STAR PROJECTIVE AND STAR INJECTIVE H_{v}-MODULES

A. Mortazavi and B. Davvaz
Department of Mathematics, Yazd University, Yazd, Iran
davvaz@yazd.ac.ir

Abstract

In this paper meantime the check and the defining concepts of product and direct sum, star projective and star injective in H_{v}-modules, we introduce a generalization extra of some notions in homological algebra to prove the five lemma and star projective and star injective Theorems in H_{v}-modules. We determine the conditions equivalent to split sequences in H_{v}-modules and also some interesting results on these concepts are given.

Key words and Phrases: H_{v}-module, direct product and direct sum, star projective, star injective, split sequence.

Abstract

Abstrak. Dalam makalah ini, konsep perkalian dan jumlah langsung, projektif bintang, dan injektif bintang di modul-modul- H_{v} diperiksa dan didefinisikan. Kita memperkenalkan suatu ekstra perumuman dari beberapa gagasan dalam aljabar homologi untuk membuktikan five lemma dan teorema star projective dan star injective di modul-modul $-H_{v}$. Kita menentukan kondisi-kondisi yang setara dengan barisan terpisah di modul-modul- H_{v}. Beberapa hasil menarik pada konsep-konsep ini juga diberikan.

Kata kunci: modul- H_{v}, perkalian dan jumlah langsung, star projective, star injective, barisan terpisah

1. Introduction

A couple (H, \circ) of a non-empty set H and a mapping on $H \times H$ into the family of non-empty subsets of H is called a hyperstructure (or hypergroupoid). A hypergroup is a hyperstructure (H, \circ) with associative law: $(x \circ y) \circ z=x \circ(y \circ z)$ for every $x, y, z \in H$ and the reproduction axiom is valid: $x \circ H=H \circ x=H$ for every $x \in H$, i.e., for every $x, y \in H$ there exist $u, v \in H$ such that $y \in x \circ u$

[^0]and $y \in v \circ x$. This concept is introduced by Marty in 1934 [11]. If A and B are non-empty subsets of H, then $A \circ B$ is given by
$$
A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b
$$

Also, $x \circ A$ is used for $\{x\} \circ A$ and $A \circ x$ for $A \circ\{x\}$. Hyperrings, hypermodules and other hyperstructures are defined and several books have been written till now $[1,2,8,14]$. The concept of H_{v}-structures as a larger class than the well known hyperstructures was introduced by Vougiouklis at fourth congress of AHA (Algebraic Hyperstructures and Applications) [15], where the axioms are replaced by the weak ones, that is instead of the equality on sets one has non-empty intersections. The basic definitions and results of H_{v}-structures can be found in $[4,5,6,7,9,10,12,13,14]$. The fundamental relations, weak equality, weak commutative, weak monic, weak epic, weak isomorphism, star homomorphism, star isomorph, direct product and direct sum, isomorph sequences and star projective and split sequences in H_{v}-modules are defined and is proved some results in $[3,14,16,17]$. Also, some famous lemmas such as five short lemma, Snake lemma, Shanuels lemma are derived in the context of H_{v}-modules. The notions of $M[-]$ and $-[M]$ functors are introduced in [17] and the authors investigated the exactness of them and other problems.

The notion of exact sequences is a fundamental concept and it has been widely used in many areas such as ring and module theory. Our aim in this paper meantime the defining concept star injective, introduce a generalization extra of some notions in homological algebra to prove the five lemma and theorems star projective and star injective in H_{v}-modules. Determine the conditions to split a sequence (in H_{v}-modules) and finally some interesting results are given.

2. BASIC CONCEPTS

The hyperstructure (H, \circ) is called an H_{v}-group if " \circ " is weak associative: $x \circ(y \circ z) \cap(x \circ y) \circ z \neq \varnothing$ and the reproduction axiom is hold: $x \circ H=H \circ x=H$ for every $x \in H$. The $H_{v^{-}}$group H is weak commutative if for every $x, y \in H$, $x \circ y \cap y \circ x \neq \varnothing$.

A multivalued system $(R,+, \cdot)$ is an H_{v}-ring if $(R,+)$ is a weak commutative H_{v}-group, (R, \cdot) is a weak associative hyperstructure where "." hyperoperation is weak distributive with respect to "+"; i.e. for every $x, y, z \in R$ we have $x \cdot(y+z) \cap(x \cdot y+x \cdot z) \neq \varnothing$ and $(x+y) \cdot z \cap(x \cdot z+y \cdot z) \neq \varnothing$.

A non-empty set M is a (left) H_{v}-module over an H_{v}-ring R if $(M,+)$ is a weak commutative H_{v}-group and there exists a map $\cdot: R \times M \longrightarrow P^{*}(M)$ denoted by $(r, m) \longmapsto r m$ such that for every $r_{1}, r_{2} \in R$ and every $m_{1}, m_{2} \in M$ we have $r_{1}\left(m_{1}+m_{2}\right) \cap\left(r_{1} m_{1}+r_{1} m_{2}\right) \neq \varnothing,\left(r_{1}+r_{2}\right) m_{1} \cap\left(r_{1} m_{1}+r_{2} m_{1}\right) \neq \varnothing$ and $\left(r_{1} r_{2}\right) m_{1} \cap r_{1}\left(r_{2} m_{1}\right) \neq \varnothing$.

A mapping $f: M_{1} \longrightarrow M_{2}$ of H_{v}-modules M_{1} and M_{2} over an H_{v}-ring R is a strong homomorphism (homomorphism)if for every $x, y \in M_{1}$ and every $r \in R$ we have $f(x+y)=f(x)+f(y)$ and $f(r x)=r f(x)$.

By using a certain type of equivalence relations we can connect hyperstructures to ordinary structures.

