|y), defined as
the product of a conditional and a marginal distribution. This method is called
decomposition method (Tanner [32]). Consider the density f(µ|σ2,y). To obtain
a sample µ(1), µ(2)..., µ(S) iid f(µ|y) =

∫
σ
f(µ|σ2,y)f(σ2|y) dσ2 , we apply the

composition method as follows:

1. draw σ2(s) from f(σ2|y)

2. draw µ from f(µ|σ2(s),y)
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Steps 1 and 2 are repeated S times. The pairs (µ(1), σ2(1)), .., (µ(S), σ2(S))
are i.i.d samples from the joint density f(µ, σ2|y) = f(µ|σ2,y)f(σ2|y), while the
quantities µ(1), µ(2)..., µ(S) are i.i.d samples from the marginal f(µ|y).

For many multi parameter models the joint posterior distribution is non-
standard (i.e. not a density like the normal or gamma distribution) and thus
difficult to directly sample from. The composition method is impossible or hard to
apply in that case because it is hard to get the marginal distributions of the random
variables of interest. That is, it may be difficult to apply the decomposition method
to generate independent observations from such a density p(θ|y), because the joint
posterior distribution cannot be defined as the product of marginal and conditional
distributions. An alternative solution in that case consists of generating a sample of
correlated values which approximately come from the joint posterior distribution.
Even if the sample observations are dependent, Monte Carlo integration can be
applied, if the observations can be generated so that their joint density is roughly
the same as the joint density of a random sample. The standard MCMC algorithms
are:

• Metropolis

• Metropolis-Hasting

• Gibbs sampler

The Metropolis sampler obtains the state of the chain at t+ 1 by sampling a
candidate point θnew from a proposal distribution q(.|θ(t)) which is only dependent

on the previous state θ(t). The Metropolis algorithm can draw samples from any
probability distribution f(θ|y) (target distribution), provided we can compute the
value of a function q(θ|y) (proposal) that is proportional to the density of f . The
lax requirement that q(θ|y) should be merely proportional to the target density,
rather than exactly equal, makes the Metropolis algorithm particularly useful, be-
cause calculating the necessary normalization factor is often extremely difficult in
practice. The algorithm works by generating a sequence of sample values in such a
way that as more and more sample values are produced, the distribution of values
more closely approximates the target distribution, f(θ|y). These sample values
are produced iteratively with the distribution of the next sample being dependent
only on the current sample value (thus making the sequence of samples a Markov
chain). Specifically, at each iteration, the algorithm picks a candidate for the next
sample value based on the current sample value. Then, with some probability,
the candidate is either accepted (in which case the candidate value is used in the
next iteration) or rejected (in which case the candidate value is discarded, and
the current value is reused in the next iteration). The probability of acceptance is
determined by comparing the current and candidate sample values of the function
q(θ|y) with corresponding values of the target distribution f(θ|y).

The Metropolis sampler is based on a symmetric random-walk proposal dis-
tribution. A more general sampler is the Metropolis-Hastings algorithm which uses
an asymmetric distribution: q(θnew|θ(t)) 6= q(θ(t)|θnew).
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The Gibbs sampler is a special (simple) case of the Metropolis sampler in
which the proposal distributions exactly match the posterior conditional distri-
butions and proposals are accepted 100 % of the time. It decomposes the joint
posterior distribution into full conditional distributions for each parameter in the
model and then samples from them (A full conditional distribution is the condi-
tional distribution of a parameter given all of the other parameters in the model).

The Gibbs sampler is efficient when the parameters are not highly dependent
on each other and the full conditional distributions are easy to sample from. It is a
popular sampling algorithm because it does not require a proposal distribution as
the Metropolis method does, because the full conditional distribution is a standard
distribution (e.g. normal or gamma). However, while deriving the full conditional
distributions can be relatively easy, it is not always possible to find an efficient way
to sample from these full conditional distributions. The Gibbs sampler proceeds as
follows:

1. Set t = 0, and choose an arbitrary initial value of θ0 = {θ(0)
1 , θ

(0)
2 ..., θ

(0)
p }

2. Generate each vector component of θ as follows:

• draw θ
(t+1)
1 from f(θ1|θ(t)

2 , ..., θ
(t)
p ,y)

• draw θ
(t+1)
2 from f(θ2|θ(t)

1 , ..., θ
(t)
p ,y)

• draw ....
• draw θ

(t+1)
p from f(θp|θ(t)

1 , ..., θ
(t)
p−1,y)

3. Set t = t + 1. If t < T, i.e. the number of desired samples, return to step
2. Otherwise, stop.

Software such as JAGS (Just Another Gibbs Sampler) applies Gibbs sampling
to implement Bayesian inference based on Markov Chain Monte Carlo simulation.
In the Appendix A we present an example of an R program of the Gibbs sampler
for a Bivariate distribution adapted from Rizzo [26].

The challenge of MCMC simulation is the construction of a Markov chain
whose values converge to the target distribution. The general approach is the
Metropolis-Hastings sampling procedure. This algorithm simulates samples from
a probability distribution by making use of the full joint density function and
independent proposal distributions for each of the variables of interest. Below, we
apply the Gibbs sampler which is a special case of the Metropolis-Hastings sampling
procedure. Gibbs sampling decomposes the joint posterior distribution into full
conditional distributions for each parameter in the model and then samples from
them. The proposal distributions in the Gibbs sampler exactly match the posterior
conditional distributions. The sampler is usually efficient when the parameters are
not highly dependent on each other and the full conditional distributions is easy to
decompose.

