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Abstract. This paper examines the affine differential invariants of two curves. The

equivalence of two curves is obtained by using these invariants according to the

affine group. In addition, obtained differential invariants will be shown to be the

minimal system of the generators.
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Abstrak. Paper ini membahas tentang invariant affine diferensial dari dua

kurva. Dengan menggunakan invarian ini, diperoleh ekivalensi antara dua kurva

berdasarkan pada grup affine. Lebih jauh, ditunjukkan bahwa invarian diferensial

yang diperoleh merupakan sistem pembangun minimal.
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1. Introduction

The notion of affine differential geometry arose from Felix Klein’s Erlangen
Program in 1872. According to this program, affine differential geometry consists of
properties which are invariant under the affine transformations. In affine differential
geometry, studies have been done about affine invariants and generators of affine
invariants. The construction of affine invariants of curves was studied in [8-11].
Based on this, solution of the equivalence problem has been studied also.

Differential geometry of curves has been studied for many years. It’s been
studied in many aspects in the subgroups of the affine group. In some of these
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studies, invariants such as arc-length, curvature have been examined. In [1], centro-
affine invariants, arc length and curvature functions of a curve in affine n−space are
obtained. In addition, several authors studied the affine curves and their invariants
in several works [2, 3, 6].

Equivalence of curves in SL(n,R) is given in [5]. Equivalence problem for
parametric curves in one dimensional affine space is studied in [4]. In this study,
affine differential invariant system for two curves is studied and by using this system,
equivalence of a curve family which consists of two curves is given. Also, it is shown
that the affine differential invariant system of this curve family is minimal.

2. Preliminaries

For two affine curves x1, x2 a differential polynomial of these curves is given

by P{x1, x2} = P (x1, x2, x
′
1, x
′
2, ..., x

(m)
1 , x

(m)
2 ) for some natural number m, where

for k ∈ N, x
(k)
i is the kth derivative of xi. Function f < x1, x2 >= P1{x1,x2}

P2{x1,x2} such

that P2{x1, x2} 6= 0 is called a differential rational function. The set of differential
rational functions is denoted by R < x1, x2 >.

For an element F ∈ Aff(2,R), if f < Fx1, Fx2 >= f < x1, x2 > then
the function f is called a Aff(2,R)−invariant differential rational function. The
set of all Aff(2,R)−invariant differential rational functions is denoted by R <
x1, x2 >

Aff(2,R). R < x1, x2 >
Aff(2,R) is a differential subfield and a sub R−algebra

of R < x1, x2 >.

Lemma 2.1. For vectors x0, x1, ..., xn, y2, ..., yn in Rn following equation holds:

[x1 x2 ... xn][x0 y2 ... yn]− [x0 x2 ... xn][x1 y2 ... yn]− ... − [x1 x2 ... x0][xn y2 ... yn] = 0

Proof. A sketch of the proof is in [2]. �

3. Main Theorems and Definitions

Definition 3.1. For a curve x1 in R2, if determinant [x′1 x
′′
1 ] 6= 0 then x1 is called

Aff(2,R)−regular curve.

Theorem 3.2. For curves x1, x2 in R2 where x1 is Aff(2,R)−regular, generator
system of R < x1, x2 >

Aff(2,R) is as follows:

[x′1 x
′′′
1 ]

[x′1 x
′′
1 ]
,

[x′′′1 x′′1 ]

[x′1 x
′′
1 ]
,

[x2 − x1 x′′1 ]

[x′1 x
′′
1 ]

,
[x′1 x2 − x1]

[x′1 x
′′
1 ]

.

Proof. Let f ∈ R < x1, x2 >
Aff(2,R). Then there exist an element k ∈ N such that

f < x1, x2 >= f < x1, x2, x
′
1, x
′
2, ..., x

(k)
1 , x

(k)
2 >.

For any g ∈ Aff(2,R) and b ∈ R2, f < gx1 + b, gx2 + b >= f < x1, x2 >. Hence
we have

f < gx1 + b, gx2 + b, gx′1 + b, gx′2 + b, ..., gx
(k)
1 + b, gx

(k)
2 + b >= f <

x1, x2, x
′
1, x
′
2, ..., x

(k)
1 , x

(k)
2 >.
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If we put g = e, then

f < x1 + b, x2 + b, x′1 + b, x′2 + b, ..., x
(k)
1 + b, x

(k)
2 + b >= f <

x1, x2, x
′
1, x
′
2, ..., x

(k)
1 , x

(k)
2 >.

Since above equation holds for any b, it holds for b = −x1. Therefore

f < x1 + b, x2 + b, x′1, x
′
2, ..., x

(k)
1 , x

(k)
2 >= ϕ < x2 − x1, x′1, x′2, ..., x

(k)
1 , x

(k)
2 >.

Since ϕ is GL(2,R)−invariant, following equation holds:

ϕ < g(x2 − x1), gx′1, gx
′
2, ..., gx

(k)
1 , gx

(k)
2 >= ϕ < x2 − x1, x′1, x′2, ..., x

(k)
1 , x

(k)
2 >.

If x2 − x1 = y2 and x′1 = y1, then for any g ∈ GL(2,R) following equation holds:

ψ < gy1, gy2, gy
′
1, gy

′
2, ..., gy

(k)
2 >= ψ < y1, y2, y

′
1, y
′
2, ..., y

(k)
2 >.