Let $(R,+, \cdot)$ be an H_{v}-ring. Vougiouklis in [14] defined the relation γ^{*} as the smallest equivalence relation on R such that the quotient set $R / \gamma^{*}=\left\{\gamma^{*}(r) \mid r \in R\right\}$ is a ring. The γ^{*} is called the fundamental equivalence relation on R and R / γ^{*} is called the fundamental ring. Let us denote the set of all finite polynomials of elements of R, over \mathbb{N}, by \mathcal{U}. We define the relation γ as follows:

$$
x \gamma y \Leftrightarrow\{x, y\} \subseteq u, \text { for some } u \in \mathcal{U}
$$

Theorem 2.1. [14] The relation γ^{*} is the transitive closure of the relation γ, and the addition and multiplication operations on R / γ^{*} are defined as follows:

$$
\begin{aligned}
& \gamma^{*}(a) \oplus \gamma^{*}(b)=\gamma^{*}(c), \text { for all } c \in \gamma^{*}(a)+\gamma^{*}(b) \\
& \gamma^{*}(a) \odot \gamma^{*}(b)=\gamma^{*}(c), \text { for all } c \in \gamma^{*}(a) \cdot \gamma^{*}(b)
\end{aligned}
$$

Now, suppose that M is an H_{v}-module over an H_{v}-ring R. Vougiouklis in [13] defined the relation ε^{*} as the smallest equivalence relation on M such that the quotient $\left\{M / \varepsilon^{*}(x) \mid x \in M\right\}$ is a module over the ring R / γ^{*}. The relation ε^{*} is called the fundamental equivalence relation on M and M / ε^{*} is called the fundamental module. Let us denote ϑ the set of all expressions consisting of finite hyperoperations either on R and M or the external hyperoperation applied on finite sets of elements of R and M [13]. We consider the relation ε on M as follows:

$$
x \varepsilon y \Leftrightarrow\{x, y\} \subseteq v, \text { for some } v \in \vartheta
$$

Theorem 2.2. [13] The relation ε^{*} is the transitive closure of the relation ε, and the addition and external product on M / ε^{*} are defined as follows:

$$
\begin{aligned}
& \varepsilon^{*}(x) \oplus \varepsilon^{*}(y)=\varepsilon^{*}(z), \text { for all } z \in \varepsilon^{*}(x)+\varepsilon^{*}(y) \\
& \gamma^{*}(r) \odot \varepsilon^{*}(x)=\varepsilon^{*}(t), \text { for all } t \in \gamma^{*}(r) \cdot \varepsilon^{*}(x)
\end{aligned}
$$

The heart of an H_{v}-module M over an H_{v}-ring R is denoted by ω_{M} and is defined by $\omega_{M}=\left\{x \in M \mid \varepsilon_{M}^{*}(x)=0\right\}$, where 0 is the unit element of the group $\left(M / \varepsilon^{*}, \oplus\right)$. One can prove that the unit element of the group $\left(M / \varepsilon^{*}, \oplus\right)$ is equal to ω_{M}. By the definition of ω_{M} we have $\omega_{\omega_{M}}=\operatorname{Ker}\left(\phi: \omega_{M} \longrightarrow \omega_{M} / \varepsilon_{\omega_{M}}^{*}=0\right)=\omega_{M}$.

Let M_{1} and M_{2} be two H_{v}-modules over an H_{v}-ring R and $\varepsilon_{1}^{*}, \varepsilon_{2}^{*}$ and ε^{*} be the fundamental relations on M_{1}, M_{2} and $M_{1} \times M_{2}$ respectively, then $\left(x_{1}, x_{2}\right) \varepsilon^{*}\left(y_{1}, y_{2}\right)$ if and only if $x_{1} \varepsilon_{1}^{*} y_{1}$ and $x_{2} \varepsilon_{2}^{*} y_{2}$ for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in M_{1} \times M_{2}[13,14]$.

Weak equality (monic, epic), exact sequences and relative results in $H_{v^{-}}$ modules are defined as follows [3]:

Let M be an H_{v}-module. The non-empty subsets X and Y of M are weakly equal if for every $x \in X$ there exists $y \in Y$ such that $\varepsilon_{M}^{*}(x)=\varepsilon_{M}^{*}(y)$ and for every $y \in Y$ there exists $x \in X$ such that $\varepsilon_{M}^{*}(x)=\varepsilon_{M}^{*}(y)$ that is denoted by $X \stackrel{w}{=} Y$. The sequence

$$
M_{o} \xrightarrow{f_{1}} M_{1} \xrightarrow{f_{2}} M_{2} \xrightarrow{f_{3}} \cdots \xrightarrow{f_{n-1}} M_{n-1} \xrightarrow{f_{n}} M_{n}
$$

of H_{v}-modules and strong homomorphisms is exact if for every $2 \leq i \leq n$,

$$
\operatorname{Im}\left(f_{i-1}\right) \stackrel{w}{=} \operatorname{Ker}\left(f_{i}\right)
$$

where $\operatorname{Ker}\left(f_{i}\right)=\left\{a \in M_{i-1} \mid f_{i}(a) \in \omega_{M_{i}}\right\}$ (that is an $H_{v^{-}}$-submodule of M_{i-1}).
The strong homomorphism $f: M_{1} \longrightarrow M_{2}$ is called weak monic if for every $m_{1}, m_{1}^{\prime} \in M_{1}$ the equality $f\left(m_{1}\right)=f\left(m_{1}^{\prime}\right)$ implies $\varepsilon_{M_{1}}^{*}\left(m_{1}\right)=\varepsilon_{M_{1}}^{*}\left(m_{1}^{\prime}\right)$ and f is called weak epic if for every $m_{2} \in M_{2}$ there exists $m_{1} \in M_{1}$ such that $\varepsilon_{M_{2}}^{*}\left(m_{2}\right)=$ $\varepsilon_{M_{2}}^{*}\left(f\left(m_{1}\right)\right)$. Finally, f is called weak-isomorphism if f is weak monic and weak epic.

It is easy to see that every one to one (onto) strong homomorphism is weak monic (weak epic), but the converse is not true necessarily. In fact the concept of weak monic (weak epic) is a generalization of the concept of one to one (onto).

Let $f: A \longrightarrow B$ be a strong homomorphism of H_{v}-modules over an H_{v}-ring R. Then, we have $f\left(\omega_{A}\right) \subseteq \omega_{B}$ and so $\omega_{A} \subseteq \operatorname{Ker}(f)$. Moreover, $\operatorname{Ker}(f)=\omega_{A}$ if and only if f is weak monic.

A mapping $f: M_{1} \longrightarrow M_{2}$ of H_{v}-modules M_{1} and M_{2} over an H_{v}-ring R is called a star homomorphism if for every $x, y \in M_{1}$ and every $r \in R: \varepsilon_{M_{2}}^{*}(f(x+y))=$ $\varepsilon_{M_{2}}^{*}(f(x)+f(y))$ and $\varepsilon_{M_{2}}^{*}(f(r x))=\varepsilon_{M_{2}}^{*}(r f(x))$; i.e. $f(x+y) \stackrel{w}{=} f(x)+f(y)$ and $f(r x) \stackrel{w}{=} r f(x)$.

Two mappings $f, g: M \longrightarrow N$ on H_{v}-modules are called weak equal if for every $m \in M ; \varepsilon_{N}^{*}(f(m))=\varepsilon_{N}^{*}(g(m))$ and denote by $f \stackrel{w}{=} g$. The following diagram of H_{v}-modules and strong homomorphisms is called star commutative if $g \circ f \stackrel{w}{=} h$.

