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ON MINIMUM AND MAXIMUM

OF FUNCTIONS OF SMALL BAIRE CLASSES

Atok Zulijanto

Abstract. A real-valued function on a Polish space X is said to of Baire class one

(or simply, a Baire-1 function) if it is the pointwise limit of a sequence of continuous

functions. Let B1(X) be the set of all real-valued Baire-1 functions on X. Kechris and

Louveau defined the set of functions of small Baire class ξ for each countable ordinal

ξ as Bξ
1(X) = {f ∈ B1(X) : β(f) ≤ ωξ}, where β(f) denotes the oscillation index of

f . In this paper we prove that the minimum and maximum of two functions of small

Baire class ξ are also functions of small Baire class ξ. This extends a result of Chaatit,

Mascioni, and Rosenthal [1] who obtained the result for ξ = 1.

1. INTRODUCTION

Let X be a metrizable space. A function f : X → R is said to be of Baire
class one (or simply, a Baire-1 function) if it is the pointwise limit of a sequence of
continuous functions on X. The Baire Characterization Theorem states that if X
is a Polish space, that is, a separable completely metrizable space, then f : X → R
is of Baire class one if and only if f |F has a point of continuity for every nonempty
closed subset F of X. This leads naturally to the oscillation index for Baire-1
functions. This ordinal index was used by Kechris and Louvaeu [2] to give a finer
gradation of Baire-1 functions into small Baire classes. Let B1(X) be the set of
all Baire-1 functions on X. For every ordinal ξ < ω1, the set of functions of small
Baire class ξ is defined as

Bξ
1(X) = {f ∈ B1(X) : β(f) ≤ ωξ}.

This study was continued by various authors. (See, e.g., [3],[4],and [5]).

Received 17-10-2009, Accepted 15-01-2010.
2000 Mathematics Subject Classification: Primary 26A21; Secondary 03E15, 54C30
Key words and Phrases: Baire class one functions, oscillation index

113



114 A. Zulijanto

In this paper, we prove that if f and g belong to a small Baire class ξ for
some ξ < ω1, then the minimum and maximum of f and g also belong to that
class. This extends a result of Chaatit, Mascioni and Rosenthal [1] who obtained
the result for ξ = 1.

We begin by recalling the definition of oscillation index β. The oscillation
index β is associated with a family of derivations. Let X be a metrizable space and
C denote the collection of all closed subsets of X. A derivation is a map D : C → C
such that D(H) ⊆ H for all H ∈ C. Let ε > 0 and a function f : X → R be given.
For any closed subset H of X set D0(f, ε,H) = H and D1(f, ε,H) be the set of all
x ∈ H such that for every open set U containing x there are two points x1 and x2

in U ∩H with |f(x1)− f(x2)| ≥ ε. For α < ω1, let

Dα+1(f, ε, H) = D1(f, ε,Dα(f, ε, H)).

If α is a countable limit ordinal,

Dα(f, ε, H) =
⋂

α′<α

Dα′(f, ε, H).

The ε-oscillation index of f on H is defined by

βH(f, ε) =





the smallest ordinal α < ω1 such that Dα(f, ε, H) = ∅
if such an α exists,

ω1, otherwise.

The oscillation index of f on the set H is defined by

βH(f) = sup{βH(f, ε) : ε > 0}.

We shall write β(f, ε) and β(f) for βX(f, ε) and βX(f) respectively.

2. MAIN RESULTS

Throughout, let X be a Polish space. For f, g : X → R, we denote their
minimum and their maximum by f ∧ g and f ∨ g respectively. A result in [1] is
that if the oscillation indices of f and g are finite then the oscillation indices of
f ∧ g and f ∨ g are also finite. We extend this result into the classes of small Baire
functions. We get the following result.

Theorem 2.1. Let f, g : X → R. If β(f) ≤ ωξ and β(g) ≤ ωξ for some ξ < ω1,
then β(f ∧ g) ≤ ωξ and β(f ∨ g) ≤ ωξ.

Theorem 2.1 is proved by the method used in [2]. Following [5], we define
a derivation G which closely related to D. Given a real-valued function f on X,
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ε > 0, and a closed subset H of X. Define G(f, ε, H) to be the set of all x ∈ H
such that for any open neighborhood U of x, there exists x′ ∈ H ∩ U such that
|f(x)− f(x′)| ≥ ε. Let

G1(f, ε, H) = G(f, ε, H)

where the closure is taken in X. If α < ω1, let

Gα+1(f, ε, H) = G1(f, ε,Gα(f, ε, H)).

If α < ω1 is a limit ordinal, let

Gα(f, ε, H) =
⋂

α′<α

Gα′(f, ε,H).

The relationship between derivations D and G is given in the following lemma
that can be seen in [5, Lemma 4].

Lemma 2.2. If f be real-valued function on X, ε > 0 and H is a closed subset of
X, then

Dα(f, 2ε, H) ⊆ Gα(f, ε, H) ⊆ Dα(f, ε,H),

for all α < ω1.

Before we prove the main result, we show the following results first.

Lemma 2.3. If f1 and f2 are real-valued functions on X, ε > 0, H is a closed
subset of X and f = f1 ∧ f2 then

G1(f, ε,H) ⊆ G1(f1, ε, H) ∪ G1(f2, ε,H).

Proof. Let x ∈ G(f, ε, H). If U is an open neighborhood of x in X then there exists
x′ ∈ U ∩H such that |f(x)− f(x′)| ≥ ε. If |f(x)− f(x′)| = f(x)− f(x′), then

|f(x)− f(x′)| = fi(x)− fj(x′) , i, j ∈ {1, 2}
≤ fj(x)− fj(x′) , j ∈ {1, 2}
= |fj(x)− fj(x′)| , j ∈ {1, 2}.