Using (2), the mixed models under consideration can be formulated for i =
1, .., n, as follows (Lachos et al. [13]):

Yi|bi, Ui = ui ∼ Nni
(η(Aiβ +Bibi,Xi), u

−1
i σ

2
eIni

)

bi|Ti = ti, Ui = ui ∼ Nq(∆ti, u
−1
i Γ)
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Ti|Ui = ui ∼ HN1(0, u−1
i )

Ui ∼ H(ui|v)

where HN1(0,σ2) is the half-N1(0,σ2) distribution, ∆ = D1/2δ and Γ = D −
∆∆T , with δ = λ/(1+λTλ)1/2 andD1/2 the square root ofD containing q(q+1)/2
distinct elements.

Let Y = (y1
T , ...,yn

T )T , bi = (b1
T , ..., bn

T )T , u = (u1, ..., un)T , t =

(t1, ..., tn)T . Then, the complete likelihood function associated with (yT , bT ,uT , tT )T

is given by

L(θ|Y , b,u, t) ∝
n∏
i=1

[φni(yi;η(Aiβ +Bibi,Xi), u
−1
i σ

2
eIni

)φq(bi; ∆ti, u
−1
i Γ)

×φ1(ti; 0, u−1
i )h(ui|v)]

The unknown parameters of this model are θ = (βT ,σ2
e,α

T ,λT ,vT )T .

In the Bayesian framework, we need to consider prior distributions for all
the unknown parameters. We consider β ∼ Np(β0,Sβ),σ2

e ∼ IG(ω1,ω2), Γ ∼
IWq(M0, l), ∆ ∼ Np(∆0,S∆), where IG(ω1,ω2) is the inverse gamma distri-
bution with mean ω2((ω1 − 1)),ω1 > 1, and IWq(M , l) is the inverse Wishart
distribution with mean M/(l−q−1)), l > q+1, where M is a q×q known positive
definite matrix (Bandyopadhyay et al. [3]; Lachos et al. [13]). Then, the joint prior
distribution of all unknown parameters is

π(θ) = π(β)π(σ2
e)π(Γ)π(∆)π(v)

Combining the likelihood function and the prior distribution, the joint pos-
terior density of all unknown is

π(β,σ2
e,Γ,∆, b,u, t|y) ∝

n∏
i=1

[φni(yi;η(Aiβ +Bibi,Xi), u
−1
i σ

2
eIni

)

φq(bi; ∆ti, u
−1
i Γ)× φ1(ti; 0, u−1

i )h(ui|v)]π(θ)

Under this full model, given u, the full conditional distribution of β,σ2
e,∆,Γ, bi,

ti, i = 1, .., n, are as follows (Lachos et al. [13]):

β|b,u, t,σ2
e,∆,Γ ∼ Np(A−1

β aβ ,A−1
β ),

where Aβ = S−1
β +( 1

σ2
e
)
∑n
i=1u

−1
i XT

i I−1
n Xi and aβ = S−1

β β0+( 1
σ2
e
)
∑n
i=1u

−1
i XT

i I−1
n

(yi −Bibi)
σ2
e|b,u, t,β,∆,Γ ∼ IG(N+τe

2 ,
Te

∑n
i=1u

−1
i µT

i I−1
n µi

2 ) where N =
∑n
i=1ni and

µi = yi −Aiβ −Bibi
∆|b,u, t,β,σ2

e,Γ ∼ N(
∑−1

∆ µ∆,
∑−1

∆ ),

where µ∆ = S−1
∆ ∆0 + Γ−1∑n

i=1uibi,
∑

∆ = Γ−1∑n
i=1uit

2
i + S−1

∆

Γ|b,u, t,β,σ2
e,∆ ∼ IW τb+n((T−1

b +
∑n
i=1ui(bi −∆ti)(bi −∆ti)

T
)−1)

bi|β,σ2
e,∆,Γ,ui, ti ∼Nq(A−1

bi
ai,u

−1
i A−1

bi
),

where Abi = (( 1
σ2
e
)BT

i I−1
n Bi+ Γ−1) and ai = ( 1

σ2
e
)BT

i I−1
n (yi−Aiβ) + tiΓ

−1∆, i =

1, .., n,
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T i|β,σ2
e,Γ,∆, bi, ui ∼ N(A−1

t ati ,u
−1
i A−1

t )‖{T i > 0},
where At = (1 + ∆TΓ−1∆) and ati = (1 + bi

TΓ−1∆), i = 1, .., n. Then,

D = Γ + ∆∆T and λ = D−1/2∆/(1−∆TD−1∆)1/2

For Skew-t,

ui|θ,y, b, t ∼ Gamma( (ni+q+v+1)
2 ; v2 + Ci

2 ),

where Ci = 1
σ2
e
(yi −Aiβ −Bibi)TR−1

i (yi −Aiβ −Bibi) + (bi −∆ti)
TΓ−1(bi −

∆ti) + t2i , and

π(v|θ−v,y, b,u, t) ∝ (2
v
2 Γ( v2 ))−nv

nv
2 exp(−v2 [

∑n
i=1(ui − logui) + %]) ‖2,∞.

3.2. Model comparison criteria. For model comparison, we use the deviance in-
formation criterion (DIC), the expected Akaike information criterion (EAIC) and
the expected Bayesian information criterion (EBIC). These are based on the pos-

terior mean of the deviance which can be approximated as D̄ =
∑Q
q=1D(θq)/Q,

where D(θ) = −2
∑n
i=1 logf(yi|θ) and Q is the number of iterations. The EAIC,

EBIC and DIC can be estimated using MCMC output as follows

ÊAIC = D̄ + 2p, ÊBIC = D̄ + plog(N), D̂IC = D̄ + pv

where D̄ is the posterior mean of the deviance, p the number of parameters in
the model, N the total number of observations, and pv the effective number of
parameters defined as Variance (D)/2 (Plummer [25]; Spiegelhalter et al. [29]-
[30]).