Also, it is called commutative if for every $a \in A, g \circ f(a)=h(a)$.
The sequences

and

$$
\omega_{A^{\prime}} \longrightarrow A^{\prime} \xrightarrow{f^{\prime}} B^{\prime} \xrightarrow{g^{\prime}} C^{\prime} \longrightarrow \omega_{C^{\prime}}
$$

are called isomorph (star isomorph) if there exist weak-isomorphisms (star homomorphisms) $\alpha: A \longrightarrow A^{\prime}, \beta: B \longrightarrow B^{\prime}$ and $\gamma: C \longrightarrow C^{\prime}$ such that the following diagram is commutative (star commutative):

According to [3] for every strong homomorphism $f: M \longrightarrow N$ there is the R / γ^{*}-homomorphism $F: M / \varepsilon_{M}^{*} \longrightarrow N / \varepsilon_{N}^{*}$ of R / γ^{*}-modules defined by $F\left(\varepsilon_{M}^{*}(m)\right)=$ $\varepsilon_{N}^{*}(f(m))$.

Let M be an H_{v}-module and H, K be H_{v}-submodules of M. Then M is called the direct sum of H and K if $H \cap K \subseteq \omega_{M}$ and $\varepsilon^{*}(H+K)=\varepsilon^{*}(M)$. We denote it by $H \oplus K=M$.

Then, f is weak epic if and only if F is onto. Moreover, f is weak monic if and only if F is one to one. Finally, f is a weak-isomorphism if and only if F is an isomorphism

3. Product and direct sum in H_{v}-Modules

In this section, we meantime the check concept product and direct sum, we introduce a generalization of some notions in homological algebra to prove the five lemma in H_{v}-modules. Also, we determine the conditions equivalent to split the exact sequences in H_{v}-modules and some interesting results on these concepts are given.

Proposition 3.1. Let $f: M \longrightarrow N$ and $g: N \longrightarrow M$ be strong homomorphisms of H_{v}-modules such that $g f=1$. Then, N is the direct sum of $\operatorname{Im}(f)$ and $\operatorname{Ker}(f)$.

Proof. Let $m \in \operatorname{Im}(f) \cap \operatorname{Ker}(g)$. Then

$$
m=f\left(m_{1}\right) \text { for some } m_{1} \in M
$$

and

$$
\begin{equation*}
g(m) \in \omega_{N} \tag{1}
\end{equation*}
$$

By applying f on Eq. (1) we obtain $g(m)=g f\left(m_{1}\right)=m_{1}$. hence $m_{1} \in \omega_{N}$. Since f is a strong homomorphism, it follows that $m=f\left(m_{1}\right) \in \omega_{N}$. $\operatorname{So}, \operatorname{Im}(f) \cap \operatorname{Ker}(f) \subseteq$ ω_{N}. Now, for every $m \in M$ we have:

$$
G\left(F\left(\varepsilon^{*}(m)\right)\right)=G\left(\varepsilon^{*}(f(m))\right)=\varepsilon^{*}(g f(m))=\varepsilon^{*}(m)
$$

So $\operatorname{Im}(F)+\operatorname{Ker}(G)=N / \varepsilon_{N}^{*}$, since G and F are R / γ^{*}-homomorphisms such that $G F=1$. Therefore, $\varepsilon^{*}(\operatorname{Im}(f)+\operatorname{Ker}(g))=\varepsilon^{*}(N)$.
$\prod_{i \in I} M_{i}$ is called the (external) direct product of the family of H_{v}-modules $\left\{M_{i} \mid i \in I\right\}$ and $\sum_{i \in I} M_{i}$ is its (external) direct sum. If the index set is finite, say $I=\{1,2, \cdots, n\}$, then the product and direct sum coincide and will be written $M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$. The maps Π_{k} [resp. ι_{k}] are called the canonical projections [resp. injections]. Let $\left\{M_{i}\right\}_{i \in I}$ be a non-empty collection of H_{v}-modules. The product of this collection $\prod_{i \in I} M_{i}=\left\{\left(x_{i}\right) \mid x_{i} \in M_{i} ; \forall i \in I\right\}$, with the following hyperoperations is an H_{v}-module: $\left(x_{i}\right)+\left(y_{i}\right)=\left\{\left(z_{i}\right) \mid z_{i} \in x_{i}+y_{i}\right\}$ and $r\left(x_{i}\right)=$ $\left\{\left(w_{i}\right) \mid w_{i} \in r x_{i}\right\}$. Similarly, we define hyperoperations on $\sum_{i \in I} M_{i}$ which if $0 \neq$ $\left\{m_{i}\right\} \in \sum_{i \in I} M_{i}$, then only finitely many of the a_{i} are nonzero, say $a_{i_{l}}, a_{i_{2}}, \cdots, a_{i_{r}}$.
Proposition 3.2. Let $\left\{M_{i}\right\}$ be a non-empty collection of H_{v}-modules. For every H_{v}-module X and every collection of strong homomorphisms $\left\{\psi_{i}: M_{i} \longrightarrow X\right\}$ there
exists an unique strong homomorphism $\psi: \sum_{i \in I} M_{i} \longrightarrow X$ defined by $\psi_{i}=\psi \iota_{i}$ such that for every $i \in I$ the following diagram is commutative.

Proof. The proof is straightforward.
Proposition 3.3. Let R be a H_{v}-ring and $A, A_{1}, A_{2}, \cdots, A_{n} H_{v}$-modules. Then $A \stackrel{w}{=} A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ if and only if for each $i=1,2, \cdots, n$ there are strong homomorphisms $\Pi_{i}: A \longrightarrow A_{i}$ and $\iota_{i}: A_{i} \longrightarrow A$ such that
(1) $\Pi_{i} \iota_{i} \stackrel{w}{=} 1_{i}$ for $i=1,2, \cdots, n$;
(2) $\Pi_{j} \iota_{i} \stackrel{w}{=} 0$ for $i \neq j$;
(3) $\iota_{1} \Pi_{1}+\iota_{1} \Pi_{1}+\cdots+\iota_{1} \Pi_{1} \stackrel{w}{=} 1_{A}$.