Therefore |fj(x)−fj(x′)| ≥ ε , j ∈ {1, 2}. This shows x ∈ G(f1, ε, H)∪G(f2, ε,H).
Similarly, whenever |f(x)− f(x′)| = f(x′)− f(x).

It follows that

G1(f, ε,H) = G1(f1, ε, H) ∪ G1(f2, ε,H).

Similarly, we obtain the following lemma.
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Lemma 2.4. If f1 and f2 are real-valued functions on X, ε > 0, H is a closed
subset of X and f = f1 ∨ f2 then

G1(f, ε,H) ⊆ G1(f1, ε, H) ∪ G1(f2, ε,H).

Now, we are ready to prove the main result.

Proof of Theorem 2.1. We prove for the minimum of f and g, for the f ∨ g we can
prove in the similar way, by using Lemma 2.4 instead of Lemma 2.3. Let ε > 0.
First, we prove that

Gωξ

(f ∧ g, ε, H) ⊆ Gωξ

(f, ε,H) ∪ Gωξ

(g, ε, H). (1)

for all closed subset H of X and ξ < ω1.
We prove (1) by transfinite induction on ξ. For ξ = 0, i.e., ωξ = 1, this just

Lemma 2.3. Since (Gα(f, ε,H))α and (Gα(g, ε, H))α are non-increasing, then (1) is
immediate for a limit ordinal ξ < ω1.

Suppose that (1) is true for some ordinal ξ < ω1, we have to prove that (1)
is also true for ξ + 1. For this, we need to prove that

Gωξ·2n(f ∧ g, ε,H) ⊆ Gωξ·n(f, ε, H) ∪ Gωξ·n(g, ε, H) (2)

for all n ∈ N.
For this, let for s ∈ 2k = {(ε1, ε2, . . . , εk) : εi = 0 or 1} , k ∈ N, we define

Hs as follows

H0 = Gωξ

(f, ε,H),

H1 = Gωξ

(g, ε,H),

and

Hs∧0 = Gωξ

(f, ε, Hs),

Hs∧1 = Gωξ

(g, ε, Hs).

In order to prove (2), we need to show that

Gωξ·k(f ∧ g, ε,H) ⊆
⋃

s∈2k

Hs (3)

for all k ∈ N. By the assumption induction, statement (3) is true for k = 1.
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Suppose that (3) is true fo some k ∈ N. We obtain

Gωξ·(k+1)(f ∧ g, ε, H) = Gωξ·k+ωξ

(f ∧ g, ε, H)

= Gωξ

(f ∧ g, ε,Gωξ·k(f ∧ g, ε,H))

⊆ Gωξ

(f ∧ g, ε,
⋃

s∈2k

Hs)

⊆
⋃

s∈2k

Gωξ

(f ∧ g, ε,Hs) by [5, Lemma 4]

⊆
⋃

s∈2k

(Gωξ

(f, εHs) ∪ Gωξ

(g, ε, Hs)

= (
⋃

s∈2k

Gωξ

(f, ε,Hs) ∪ (
⋃

s∈2k

Gωξ

(g, ε, Hs))

= (
⋃

s∈2k

Hs∧0) ∪ (
⋃

s∈2k

Hs∧1)

=
⋃

s∈2k+1

Hs.

By (3), for all n ∈ N, we have

Gωξ·2n(f ∧ g, ε, H) ⊆
⋃

s∈22n

Hs

⊆
⋃
{Hs : s ∈ 22n dan card ({k : s(k) = 0}) ≥ n}

∪
⋃
{Hs : s ∈ 22n dan card ({k : s(k) = 1}) ≥ n}.

If s takes at least n values 0, then Hs ⊆ Gωξ·n(f, ε,H). Similarly, if s takes at least
n values 1, then Hs ⊆ Gωξ·n(g, ε,H). Therefore, the proof of (2) is finished.

Since (Gα(f, ε,H))α and (Gα(g, ε, H))α are non-increasing, then by taking
the intersection over n in (2) gives

Gωξ+1
(f ∧ g, ε, H) ⊆ Gωξ+1

(f, ε, H) ∪ Gωξ+1
(g, ε, H).

Using (1) and Lemma 2.1, since β(f) ≤ ωξ and β(g) ≤ ωξ, then

Gωξ

(f, ε,H) = ∅ dan Gωξ

(g, ε, H) = ∅.

Therefore,
Dωξ

(f ∧ g, 2ε,H) ⊆ Gωξ

(f ∧ g, ε,H) = ∅.
It follows that β(f ∧ g) ≤ ωξ.



118 A. Zulijanto

REFERENCES

1. F. Chaatit, V. Mascioni and H.P. Rosenthal, “On functions of finite Baire index”,

J. Funct. Anal. 142 (1996), 277–295.

2. A.S. Kechris and A. Louveau, “A classification of Baire class 1 functions”, Trans.

Amer. Math. Soc. 318 (1990), 209–326.

3. P. Kiriakouli, “A classification of Baire-1 functions”, Trans. Amer. Math. Soc. 351

(1999), 4599–4609.

4. D.H.Leung and W.-K.Tang, “Functions of Baire class one”, Fund. Math. 179

(2003), 225–247.

5. D.H.Leung and W.-K.Tang, “extension of functions with small oscillation”, Fund.

Math. 192 (2006), 183–193.

Atok Zulijanto: Department of Mathematics, Faculty of Mathematics and Natural

Sciences, Gadjah Mada University, Yogyakarta, Indonesia.

E-mail: atokzulijanto@yahoo.com