4. Simulation Setup

In the simulations, we consider the two most common dose-response models,
i.e., the linear Quadratic model and the nonlinear Spillman-Mitscherlich model
(Models (4) and (5), respectively).

We generate 100 Monte Carlo simulation datasets (samples). The number of
100 samples is chosen because of the long processing time of Bayesian estimation.
We consider three sample sizes: (T ) =10, 30, 75, i.e. a small, medium and a large
number of observations, respectively. In each group, the following six doses are
applied: 0, 100, 150, 200, 300, 400. To avoid non-convergence, we normalize the
original doses (subtract the mean and divide by the standard deviation) (Kery
[12]). The simulation were performed using the following fixed parameter values

βT = (β1, β2, β3)=(8.0,1.5,0.5), γT = (γ1, γ2, γ3)=(6.0,0.5,0.25).

The following Ai and Bi matrices were applied

Ai = Bi =

 1 0 0
0 1 0
0 0 1


The scale matrix of the random components is



Bayesian Skew-Normally Random Parameter Response Models 37

D =

σb1 0 0
0 σb2 0
0 0 σb3


To get insight into the performance of the estimators under increasing vari-

ance, we analyzed small, medium and large scale D matrices (scenario 1-3) as
follows:

Simulation σb1 σb2 σb3 σe
Scenario 1 0.1 0.01 0.005 0.5
Scenario 2 1 0.1 0.05 1
Scenario 3 1.5 0.2 0.10 0.75

To analyze the Skew-t distributions, we generated βk + bki and γk + bki, k =
1, 2, 3 according to the multivariate (right) Skew-t distribution St3 ∼ (0, σbk , 3, 4)
and the εi according to the t-distribution εi ∼ t1(0, σ2, 4). For the multivariate
normal distributions, we generated βk+bki and γk+bki according to the multivariate
normal distribution N3 ∼ (0, σbk) and the εi according to the normal distribution
εi ∼ N1(0, σ2).

For each of the 100 simulated data sets, the linear Quadratic and the Spillman-
Mitscherlich random parameter models were estimated under the assumption that
(1) the density of random components was the Skew-t and the density of the er-
rors the t distribution, (2) the random components and the errors were normally
distributed (N).

The following independent priors were considered to analyze the Gibbs sam-
pler : βk ∼ N(0, 103), γk ∼ N(0, 103), σe

2 ∼ IG(0.01, 0.01), Γ ∼ IW3(H) with H =
diag(0.01) for the normal, Skew-normal, and Skew-t priors, and ∆ ∼ N(0, 0.001)
for the Skew-normal and Skew-t priors and v ∼ Exp(0.1; (2,∞)) for the Skew-t
prior. For these prior densities, we generated two parallel independent runs of the
Gibbs sampler chain of size 25 000 for each parameter. We disregarded the first 5
000 iterations to eliminate the effect of the initial value. To avoid potential auto-
correlation, we used a thinning of 10. We assessed chain convergence using trace
plots, autocorrelation plots and the Brooks-Gelman-Rubin scale reduction factor
R̂ (Gelman et al. [8]). We fitted the models using the R2jags package available in
R (Su and Yajima [31]). We computed the relative bias (RelBias) and the Root
Mean Square Error (RMSE) for each parameter estimate over 100 samples for each
simulation. These statistics are defined as

RelBias(θ) =
1

N

N∑
j=1

(
θ̂j
θ
− 1), RMSE(θ) =

√√√√ 1

N

N∑
j=1

(θ̂j − θ)2

where θ̂j is the estimate of θ for the jt
h

sample and N=100.
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5. Main Results

5.1. (Right) Skewed-t response data. Tables 1 and 2 and Figures 1 show that
for the nonlinear Spillman-Mitscherlich model and right-skewed, heavy-tailed re-
sponse data, the average RelBias (in absolute value) and the average RMSE for
all T, D, and the three parameters of the normal prior (N) are larger than for
the Skew normal prior (SN). However, for the linear Quadratic model the opposite
holds. Moreover, the average RelBias (in absolute value) and the average RMSE
of the Skew-t priors (S-t) have the smallest values for all sample sizes (T ) and for
the three variance for both models.

Figure 1. Average RelBias and RMSE of the Normal (N), Skew
Normal (SN), and Skew-t (S-t) prior for the Spillman-Mitscherlich
and linear Quadratic model for right-skewed data

Note also that are for the Spillman-Mitscherlich model with T=10 and Small-
D the RelBias of β3 in the case of the normal prior is smaller than in the case
of the Skew-normal and Skew-t priors, while for large-D the RelBias of β1 and
β2 for the three priors are similar. Moreover, for the Spillman-Mitscherlich model
for large-D and an increasing number of observations up to 30 the RelBias and
RMSE of β1 and β2 of the three priors worsen, but improve for increasing T. This
sample size bias inconsistency was also observed by Hagenbuch [9]. Apparently,
one should increase the sample size substantially to reduce the bias.