Proof. (\Rightarrow) : If A is the H_{v}-module $A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$, then the canonical injections ι_{i} and projections Π_{i} satisfy (1)-(3) as the readers may easily verify. Likewise if $A \stackrel{w}{=} A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ under an weak isornorphism $A \longrightarrow A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ then the homomorphisms $\Pi_{i} f: A \longrightarrow A_{i}$ and $f^{-1} \iota_{i}: A_{i} \longrightarrow A$ satisfy (1)-(3).

$$
(\Leftarrow): \text { Suppose that } \Pi_{i}: A \longrightarrow A_{i} \text { and } \iota_{i}: A_{i} \longrightarrow A(i=1, \cdots, n) \text { satisfy }
$$ (1)-(3). Let $\Pi_{i}^{\prime}: A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n} \longrightarrow A_{i}$ and $\iota_{i}^{\prime}: A_{i} \longrightarrow A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ be the canonical projections and injections. Let $\varphi: A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n} \longrightarrow A$ be given by $\varphi \stackrel{w}{=} \iota_{1} \Pi_{1}^{\prime}+\iota_{2} \Pi_{2}^{\prime}+\cdots+\iota_{n} \Pi_{n}^{\prime}$ and $\psi: A \longrightarrow A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ by $\psi \stackrel{w}{=} \iota_{1}^{\prime} \Pi_{1}+\iota_{2}^{\prime} \Pi_{2}+\cdots+\iota_{n}^{\prime} \Pi_{n}$. Then

$$
\begin{aligned}
\varphi \psi \stackrel{w}{=}\left(\sum_{i=1}^{n} \iota_{i} \Pi_{i}^{\prime}\right)\left(\sum_{j=1}^{n} \iota_{j}^{\prime} \Pi_{j}\right) & \stackrel{w}{=} \sum_{i=1}^{n} \sum_{j=1}^{n} \iota_{i} \Pi_{i}^{\prime} \iota_{j}^{\prime} \Pi_{j} \stackrel{w}{=} \sum_{i=1}^{n} \iota_{i} \Pi_{i}^{\prime} \iota_{i}^{\prime} \Pi_{i} \\
& \stackrel{w}{=} \sum_{i=1}^{n} \iota_{i} 1_{A_{i}} \Pi_{i} \stackrel{w}{=} \sum_{i=1}^{n} \iota_{i} \Pi_{A_{i}} \stackrel{w}{=} 1_{A}
\end{aligned}
$$

Example 1. Note first that for any H_{v}-module A , there are unique strong hornomorphisrns $\omega_{A} \longrightarrow A$ and $A \longrightarrow \omega_{A}$. If A and B are any H_{v}-modules then the sequences

$$
\omega_{A} \longrightarrow A \xrightarrow{i} A \oplus B \xrightarrow{\Pi} B \longrightarrow \omega_{B} \text { and } \omega_{B} \longrightarrow B \xrightarrow{i} B \oplus A \xrightarrow{\Pi} A \longrightarrow \omega_{A}
$$

are exact, where the i and Π are the canonical injections and projections respectively. Similarly, if C is a submodule of D, then the sequence

$$
\omega_{C} \longrightarrow C \longrightarrow D \longrightarrow D / C \longrightarrow \omega_{D / C}
$$

is exact, where i is the inclusion map and p is the canonical epimorphism.

Proposition 3.4. (Five Lemma in Hv-modules) Let

be a commutative diagram of H_{v}-modules and H_{v}-homomorphisms over an H_{v}-ring R with both rows exact. Then,
(1) if α_{1} is weak monic and α_{2}, α_{4} weak epic then α_{3} is weak epic.
(2) if α_{5} is weak epic and α_{2}, α_{4} weak monic then α_{3} is weak monic.
(3) if α_{1} is weak monic, α_{5} weak epic and α_{2}, α_{4} weak isomorphism then α_{3} is weak isomorphism.

Proof. (1) By Theorem 4.8 of [4] and Lemma 3.4 of [16] the following diagram of R / γ^{*}-modules and R / γ^{*}-homomorphisms is commutative with both rows exact

By Lemma 4.5 of [16], $\bar{\alpha}_{1}$ is monic and $\bar{\alpha}_{2}, \bar{\alpha}_{4}$ epic R / γ^{*}-homomorphisms. By five lemma in modules $\bar{\alpha}_{3}$ is monic R / γ^{*}-homomorphism. Thus, by Lemma 4.5 of [16], α_{3} is weak monic R-homomorphism.
(2) The proof is similar to the proof of (1).
(3) The proof follows from (1) and (2).

Proposition 3.5. (1) Let $M_{1} \xrightarrow{\varphi} M_{2} \xrightarrow{\psi} M_{3}$ be an exact sequence of $H_{v^{-}}$ modules and H_{v}-homomorphisms such that φ is epic and ψ is weak monic, then $M_{2} \stackrel{w}{=} \omega_{M_{2}}$.
(2) Let $M_{1} \xrightarrow{\varphi} M_{2} \xrightarrow{f} M_{3} \xrightarrow{\psi} M_{4}$ be an exact sequence of H_{v}-modules and H_{v}-homomorphisms. Then φ is weak epic if and only if ψ is weak monic.
(3) Let $M_{1} \xrightarrow{\varphi} M_{2} \xrightarrow{f} M_{3} \xrightarrow{g} M_{4} \xrightarrow{\psi} M_{5}$ be an exact sequence of $H_{v^{-}}$ modules and H_{v}-homomorphisms such that φ is weak epic and ψ is weak monic, then $M_{3} \stackrel{w}{=} \omega_{M_{3}}$.

Proof. (1) Let $m_{2} \in M_{2}$. Since φ is epic, there is $m_{1} \in M_{1}$ such that $\varphi\left(m_{1}\right)=m_{2}$. Hence $M_{2}=\operatorname{Im} \varphi \stackrel{w}{=} \operatorname{Ker} \psi$. Since ψ is weak monic, thus $\operatorname{Ker} \psi \stackrel{w}{=} \omega_{M_{2}}$. Then $M_{2} \stackrel{w}{=} \omega_{M_{2}}$.
(2) Let φ be weak epic and $x \in \operatorname{Ker} \psi$. We have $\operatorname{Im} \varphi \stackrel{w}{=} \operatorname{Ker} f$ and $\operatorname{Im} f \stackrel{w}{=} \operatorname{Ker} \psi$. Hence, there is $m_{2} \in M_{2}$ such that $f\left(m_{2}\right) \stackrel{w}{=} x$. Since φ is weak epic, thus there is $m_{1} \in M_{1}$ such that $\varphi\left(m_{1}\right) \stackrel{w}{=} m_{2}$. Then $x \stackrel{w}{=} f\left(\varphi\left(m_{1}\right)\right) \stackrel{w}{=} \omega_{M_{3}}$. There for
$\operatorname{Ker} \psi \stackrel{w}{=} \omega_{M_{3}}$. Then ψ is weak monic.
(3) Let $m_{3} \in M_{3}$, hence $g\left(m_{3}\right) \in \operatorname{Im}(g)$. We have $\operatorname{Im} g \stackrel{w}{=} \operatorname{Ker} \psi$ and ψ is weak monic. Thus $g\left(m_{3}\right) \stackrel{w}{=} \omega_{M_{4}}$. Then $a \in \operatorname{Ker} g$ and $\operatorname{Ker} g \stackrel{w}{=} \operatorname{Im} f$. Therefor $m_{2} \in M_{2}$ such that $f\left(m_{2}\right) \stackrel{w}{=} m_{3}$. Since φ is weak epic, then there is $m_{1} \in M_{1}$ such that $\varphi\left(m_{1}\right) \stackrel{w}{=} m_{2}$. Hence $m_{3} \stackrel{w}{=} f\left(\varphi\left(m_{1}\right)\right) \stackrel{w}{=} \omega_{M_{3}}$. Then $M_{3} \stackrel{w}{=} \omega_{M_{3}}$.
Proposition 3.6. Let