From the above it follows that except for some minor exceptions, for skewed
heavy tailed data the Bayesian estimator with Skew-t prior is more accurate than in
the case of the normal and the Skew normal prior. (Note that because of different
scales, inferences regarding the variance component are not feasible (Lachos et al.
[13]-[14]).
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Table 1. RelBias and RMSE of the Normal (N), Skew-Normal (SN),
and Skew-t (S-t) prior for the Spillman-Mitscherlich model for right-
skewed data

Prior
(T) Variance

(D)
Parameter N SN S-t

RelBias RMSE RelBias RMSE RelBias RMSE
10 Small β1 0.1176 1.8756 0.0002 0.4154 0.0026 0.3940

β2 0.6150 1.8844 -0.0358 0.4275 -0.0259 0.4249
β3 -0.0734 0.1821 0.1441 0.1640 0.1475 0.1620

Medium β1 -0.0269 2.7153 -0.0555 1.1592 -0.056 1.2466
β2 -0.2866 2.6967 -0.4600 1.1752 -0.4653 1.2662
β3 -0.5596 0.4212 -0.3843 0.4089 -0.3734 0.4147

Large β1 -0.0192 2.0702 0.0116 1.1706 -0.0049 1.0671
β2 -1.2126 2.7233 -1.0534 1.9091 -1.0858 1.9133
β3 -0.8753 0.4724 -0.8314 0.4709 -0.9243 0.5039

30 Small β1 0.1161 1.6831 0.0307 0.4693 0.0313 0.4328
β2 0.584 1.6802 0.1093 0.4514 0.1186 0.4073
β3 -0.1684 0.1555 -0.0061 0.1087 -0.0317 0.0927

Medium β1 -0.0325 2.6284 0.0364 0.3674 0.0232 0.2936
β2 -0.8435 2.8891 -0.4728 0.7367 -0.4561 0.7140
β3 1.1832 0.7182 0.8151 0.4346 0.7878 0.4177

Large β1 1.2093 10.982 0.5926 4.9354 0.5144 4.3627
β2 5.9196 10.275 2.5624 4.0886 2.1467 3.5399
β3 -0.7918 0.4131 -0.4565 0.2483 -0.3838 0.2209

75 Small β1 0.0206 1.0500 0.0147 0.3906 0.0158 0.3129
β2 0.0455 1.0412 0.0055 0.3911 0.0131 0.3028
β3 -0.0453 0.1116 0.0246 0.0907 0.0047 0.0724

Medium β1 0.1626 2.4197 0.0955 0.8902 0.101 0.9232
β2 0.3881 2.1373 0.0029 0.4884 0.0461 0.4772
β3 -0.1465 0.2157 0.0908 0.1412 0.0495 0.1285

Large β1 0.1479 2.8697 0.1273 1.0880 0.1234 1.0609
β2 0.0988 2.6152 -0.0452 0.4315 -0.0326 0.3910
β3 -0.2397 0.2417 0.0659 0.1290 0.0255 0.1187

Average β 0.5900 2.1916 0.3159 0.8586 0.2960 0.8023

Tables 3 and 4 show the overall fit statistics for the Spillman-Mitscherlich and
linear Quadratic model. For both models the DIC, EAIC, and EBIC all tend to
favor the Skew-t model for all sample sizes (T ) and for the three variance scenarios.
The percentage (%) of samples that the criteria choose the Skew-t model as the best
model increases with increasing number of observations. For T=75 the percentage
is 100%.
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Table 2. RelBias and RMSE of the Normal (N), Skew-Normal (SN),
and Skew-t (S-t) prior for the linear Quadratic model for right-skewed
data

Prior
(T) Variance

(D)
Parameter N SN S-t

RelBias RMSE RelBias RMSE RelBias RMSE
10 Small γ1 0.0123 0.1610 0.0124 0.1613 0.0127 0.1379

γ2 0.0353 0.1002 0.0350 0.1011 0.0289 0.0869
γ3 0.0105 0.1104 0.0129 0.1123 0.0046 0.0945

Medium γ1 0.2059 1.2626 0.2066 1.2671 0.1748 1.0791
γ2 0.1410 0.2357 0.1485 0.2399 0.1154 0.2152
γ3 -0.1903 0.2174 -0.1998 0.2189 -0.2698 0.2034

Large γ1 0.3223 1.9423 0.3223 1.9425 0.3167 1.9127
γ2 0.3966 0.2333 0.3971 0.2355 0.3867 0.2313
γ3 -0.2864 0.1588 -0.2917 0.1629 -0.2654 0.1541

30 Small γ1 0.0181 0.1341 0.0182 0.135 0.0185 0.1325
γ2 0.0403 0.0602 0.0413 0.0611 0.0458 0.0523
γ3 -0.0114 0.0598 -0.0116 0.0602 0.0017 0.0514

Medium γ1 0.0898 0.5616 0.0897 0.5609 0.0882 0.5492
γ2 0.2959 0.1927 0.2960 0.1944 0.2936 0.1807
γ3 -0.1460 0.1179 -0.1494 0.1216 -0.1353 0.1057

Large γ1 0.2046 1.2333 0.2048 1.2346 0.1971 1.1905
γ2 0.4419 0.2331 0.4431 0.2338 0.4281 0.2260
γ3 -0.4560 0.1376 -0.4587 0.1386 -0.4719 0.1409

75 Small γ1 0.0166 0.1109 0.0167 0.1111 0.0155 0.1029
γ2 0.0272 0.0369 0.0273 0.0368 0.0248 0.0337
γ3 0.0159 0.0350 0.0164 0.0353 0.0087 0.0298

Medium γ1 0.1006 0.6110 0.1007 0.6114 0.0941 0.5722
γ2 0.1723 0.1112 0.1726 0.1115 0.165 0.1052
γ3 -0.2113 0.0896 -0.2121 0.0900 -0.2137 0.0863

Large

γ1 0.2488 1.4944 0.2487 1.4943 0.2395 1.4391
γ2 0.2914 0.1533 0.2919 0.1539 0.2872 0.1506
γ3 -0.3444 0.1020 -0.3457 0.1029 -0.3573 0.1024

Average Γ 0.1753 0.3665 0.1767 0.3677 0.1726 0.3469

Note also that for Spillman-Mitscherlich data, T=10 and Small-D, the DIC
selects the S-t model as the best model while the EAIC and EBIC select the normal
model. For T=30 and large-D, all the measures favor the normal model. The
different results are probably a consequence of the fact that the three measures
penalize model complexity differently. According to Spiegelhalter et al. [30]), the
AIC is based on the number of parameters, the BIC on the log sample size and
the DIC on the effective number of parameters. i.e. on pD = ED(θ) − DE(θ),
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Table 3. DIC, EAIC and EBIC for Normal (N), Skew Nor-
mal (SN), and Skew-t (S-t) priors for the Spillman-Mitscherlich
model for right-skewed data

Prior
(T) Variance

(D)
Parameter N SN S-t

10 Small DIC 215.91 (33%) 218.30 (0%) 213.26 (67%)
EAIC 222.91 (65%) 228.30 (1%) 224.26 (34%)
EBIC 221.35 (59%) 226.08 (0%) 221.82 (41%)

Medium DIC 126.67 (24%) 128.85 (2%) 120.73 (74%)
EAIC 133.67 (51%) 138.85 (0%) 131.73 (49%)
EBIC 132.12 (47%) 136.64 (0%) 129.29 (53%)

Large DIC 251.92 (57%) 254.27 (1%) 251.87 (42%)
EAIC 258.92 (84%) 264.27 (0%) 262.87 (16%)
EBIC 257.37 (81%) 262.05 (0%) 260.43 (19%)

30 Small DIC 688.41 (6%) 692.20 (1%) 667.41 (93%)
EAIC 695.41 (15%) 702.20 (1%) 678.41 (94%)
EBIC 697.19 (18%) 704.75 (1%) 681.22 (81%)

Medium DIC 374.30 (0%) 372.68 (0%) 339.74 (100%)
EAIC 381.30 (0%) 382.68 (0%) 350.74 (100%)
EBIC 383.08 (0%) 385.23 (0%) 353.55 (100%)

Large DIC 694.82 (59%) 702.94 (0%) 695.84 (41%)
EAIC 701.82 (73%) 712.94 (0%) 706.84 (27%)
EBIC 703.60 (79%) 715.50 (0%) 709.65 (21%)

75 Small DIC 1696.27 (0%) 1692.25 (0%) 1635.75 (100%)
EAIC 1703.27 (0%) 1702.25 (0%) 1646.75 (100%)
EBIC 1707.84 (0%) 1708.78 (0%) 1653.93 (100%)

Medium DIC 943.94 (0%) 933.49 (0%) 849.52 (100%)
EAIC 950.94 (0%) 943.49 (0%) 860.52 (100%)
EBIC 955.52 (0%) 950.02 (0%) 867.71 (100%)

Large DIC 1746.52 (0%) 1742.90 (0%) 1686.90 (100%)
EAIC 1753.52 (0%) 1752.90 (0%) 1697.90 (100%)
EBIC 1758.09 (0%) 1759.43 (0%) 1705.08 (100%)

Note: Within brackets the percentage that the criterion selected the given
prior

where ED(θ) is the posterior mean of the deviance and ED(θ) is the deviance of
posterior mean of the model parameters. Some studies showed that compared to
DIC, the AIC and BIC favor simpler models (i.e. with less parameters) (Ward [36];
Spiegelhalter et al. [30]).

The above results show that the average RelBias (in absolute value) and the
average RMSE (for all T, D, and the three parameters) of the Spillman Mitscher-
lich model are larger than of the linear Quadratic model. Moreover, for both models
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Table 4. DIC, EAIC and EBIC for the Normal (N), Skew
Normal (SN), and Skew-t (S-t) priors for the linear Quadratic
model for right-skewed data

Prior
(T) Variance

(D)
Parameter N SN S-t

10 Small DIC 213.16 (29%) 216.51 (0%) 206.97 (71%)
EAIC 220.16 (52%) 226.51 (0%) 217.97 (48%)
EBIC 218.61 (48%) 224.30 (0%) 215.53 (52%)

Medium DIC 127.14 (17%) 129.10 (1%) 119.31 (82%)
EAIC 134.14 (44%) 139.10 (0%) 130.31 (56%)
EBIC 132.58 (41%) 136.89 (0%) 127.87 (59%)

Large DIC 174.10 (22%) 176.52 (1%) 168.55 (77%)
EAIC 181.10 (45%) 186.52 (0%) 179.55 (55%)
EBIC 179.54 (39%) 184.30 (0%) 177.11 (61%)

30 Small DIC 633.77 (0%) 637.40 (0%) 604.50 (100%)
EAIC 640.77 (4%) 647.40 (0%) 615.50 (96%)
EBIC 642.56 (4%) 649.95 (0%) 618.31 (96%)

Medium DIC 380.70 (0%) 379.21 (0%) 337.54 (100%)
EAIC 387.70 (1%) 389.21 (0%) 348.54 (99%)
EBIC 389.49 (1%) 391.76 (0%) 351.35 (99%)

Large DIC 530.48 (0%) 530.74 (1%) 501.59 (99%)
EAIC 537.48 (3%) 540.74 (1%) 512.59 (96%)
EBIC 539.27 (5%) 543.29 (1%) 515.39 (94%)

75 Small DIC 1572.52 (0%) 1573.29 (0%) 1488.31 (100%)
EAIC 1579.52 (0%) 1583.29 (0%) 1499.31 (100%)
EBIC 1584.10 (0%) 1589.82 (0%) 1506.49 (100%)

Medium DIC 945.79 (0%) 937.11 (0%) 837.70 (100%)
EAIC 952.79 (0%) 947.11 (0%) 848.70 (100%)
EBIC 957.36 (0%) 953.64 (0%) 855.88 (100%)

Large DIC 1319.80 (0%) 1314.63 (0%) 1232.31 (100%)
EAIC 1326.80 (0%) 1324.63 (0%) 1243.31 (100%)
EBIC 1331.37 (0%) 1331.16 (0%) 1250.50 (100%)