be a commutative diagram of H_{v}-modules and H_{v}-homomorphisms over an H_{v}-ring R with both rows exact. Then, there is the exact sequence

$$
\operatorname{Ker} \alpha \xrightarrow{\bar{f}} \operatorname{Ker} \beta \xrightarrow{\bar{g}} \operatorname{Ker} \gamma \xrightarrow{d} \frac{N^{\prime}}{\operatorname{Im} \alpha} \xrightarrow{\bar{\varphi}} \frac{N}{\operatorname{Im} \beta} \xrightarrow{\bar{\psi}} \frac{N^{\prime \prime}}{\operatorname{Im} \gamma} .
$$

Withal, if f is weak monic, then \bar{f} is weak monic and if ψ is weak epic, then $\bar{\psi}$ is weak epic.

Proof. We define $\bar{\varphi}\left(n^{\prime}+\operatorname{Im} \alpha\right) \stackrel{w}{=} \varphi\left(n^{\prime}\right)+\operatorname{Im} \beta$ and $\bar{\psi}(n+\operatorname{Im} \beta) \stackrel{w}{=} \psi(n)+\operatorname{Im} \gamma$. Also we define \bar{f} and \bar{g}, scowl the mapping f and g on $\operatorname{Ker} \alpha$ and $\operatorname{Ker} \beta$ respectively. It can be easily we seen that $\bar{\varphi}, \bar{\psi}, \bar{f}$ and \bar{g} are well define also $\operatorname{Im} \bar{f} \stackrel{w}{=} \operatorname{Im} f$, $\operatorname{Ker} \bar{g} \stackrel{w}{=} \operatorname{Ker} g, \operatorname{Im} \bar{\varphi} \stackrel{w}{=} \operatorname{Im} \varphi, \operatorname{Ker} \bar{\psi} \stackrel{w}{=} \operatorname{Ker} \psi$ 。 We have $\operatorname{Im} \bar{f} \stackrel{w}{=} \operatorname{Ker} \bar{g}$ and $\operatorname{Im} \bar{\varphi} \stackrel{w}{=} \operatorname{Ker} \bar{\psi}$. Now, we defining the mapping $d: \operatorname{Ker} \gamma \longrightarrow N^{\prime} / \operatorname{Im} \alpha$ by $d\left(m^{\prime \prime}\right)=$ $n^{\prime}+\operatorname{Im} \alpha$. We show that d is well define. If $m " \in \operatorname{Ker} \gamma$, then $\gamma\left(m^{\prime \prime}\right) \stackrel{w}{=} \omega_{N "}$. Since g is weak epic, then there is $m \in M$ such that $g(m) \stackrel{w}{=} m$ ". Thus $\gamma g(m) \stackrel{w}{=} \omega_{N^{\prime \prime}}$. We obtain $\psi \beta(m) \stackrel{w}{=} \omega_{N^{\prime \prime}}$. Hence $\beta(m) \in \operatorname{Ker} \psi \stackrel{w}{=} \operatorname{Im} \varphi$. Therefor, there is $n^{\prime} \in N^{\prime}$ such that $\beta(m) \stackrel{w}{=} \varphi\left(n^{\prime}\right)$. Since φ is weak monic, then n^{\prime} is unique. Thus, if $m_{1}^{\prime \prime}=m_{2}^{\prime \prime}$ we obtain $g\left(m_{1}^{\prime \prime}\right) \stackrel{w}{=} g\left(m_{2}^{\prime \prime}\right)$. Then there is $n_{1}^{\prime}, n_{2}^{\prime} \in N^{\prime}$ such that $\varphi\left(n_{1}^{\prime}\right) \stackrel{w}{=} \beta\left(m_{1}^{\prime \prime}\right)$ and $\varphi\left(n_{2}^{\prime}\right) \stackrel{w}{=} \beta\left(m_{2}^{\prime \prime}\right)$. Therefor $n_{1}^{\prime}+\operatorname{Im} \alpha \stackrel{w}{=} n_{2}^{\prime}+\operatorname{Im} \alpha$. Then d is well define. It can be easily we seen that d is a H_{v}-homomorphism.

Now, we have $\operatorname{Im} d=\left\{n^{\prime}=\operatorname{Im} \alpha \mid m " \operatorname{Ker} \gamma\right\}$ and $\operatorname{Ker} \bar{\varphi}=\left\{n^{\prime}=\operatorname{Im} \alpha \mid\right.$ $\left.\varphi\left(n^{\prime}\right)+\operatorname{Im} \beta \stackrel{w}{=} \omega_{N}\right\}$. If $m^{\prime \prime} \in \operatorname{Ker} \gamma$, then $\gamma\left(m^{\prime \prime}\right) \stackrel{w}{=} \omega_{N^{\prime \prime}}$. Since g is weak epic, there is $m \in M$ such that $g(m) \stackrel{w}{=} m^{\prime \prime}$. Thus $\gamma g(m) \stackrel{w}{=} \omega_{N^{\prime \prime}}$. we abtain $\psi \beta(m) \stackrel{w}{=} \omega_{N^{\prime \prime}}$. Hence $\beta(m) \in \operatorname{Ker} \psi \stackrel{w}{=} \operatorname{Im} \varphi$. Then there is $n^{\prime} \in N^{\prime}$ such that $\beta(m) \stackrel{w}{=} \varphi\left(n^{\prime}\right) \in \operatorname{Img} \beta$. Then $\operatorname{Ker} \bar{\varphi} \stackrel{w}{=} \operatorname{Im} d$. Also, $\operatorname{Ker} d=\left\{m^{\prime \prime} \in \operatorname{Ker} \gamma \mid\right.$ $\left.n^{\prime}+\operatorname{Im} \alpha \stackrel{w}{=} \omega_{N^{\prime}}\right\} \stackrel{w}{=}\left\{g(m) \mid m \in M, n^{\prime} \in \operatorname{Im} \alpha\right\}=\operatorname{Im} \bar{g}$. Then we obtain the exact sequence

$$
\operatorname{Ker} \alpha \xrightarrow{\bar{f}} \operatorname{Ker} \beta \xrightarrow{\bar{g}} \operatorname{Ker} \gamma \xrightarrow{d} \frac{N^{\prime}}{\operatorname{Im} \alpha} \xrightarrow{\bar{\varphi}} \frac{N}{\operatorname{Im} \beta} \xrightarrow{\bar{\psi}} \frac{N^{\prime \prime}}{\operatorname{Im} \gamma} .
$$