Note: Within brackets the percentage that the corresponding criterion favored
the corresponding prior

the DIC, EAIC, and EBIC all tend to favor the Skew-t model for all sample sizes
(T) and for the three variance scenarios, although there are some minor exceptions
for the Spillman-Mitscherlich model. These results indicate a major drawback of
the nonlinear mixed model. According to Harring and Liu [10] estimation - in-
cluding Bayesian estimation - of model parameters of nonlinear mixed model are
not straightforward compared to its counterpart, the linear mixed model. The
nonlinearity requires multidimensional integration to derive the needed marginal
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Table 5. RelBias and RMSE of the Normal (N), Skew-Normal
(SN), and Skew-t (S-t) prior for the Spillman-Mitscherlich model
for normal data

Prior
(T) Variance

(D)
Parameter N SN S-t

RelBias RMSE RelBias RMSE RelBias RMSE
10 Small β1 0.0524 2.0806 0.0013 0.4082 0.0021 0.4231

β2 0.3208 2.0967 0.0232 0.4293 0.0275 0.4477
β3 -0.1728 0.1620 0.0618 0.1145 0.0645 0.1249

Medium β1 -0.3815 4.5593 -0.2038 2.0963 -0.2843 2.6841
β2 -1.8057 4.3644 -0.878 1.7884 -1.272 2.3859
β3 -0.8085 0.4653 -0.6716 0.4773 -0.8831 0.6009

Large β1 0.0205 2.5966 -0.0168 0.6133 -0.0199 0.6950
β2 -0.0366 2.2582 -0.2755 0.8334 -0.2879 0.7314
β3 -0.2319 0.2327 0.0764 0.1944 0.0194 0.2644

30 Small β1 0.0158 0.8942 -0.0039 0.2975 -0.0023 0.3064
β2 0.0813 0.9019 -0.0337 0.3221 -0.0246 0.3297
β3 -0.0390 0.1134 0.0463 0.0930 0.0389 0.0942

Medium β1 1.1092 9.5134 0.3338 2.7361 0.3333 2.7289
β2 5.8485 9.4216 1.6683 2.5723 1.6503 2.5427
β3 -0.7840 0.3965 -0.5016 0.2526 -0.4981 0.2508

Large β1 -0.1458 1.2162 -0.1294 1.0389 -0.1446 1.1601
β2 -0.6243 0.9940 -0.5159 0.7779 -0.5956 0.8960
β3 1.2061 0.6270 0.7472 0.3821 0.8216 0.4208

75 Small β1 0.0006 0.2267 -0.0066 0.1879 -0.0072 0.1900
β2 0.0017 0.2442 -0.0403 0.2030 -0.0428 0.2052
β3 0.0227 0.0648 0.0471 0.0613 0.0489 0.0622

Medium β1 0.0765 1.2537 -0.0094 0.3512 -0.0012 0.3577
β2 0.4821 1.3349 0.0059 0.3589 0.0434 0.3772
β3 -0.1185 0.1420 0.0321 0.0961 0.0122 0.0946

Large β1 0.1835 2.3119 0.1385 1.1888 0.1387 1.1823
β2 0.8173 1.6597 0.5605 0.9529 0.5721 0.9577
β3 -0.2468 0.1447 -0.1475 0.1015 -0.1663 0.1117

Average β 0.5791 1.8621 0.2658 0.7011 0.2964 0.7639

distribution of the data from which inferences can be made. The integral is almost
always intractable, i.e. has no closed form solution.

5.2. Normal data. From Table 5 and Figures 2 it follows that in the case of
the Spillman-Mitscherlich model and normally distributed data, the normal prior
average RelBias (in absolute value) and the average RMSE of the over all T,
D, and the three parameters are larger than of the Skew normal prior and Skew-t
prior. Furthermore, the average RelBias (in absolute value) and average RMSE
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Table 6. RelBias and RMSE for the Normal (N), Skew-Normal
(SN), and Skew-t (S-t) prior for the linear Quadratic model for
normal data

Prior
(T) Variance

(D)
Parameter N SN S-t

RelBias RMSE RelBias RMSE RelBias RMSE
10 Small γ1 0.0053 0.0977 0.0053 0.0977 0.0053 0.0978

γ2 0.0021 0.0663 0.0017 0.0663 0.0010 0.0706
γ3 0.0344 0.0606 0.0341 0.0606 0.0395 0.0620

Medium γ1 0.005 0.3643 0.0048 0.3652 0.0046 0.3648
γ2 -0.0153 0.1388 -0.0159 0.1397 -0.0102 0.1454
γ3 -0.0198 0.1289 -0.0161 0.1286 -0.0071 0.1343

Large γ1 0.0153 0.1704 0.0148 0.1708 0.0155 0.2311
γ2 0.1532 0.1229 0.1518 0.1234 0.1540 0.1406
γ3 -0.1518 0.1074 -0.1435 0.1065 -0.1477 0.1251

30 Small γ1 0.0002 0.0474 0.0003 0.0471 0.0003 0.0479
γ2 -0.012 0.0417 -0.0119 0.042 -0.0147 0.0426
γ3 -0.0166 0.0318 -0.0168 0.0318 -0.0112 0.0327

Medium γ1 0.0010 0.1994 0.0009 0.1992 0.0009 0.0411
γ2 -0.0116 0.0727 -0.0142 0.0730 -0.0119 0.0060
γ3 -0.0235 0.0725 -0.0182 0.0726 -0.0346 0.0058

Large γ1 -0.0122 0.1014 -0.0122 0.1016 -0.0068 0.0904
γ2 0.1027 0.0722 0.1024 0.0719 0.1113 0.0791
γ3 -0.1318 0.0665 -0.1295 0.0662 -0.1440 0.0685

75 Small γ1 -0.0007 0.0381 -0.0007 0.0382 -0.0008 0.0378
γ2 -0.0027 0.0249 -0.0026 0.0250 -0.0024 0.0253
γ3 0.0013 0.0251 0.0009 0.0252 -0.0018 0.0248

Medium γ1 0.0047 0.0109 0.0046 0.1038 0.0070 0.0128
γ2 -0.0152 0.0027 -0.0160 0.0519 -0.0141 0.0030
γ3 -0.0303 0.0021 -0.0287 0.0455 -0.0333 0.0022

Large γ1 -0.0002 0.0516 -0.0002 0.0515 -0.0054 0.0688
γ2 -0.0473 0.0440 -0.0469 0.0440 -0.0416 0.0442
γ3 -0.0153 0.0399 -0.0159 0.0400 -0.0145 0.0413

Average Γ 0.0308 0.0816 0.0300 0.0885 0.0312 0.0758

of SN are slightly smaller than of S-t. Note that for small-D and T=75 the average
RelBias over all the three parameters of the normal prior is smaller than that of
the Skew normal and Skew-t prior. For the average RMSEs of the three priors the
opposite holds, however.

Table 6 and Figures 2 show that in the case of normal data for the linear
Quadratic model the average RelBias (in absolute value) (over all T, D, and the
three parameters) of the normal prior (N) is larger than that of the Skew normal
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Figure 2. Average RelBias and RMSE of the Normal (N), Skew
Normal (SN), and Skew-t (S-t) prior for the Spillman-Mitscherlich
and linear Quadratic model for normal data

prior (SN), but slightly smaller than that of the Skew-t prior. However, the RMSE
of the Skew-t prior is smaller than that of the normal and Skew normal prior.
Moreover, the RMSE of the normal prior is smaller than that of the Skew normal
prior.

Tables 7 and 8 show the overall fit statistics for the Spillman-Mitscherlich
and linear Quadratic model for normal data. For T=10 and all D the DIC, EAIC,
and EBIC favor the normal prior for both models (with some minor exceptions).
For T=30 and 75 all measures favor the Skew-t prior, except for the Spillman-
Mitscherlich model, T=30 and small-D where the normal prior is selected by all
criteria.

6. Concluding Remarks

This paper analyzed by way of Monte Carlo simulation Bayesian inference of
random parameter dose - response models with (i) normal and (ii) skewed, heavy-
tailed (Skew-t) distributions of the random response parameter component and
independently normally distributed errors. The data generating models were the
Skew-t distribution and the normal distribution. The commonly applied linear
Quadratic and the nonlinear Spillman-Mitscherlich dose - response model were
estimated by means of Bayesian methods. Three priors were considered: a normal,
symmetric prior, a Skew normal prior and, finally, a Skew-t prior. The first set of
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Table 7. DIC, EAIC and EBIC for the Normal (N), Skew-
Normal (SN), and Skew-t (S-t) prior for the Spillman-Mitscherlich
model for normal data

Prior
(T) Variance

(D)
Parameter N SN S-t

10 Small DIC 210.32 (66%) 212.96 (8%) 212.58 (26%)
EAIC 217.32 (87%) 222.96 (4%) 223.58 (29%)
EBIC 215.76 (83%) 220.74 (5%) 221.14 (12%)

Medium DIC 90.46 (60%) 92.12 (5%) 90.42 (35%)
EAIC 97.46 (82%) 102.12 (1%) 101.42 (17%)
EBIC 95.90 (79%) 99.90 (1%) 98.98 (20%)

Large DIC 218.21 (81%) 219.85 (3%) 220.27 (16%)
EAIC 225.21 (99%) 229.85 (0%) 231.27 (1%)
EBIC 223.66 (99%) 227.63 (0%) 228.83 (1%)

30 Small DIC 625.59 (65%) 631.07 (0%) 626.16 (35%)
EAIC 632.59 (82%) 641.07 (0%) 637.16 (18%)
EBIC 634.38 (85%) 643.63 (0%) 639.97 (15%)

Medium DIC 259.90 (3%) 256.85 (8%) 250.02 (89%)
EAIC 266.90 (15%) 266.85 (5%) 261.02 (80%)
EBIC 268.69 (22%) 269.40 (5%) 263.83 (73%)

Large DIC 687.84 (15%) 691.34 (0%) 683.70 (85%)
EAIC 694.84 (54%) 701.34 (0%) 694.70 (46%)
EBIC 696.62 (68%) 703.89 (0%) 697.51 (32%)

75 Small DIC 1575.76 (0%) 1573.29 (0%) 1560.76 (100%)
EAIC 1582.76 (4%) 1583.29 (0%) 1571.76 (96%)
EBIC 1587.33 (8%) 1589.83 (0%) 1578.95 (92%)

Medium DIC 661.23 (0%) 647.74 (0%) 632.66 (100%)
EAIC 668.23 (0%) 657.74 (0%) 643.66 (100%)
EBIC 672.81 (0%) 664.27 (0%) 650.85 (100%)

Large DIC 1764.82 (9%) 1764.62 (9%) 1760.00 (82%)
EAIC 1771.82 (46%) 1774.62 (1%) 1771.00 (53%)
EBIC 1776.39 (67%) 1781.15 (0%) 1778.18 (33%)

simulations examined the performance of the three priors in the case of the Skew-t
data; the second in the case of normal data.