Now, if f is weak monic, since \bar{f} is scowl the mapping f on Ker α, hence \bar{f} is weak monic. Let ψ be weak epic. Consider $n^{\prime \prime} \in N^{\prime \prime}$. Then, $n^{\prime \prime}+\operatorname{Im} \gamma \in N^{\prime \prime} / \operatorname{Im} \gamma$. Since ψ is weak epic, then there is $n \in N$ such that $\varphi(n) \stackrel{w}{=} n^{\prime \prime}$ and $n+\operatorname{Im} \beta \in$ $N / \operatorname{Im} \beta$. We obtain $\bar{\psi}(n+\operatorname{Im} \beta) \stackrel{w}{=} n^{\prime \prime}+\operatorname{Im} \gamma$. Then $\bar{\psi}$ is weak epic.

Proposition 3.7. Let

be a star commutative diagram of H_{v}-modules and strong homomorphisms which rows horizontal and diagonal are exact. If α is weak monic and β weak epic, then $K^{\prime} / \operatorname{Im} \alpha \neq \omega_{K^{\prime}}$ if and only if $\operatorname{Ker} \beta \neq \omega_{C}$.

Proof. Let $x+\operatorname{Im} \alpha \in K^{\prime} / \operatorname{Im} \alpha$ such that $x \in K^{\prime}$ and $x \notin \operatorname{Im} \alpha$. On the other hand $g_{1} \alpha \stackrel{w}{=} f_{1}, \beta f_{2} \stackrel{w}{=} g_{2}, g_{1}(x) \in M$ and $f_{2} g_{1}(x) \in C$. hence $\beta f_{2} g_{1}(x) \stackrel{w}{=} g_{2} g_{1}(x) \stackrel{w}{=} \omega_{C^{\prime}}$. therefore $f_{2} g_{1}(x) \in \operatorname{Ker} \beta$. If $f_{2} g_{1}(x) \stackrel{w}{=} \omega_{C^{\prime}}$ then $g_{1}(x) \in \operatorname{Ker} f_{2} \stackrel{w}{=} \operatorname{Im} f_{1}$. hence there is $t \in K$ such that $g_{1}(x) \stackrel{w}{=} f_{1}(t)$. Thus $g_{1}(x) \stackrel{w}{=} g_{1} \alpha(t)$. Since g_{1} is weak monic, then $x \stackrel{w}{=} \alpha(t)$. therefor $x \in \operatorname{Im} \alpha$ which is a contradiction. hence $\operatorname{Ker} \beta \stackrel{w}{\neq} \omega_{C}$.

For the converse, let $\operatorname{Ker} \beta \stackrel{w}{\models} \omega_{C}$. We show that $K^{\prime} / \operatorname{Im} \alpha \stackrel{w}{\neq} \omega_{K^{\prime}}$. Let $x \in \operatorname{Ker} \beta$. Since f_{2} is weak monic, it follows that there is $m \in M$ such that $f_{2}(m) \stackrel{w}{=} x$ for every $x \in C$. hence $\beta f_{2}(m) \stackrel{w}{=} \omega_{C^{\prime}}$, then $g_{2}(m) \stackrel{w}{=} \omega_{C^{\prime}}$. Thes $m \in \operatorname{Ker} g_{2} \stackrel{w}{=} \operatorname{Im} g_{1} .$. therefor there is $k^{\prime} \in K^{\prime}$ such that $m \stackrel{w}{=} g_{1}\left(k^{\prime}\right)$. We show that $k^{\prime} \notin \operatorname{Im} \alpha$. If $k^{\prime} \in \operatorname{Im} \alpha$, then there is $k \in K$ such that $k^{\prime} \stackrel{w}{=} \alpha(k)$. Thus $g_{1} \alpha(k) \stackrel{w}{=} m$. therefor $f_{1}(k) \stackrel{w}{=} m$. Then $f_{2}(m) \stackrel{w}{=}$
$f_{2} f_{1}(k) \stackrel{w}{=} \omega_{C}$. Hence $k^{\prime} \in \operatorname{Im} \alpha$. Then $K^{\prime} / \operatorname{Im} \alpha \stackrel{w}{\neq} \omega_{K^{\prime}}$.
Proposition 3.8. Let M_{1}, M_{2} and M be three H_{v}-modules and the sequence

$$
\omega_{A_{1}} \longrightarrow A_{1} \xrightarrow{f} B \xrightarrow{g} A_{2} \longrightarrow \omega_{A_{2}}
$$

is exact. Then the following conditions are equivalent.
(1) There is a star homomorphism $h: A_{2} \longrightarrow B$ with $g h=1_{A_{2}}$;
(2) There is a star homomorphism $k: B \longrightarrow A_{1}$ with $k f=1_{A_{1}}$;
(3) the given sequence is star isomorphic (with identity maps on A_{1} and A_{2}) to the direct sum short exact sequence

$$
\omega_{A_{1}} \longrightarrow A_{1} \longrightarrow A_{1} \oplus A_{2} \longrightarrow A_{2} \longrightarrow \omega_{A_{2}}
$$

in particular $B \stackrel{w}{=} A_{1} \bigoplus A_{2}$.
Proof. The proof is similar to the proof of Theorem 4.7 in [17].

4. Star projective and star injective H_{v}-Modules

In this section we define concepts star projective and star injective in $H_{v^{-}}$ modules and introduce a generalization extra of some notions in homological algebra to prove Theorems star projective and star injective in H_{v}-modules.

Definition 4.1. [17] An H_{v}-module P is a star projective if for every diagram of star homomorphisms and H_{v}-modules as follows

that it's row is exact, there exists a star homomorphism $\phi: P \longrightarrow M$ such that for each $p \in P, \varepsilon_{N}^{*}(g(\phi(p)))=\varepsilon_{N}^{*}(f(p))$.