The simulation results showed that the Skew-t prior is more accurate and
efficient than the normal and Skew-normal in the case of skewed heavy-tailed data.
For random components that follow a normal distribution, the Skewed-t prior ob-
tain comparable result as the Skew normal prior and more accurate and efficient
than the normal in the case of the nonlinear Spillman-Mitscherlich model. For the
linear Quadratic model the Skew normal prior is more accurate than the normal
and slightly more accurate than the Skew-t prior. Furthermore, the Skew-t prior
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Table 8. DIC, EAIC and EBIC for the Normal (N), Skew-
Normal (SN), and Skew-t (S-t) prior for the linear Quadratic model
for normal data

Prior
(T) Variance

(D)
Parameter N SN S-t

10 Small DIC 173.02 (65%) 178.57 (0%) 176.28 (35%)
EAIC 180.02 (89%) 188.57 (0%) 187.28 (11%)
EBIC 178.46 (85%) 186.36 (0%) 184.84 (35%)

Medium DIC 88.19 (38%) 89.70 (1%) 87.04 (61%)
EAIC 95.19 (81%) 99.70 (0%) 98.04 (19%)
EBIC 93.64 (72%) 97.48 (0%) 95.60 (28%)

Large DIC 140.08 (41%) 141.82 (4%) 139.02 (55%)
EAIC 147.08 (80%) 151.82 (0%) 150.02 (20%)
EBIC 145.52 (75%) 149.60 (0%) 147.58 (25%)

30 Small DIC 509.04 (19%) 510.21 (0%) 503.82 (81%)
EAIC 516.04 (48%) 520.21 (2%) 514.82 (50%)
EBIC 517.82 (53%) 522.76 (0%) 517.63 (47%)

Medium DIC 257.53 (0%) 253.68 (3%) 245.17 (97%)
EAIC 264.53 (9%) 263.68 (5%) 256.17 (86%)
EBIC 266.32 (12%) 266.23 (5%) 258.98 (83%)

Large DIC 411.27 (4%) 409.42 (3%) 401.77 (92%)
EAIC 418.27 (29%) 419.42 (1%) 412.77 (70%)
EBIC 420.06 (38%) 421.97 (0%) 415.57 (62%)

75 Small DIC 1266.50 (3%) 1261.21 (0%) 1245.83 (97%)
EAIC 1273.50 (3%) 1271.21 (0%) 1256.83 (97%)
EBIC 1278.07 (5%) 1277.75 (0%) 1264.01 (95%)

Medium DIC 647.19 (0%) 633.57 (0%) 615.52 (100%)
EAIC 654.19 (0%) 643.57 (0%) 626.52 (100%)
EBIC 658.76 (0%) 650.11 (0%) 633.71 (100%)

Large DIC 1026.05 (0%) 1021.44 (2%) 1004.22 (98%)
EAIC 1033.05 (1%) 1031.44 (1%) 1015.22 (98%)
EBIC 1037.62 (3%) 1037.97 (1%) 1022.41 (96%)

is more efficient than the normal and Skew normal prior. Overall, the Skew-t prior
seems to be preferable to the normal and Skew-normal alternatives for dose re-
sponse modeling, especially because skewed response data is more common than
normal response data and the linear Quadratic model is preferable to the nonlinear
Spillman-Mitscherlich model in many cases.
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Appendix A. R program of Gibbs sampler for Bivariate distribution.

Let (y1, y2) be a single observation from a bivariate normally distributed

population with unknown mean θ = (θ1, θ2) and covariance matrix
( σ2

1 ρ

ρ σ2
1

)
. With

a uniform prior distribution on θ, the posterior distribution is(
θ1
θ2

)
|y ∼ N(

( y1
y2

)
,
( σ2

1 ρ

ρ σ2
1

)
).

Although it is simple to draw directly from the joint posterior distribution of
(θ1, θ2), we consider the Gibbs sampler for the purpose of illustration. To ap-
ply the Gibbs sampler to (θ1, θ2), we need the conditional posterior distributions
which are
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θ1|θ2, y ∼N(y1 + ρσ1

σ2
(θ2 − y2), (1− ρ2)σ2

1)

θ2|θ1, y ∼N(y2 + ρσ2

σ1
(θ1 − y1), (1− ρ2)σ2

2)
The Gibbs sampler proceeds by alternately sampling from these two normal dis-
tribution. For a bivariate distribution (θ1, θ2), the Gibbs sampler algorithm is as
follows

1. Initialize θ0 at time t = 0.
2. For each iteration, indexed t = 1, 2, ... do:

a. Set θt−1 = (θ1, θ2)
b. Generate θ1(1) from f(θ1|θ2)
c. Update θ1 = θ1(1)

d. Generate θ2(1) from f(θ2|θ1)
e. Set θt = (θ1(t), θ2(t))

#Let X=θ, x1=θ1, x2=θ2

#initialize constants and parameters
N < − 5000 #length of chain
burn < − 1000 #burn-in length
X < − matrix(0, N, 2) #the chain, a bivariate sample
rho < − -.75 #correlation
mu1 < − 0
mu2 < − 2
sigma1 < − 1
sigma2 < − .5
s1 < − sqrt(1-rho2)*sigma1
s2 < − sqrt(1-rho2)*sigma2
# generate the chain
X [1, ] < − c (mu1, mu2) #initialize
for (i in 2:N) {
x2 < − X [i-1, 2]
m1 < − mu1 + rho * (x2 - mu2) * sigma1/sigma2
X [i, 1] < − rnorm (1, m1, s1)
x1 < − X [i, 1]
m2 < − mu2 + rho * (x1 - mu1) * sigma2/sigma1
X [i, 2] < − rnorm (1, m2, s2) }
b < − burn + 1
x < − X [b:N, ]
#compare sample statistics to parameters
colMeans(x)
cov(x)
cor(x)
plot(x, main=, cex=.5, xlab=bquote(X[1]), ylab= bquote(X[2]), ylim=range(x[,2]))