Proposition 4.2. Let R be an H_{v}-ring. Then,
(1) If P is a star projective H_{v}-module, then every short exact sequence

$$
\omega_{A} \longrightarrow A \xrightarrow{f} B \xrightarrow{g} P \longrightarrow \omega_{P}
$$

is split exact (hence $B \stackrel{w}{=} A \oplus P$);
(2) If every short exact sequence

$$
\omega_{A} \longrightarrow A \xrightarrow{f} B \xrightarrow{g} P \longrightarrow \omega_{P}
$$

is split exact, then P is a star projective H_{v}-module.
Proof. (1) Consider the diagram

of star homomorphisms and with bottom row exact. Since P is star projective, it follows that there exists a star homomorphism $h: P \longrightarrow B$ such that $\varepsilon^{*}(g h(p))=$ $\varepsilon^{*}\left(1_{P}(p)\right)$ for all $p \in P$. Therefore, the short exact sequence

$$
w_{A} \longrightarrow A \xrightarrow{f} B \xrightarrow{g} P \longrightarrow w_{P}
$$

is split exact by Theorem 3.8 and $B \stackrel{w}{=} A \bigoplus P$.
(2) Suppose that every short exact sequence

$$
w_{A} \longrightarrow A \xrightarrow{f} B \xrightarrow{g} P \longrightarrow w_{P}
$$

is split exact. We show that P is a star projective H_{v}-module. So, we show that for every diagram

of H_{v}-modules and star homomorphism such that bottom row is exact, there is a star homomorphism $\varphi: P \longrightarrow T_{1}$ such that $\varepsilon^{*}(g \varphi(p))=\varepsilon^{*}(f(p))$ for all $p \in P$. Now, we consider the mapping $h: T_{1} \longrightarrow P$ by $h(t) \in f^{-1} g(t)$ for every $t \in T_{1}$. since f^{-1} and g are star homomorphisms. Hence h is star homomorphism. Now, we have the exact sequence

$$
\begin{equation*}
w_{T_{1}} \longrightarrow \operatorname{ker} h \longrightarrow T_{1} \xrightarrow{h} P \longrightarrow w_{T_{2}} \tag{2}
\end{equation*}
$$

The exact sequence (3) is split, hence there exists a star homomorphism $\psi: P \longrightarrow$ T_{1} such that $h \psi \stackrel{w}{=} 1_{p}$. Therefore $f(h \psi) \stackrel{w}{=} f 1_{p} \stackrel{w}{=} f$. Then $(f h) \psi \stackrel{w}{=} f$. Hence $g \psi \stackrel{w}{=} f$.

Proposition 4.3. Let R be an H_{v}-ring. A direct sum $\sum_{i \in I} P_{i}$ of H_{v}-modules is star projective if and only if each P_{i} is star projective.

Proof. Let $\sum_{i \in I} P_{i}$ be star projective. We consider the diagram

of H_{v}-modules and star homomorphisms such that bottom row is exact. Therefore, there is the diagram

of H_{v}-modoules and star homomorphisms. Since $\sum_{i \in I} P_{i}$ is star projective, it follows that there exists a strong homomorphism $\varphi: \sum_{i \in I} P_{i} \longrightarrow A$ such that $g \varphi \stackrel{w}{=} f \Pi_{i}$. we define the mapping $h: P_{i} \longrightarrow A$ by $h(x) \stackrel{w}{=} \varphi \iota_{i}(x)$ for every $x \in P_{i}$. Now, we have

$$
g h(x) \stackrel{w}{=} g \varphi \iota_{i}(x) \stackrel{w}{=} f \Pi_{i} \iota_{i}(x) \stackrel{w}{=} f(x) .
$$

Then $g h \stackrel{w}{=} f$. Nothing that h is a star homomorphism. Therefore, P_{i} is star projective. The converse is proved by a similar techniques and using the diagram

If each P_{i} is star projective, then for each i there exists a star homomorphism $h_{i}: P_{i} \longrightarrow A$ such that $g h_{i} \stackrel{w}{=} f \iota_{i}$. By Theorem 3.2 there is a unique star homomorphism $h: \sum_{i \in I} P_{i} \longrightarrow A$ with $h \iota_{i} \stackrel{w}{=} h_{i}$ for every $i \in I$. Hence $h \stackrel{w}{=} h_{i} \Pi_{i}$. Then

$$
g h \stackrel{w}{=} g h_{i} \Pi_{i} \stackrel{w}{=} f \iota_{i} \Pi_{i} \stackrel{w}{=} f .
$$

Verify that $g h=f$.
Definition 4.4. An H_{v}-module P is a star injective if for every diagram of star homomorphisms and H_{v}-modules as follows

that it's row is exact, there exists a star homomorphism $\phi: M \longrightarrow E$ such that for each $n \in N, \varepsilon_{N}^{*}(\phi(g(n)))=\varepsilon_{N}^{*}(f(n))$.

Proposition 4.5. Let R be an H_{v}-ring. Then,
(1) If E is a star injective H_{v}-module, then every short exact sequence

is split (hence $A \stackrel{w}{=} B \bigoplus E$);
(2) If every short exact sequence

$$
w_{E} \longrightarrow E \xrightarrow{f} A \xrightarrow{g} B \longrightarrow w_{B}
$$

is split, then E is a star injective H_{v}-module.
Proof. $(1 \Rightarrow 2)$ Consider the diagram

of H_{v}-modules and star homomorphisms such that upper row exact. Since E is star injective, it follows that there is a star homomorphism $h: A \longrightarrow E$ such that $\left.\varepsilon^{*}(h g(e))=\varepsilon^{*}\left(1_{E}(e)\right)\right)$ for all $e \in E$. Therefore, the short exact sequence

$$
w_{E} \longrightarrow E \xrightarrow{f} A \xrightarrow{g} B \longrightarrow w_{E}
$$

is split, by Theorem 3.8 and $A \stackrel{w}{=} B \bigoplus E$.
$(2 \Rightarrow 1)$ Suppose that every short exact sequence

is split. We show that for every diagram

of H_{v}-modules and star homomorphism such that upper row is exact, there is a star homomorphism $\varphi: T_{2} \longrightarrow E$ such that $\varepsilon^{*}\left(\varphi g\left(t_{1}\right)\right)=\varepsilon^{*}\left(f\left(t_{1}\right)\right)$ for all $t_{1} \in T_{1}$. Now we defined the maping $h: E \longrightarrow T_{2}$ by $h(e) \in g f^{-1}(e)$ for every $e \in E$. According to what was said in case H_{v}-modules star projective, since f^{-1} and g are star homomorphisms. Hence h is a star homomorphism. Now

$$
w_{T_{1}} \longrightarrow E \xrightarrow{h} T_{2} \longrightarrow \text { Coker } h \longrightarrow w_{\text {Coker } h} .
$$

is an exact sequence. By hypothesis, the above exact sequence is split. So, there exists a star homomorphism $\varphi: T_{2} \longrightarrow E$ such that $\varphi h \stackrel{w}{=} 1_{E}$. Therefore $\varphi h(f) \stackrel{w}{=} 1_{E} f \stackrel{w}{=} f$. Then $\varphi(h f) \stackrel{w}{=} \psi(g) \stackrel{w}{=} f$. hence $\varphi g \stackrel{w}{=} f$. then E is star injective.

Proposition 4.6. Let R be an H_{v}-ring. A direct product $\prod_{i \in I} E_{i}$ of H_{v}-modules is star injective if and only if each E_{i} is star injective.

Proof. Let $\prod_{i \in I} E_{i}$ be star injective. We consider the diagram

of H_{v}-modules and star homomorphism such that upper row is exact. Therefore we have

Since $\prod_{i \in I} E_{i}$ is star injective, it follows that there exists a star homomorphism $\varphi: B \longrightarrow \prod_{i \in I} E_{i}$ such that $\varphi g \stackrel{w}{=} \iota_{i} f$. We define the mapping $h: B \longrightarrow E_{i}$ by $h\left(x^{\prime}\right) \stackrel{w}{=} \Pi_{i} \varphi\left(x^{\prime}\right)$ for every $x^{\prime} \in B$. Now for every $x \in A$ we have

$$
h g(x) \stackrel{w}{=} \Pi_{i} \varphi g(x) \stackrel{w}{=} \Pi_{i} \iota_{i} f(x) \stackrel{w}{=} f(x) .
$$

Then $g h \stackrel{w}{=} f$. Therefore E_{i} is star injective. The converse can be proved by a similar techniques and using the diagram

If each E_{i} is star injective, then for each $i \in I$ there exists a star homomorphism $h_{i}: B \longrightarrow E_{i}$ such that $h_{i} g \stackrel{w}{=} \Pi_{i} f$. By Theorem 4.4 of [17], there is a unique star homomorphism $h: B \longrightarrow \prod_{i \in I} E_{i}$ with $\Pi_{i} h \stackrel{w}{=} h_{i}$ for every i. Hence $h \stackrel{w}{=} \iota_{i} h_{i}$. Then

$$
h g \stackrel{w}{=} \iota_{i} h_{i} g \stackrel{w}{=} \iota_{i} \Pi_{i} f \stackrel{w}{=} f .
$$

Verify that $g h=f$.
Corollary 4.7. The following conditions on an H_{v}-ring R are equivalent:
(1) Every H_{v}-module is star projective.
(2) Every short exact sequence of H_{v}-modules is split exact.
(3) Every H_{v}-module is star injective.

Proof. $(1 \Rightarrow 2)$ According to Proposition 4.2, the proof is obvious.
$(3 \Rightarrow 2)$ According to Proposition 4.5, the proof is obvious.
$(3 \Rightarrow 1)$ Suppose that P is star injective. We show that P is star projective. Since P is star injective, hence for every diagram

of H_{v}-modules A and B and star homomorphisms, there is a star homomorphism $h^{\prime}: B \longrightarrow P$ such that diagram

star commutative, i.e., $h^{\prime} f \stackrel{w}{=} g$. Now, we show that P is star projective. we consider diagram

of H_{v}-modules and star homomorphism such that bottom row is exact. We show that there is a star homomorphism $h: P \longrightarrow A$ such that $f h \stackrel{w}{=} k$. Since in the diagrams (4) and (5) row horizontal is exact, hence f is weak monic and weak epic. Then there is $f^{-1}: P \longrightarrow A$. Now, we consider the mapping $h=f^{-1} k: P \longrightarrow A$ which since f^{-1} and k are star homomorphisms, hence h is a star homomorphism and $f h \stackrel{w}{=} f f^{-1} k \stackrel{w}{=} k$. Then P is star projective.

References

[1] Corsini, P., Prolegomena of Hypergroup Theory. Udine, Tricesimo, Italy: Second edition, Aviani editor, 1993.
[2] Corsini, P., and Leoreanu, V., Applications of Hyperstructure Theory, The Netherlands, Dordrecht: Kluwer Academic Publishers (Advances in Mathematics), 2003.
[3] Davvaz, B., and Ghadiri, M., Weak equality and exact sequences in H_{v}-modules. Southeast Asian Bull. Math., 25 (2001), 403-411.
[4] Davvaz, B., "Remarks on weak hypermodules", Bull. Korean Math. Soc., 36(1999), 599-608.
[5] B. Davvaz, " H_{v}-module of fractions", Proc $8^{\text {th }}$ Algebra Seminar of Iranian Math Soc; 17-18 December; University of Tehran, 1996, 37-46.
[6] Davvaz, B., "A brief survey of the theory of H_{v}-structures", Proc $8^{\text {th }}$ International Congress on Algebraic Hyperstructures and Applications, 1-9 September 2002; Samothraki, Greece, Spanidis: Press, 2003, 39-70.
[7] Davvaz, B., "Approximations in H_{v}-modules", Taiwanese J. Math., 6(2002), 499-505.
[8] Davvaz, B., and Leoreanu-Fotea, V., Hyperring Theory and Applications, USA: International Academic Press, 2007.
[9] Davvaz, B., and Vougiouklis, T., "n-ary H_{v}-modules with external n-ary P-hyperoperation", Politehn Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 76(2014), 141-150.
[10] Ghadiri, M., and Davvaz, B., "Direct system and direct limit of H_{v}-modules", Iran. J. Sci. Technol. Trans. A Sci., 28(2004), 267-275.
[11] Marty, F., Sur une generalization de la notion de groupe, In Proceedings of the $8^{t h}$ Congress des Mathematiciens; Scandinavia, Stockholm, Sweden: 1934, 45-49.
[12] Taghavi, A., Vougiouklis, T., and Hosseinzadeh, R., "A note on operators on normed finite dimensional weak hypervector spaces", Politehn Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 74(2012), 103-108.
[13] Vougiouklis, T., H_{v}-vector spaces, Proc 5 th International Congress on Algebraic Hyperstructures and Applications; 4-10 July 1993; Iasi Romania: Hadronic Press, Inc Palm Harbor, 1994, pp. 181-190.
[14] Vougiouklis, T., Hyperstructures and Their Representations, Florida, USA: Hadronic Press Inc, Palm Harbor, 1994.
[15] Vougiouklis, T., The fundamental relation in hyperrings, The general hyperfield. Algebraic hyperstructures and applications (Xanthi, 1990), Teaneck, NJ: World Sci Publishing, 1991, pp. 203-211.
[16] Vaziri, Y., Ghadiri, M., and Davvaz, B., "The $\mathrm{M}[-]$ and $[-] M$ functor and five short lemma in H_{v}-modules", Turkish J. Math., 40(2016), 397-410.
[17] Vaziri, Y., and Ghadiri, M., "Shanuels lemma, Snake lemma, product and direct sum in H_{v}-modules", Turkish J. Math., to appear.

[^0]: 2000 Mathematics Subject Classification: 16E99, 18G99,20N20. Received: 30-04-2017, revised: 05-07-2017, accepted: 17-07-2017.