Since ψ is GL(2,R)−invariant, following generators are obtained [7] :

[y′′1 y
′
1]

[y1 y′1]
,

[y1 y
′′
1 ]

[y1 y′1]
,

[y2 y
′
1]

[y1 y′1]
,

[y1 y2]

[y1 y′1]
.

If we substitute x2 − x1 = y2 and x′1 = y1 in the above terms, we have

[x′1 x
′′′
1 ]

[x′1 x
′′
1 ]
,

[x′′′1 x′′1 ]

[x′1 x
′′
1 ]
,

[x2 − x1 x′′1 ]

[x′1 x
′′
1 ]

,
[x′1 x2 − x1]

[x′1 x
′′
1 ]

.

This completes the proof. �

Definition 3.3. Let {x1, x2} and {y1, y2} be two curve families such that xi, yi :
I ⊂ R → R2, i = 1, 2 and G = Aff(2,R). If there exist an element g ∈ GL(2,R)
and b ∈ R2 such that gxi(t) + b = yi(t) for all t ∈ I and i = 1, 2 then the curve
families {x1, x2} and {y1, y2} are said to be Aff(2,R)−equivalent. Aff(2,R)−
equivalence is denoted by {x1, x2}

G
≈ {y1, y2}.

Theorem 3.4. Let G = Aff(2,R) and {x1, x2} and {y1, y2} be two curve families
where x1 and y1 are Aff(2,R)−regular. If

[x′1 x
′′′
1 ]

[x′1 x
′′
1 ]

=
[y′1 y

′′′
1 ]

[y′1 y
′′
1 ]
,

[x′′′1 x′′1 ]

[x′1 x
′′
1 ]

=
[y′′′1 y′′1 ]

[y′1 y
′′
1 ]
,

[x2 − x1 x′′1 ]

[x′1 x
′′
1 ]

=
[y2 − y1 y′′1 ]

[y′1 y
′′
1 ]

,
[x′1 x2 − x1]

[x′1 x
′′
1 ]

=
[y′1 y2 − y1]

[y′1 y
′′
1 ]

then {x1, x2}
G
≈ {y1, y2}.

Proof. Assume that x′1 = z1, y
′
1 = w1, x2 − x1 = z2 and y2 − y1 = w2. Then we

have

[z1 z
′′
1 ]

[z′1 z
′
1]

=
[w1 w

′′
1 ]

[w1 w′1]
,

[z′1 z
′′
1 ]

[z1 z′1]
=

[w′1 w
′′
1 ]

[w1 w′1]
,
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[z2 z
′
1]

[z1 z′1]
=

[w2 w
′
1]

[w1 w′1]
,

[z1 z2]

[z1 z′1]
=

[w1 w2]

[w1 w′1]
.

Consider the following matrices:

Az =

(
z11(t) z′11(t)
z12(t) z′12(t)

)
, A′z =

(
z′11(t) z′′11(t)
z′12(t) z′′12(t)

)
.

Since [z1 z
′
1] = [x′1 x

′′
1 ] 6= 0, the matrix Az is invertible. If A−1z A′z = C, then

A′z = AzC. Therefore(
z′11 z′′11
z′12 z′′12

)
=

(
z11 z′11
z12 z′12

)(
c11 c12
c21 c22

)
.

From the above equation, we have the following equation system:

z′11 = c11z11 + c21z
′
11

z′12 = c11z12 + c21z
′
12

z′′11 = c12z11 + c22z
′
11

z′′12 = c12z12 + c22z
′
12.

By solving this equation system, we have

c11 = 0, c21 = 1, c12 =
[z′1 z

′′
1 ]

[z1 z′1]
, c22 =

[z1 z
′′
1 ]

[z1 z′1]
.

Similarly, for the matrices

Aw =

(
w11(t) w′11(t)
w12(t) w′12(t)

)
, A′w =

(
w′11(t) w′′11(t)
w′12(t) w′′12(t)

)
,

assume that A−1w A′w = D. Hence,

(AwA
−1
z )′ = A′wA

−1
z +Aw(A−1z )′

= A′wA
−1
z −AwA

−1
z A′zA

−1
z

= AwA
−1
w A′wA

−1
z −AwA

−1
z A′zA

−1
z

= Aw(A−1w A′w −A−1z A′z)A−1z = 0.

From the above equation, there exist an element g ∈ GL(2,R) such that AwA
−1
z =

g. Therefore we have Aw = gAz that means(
w11 w′11
w12 w′12

)
=

(
g11 g12
g21 g22

)(
z11 z′11
z12 z′12

)
.

In that case, for any t we have w1(t) = gz1(t) which means y′1(t) = x′1(t). By
integrating both side of this equation, following equation is obtained:

y1(t) = gx1(t) + b. (1)

In the same way consider the following matrices:
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Dz =

(
z11(t) z21(t)
z12(t) z22(t)

)
, D′z =

(
z′11(t) z′21(t)
z′12(t) z′22(t)

)
.

Assume that A−1z Dz = H, then Dz = AzH. From this equation, we have:(
z11 z21
z12 z22

)
=

(
z11 z′11
z12 z′12

)(
h11 h12
h21 h22

)
.

Hence the following equation system holds:

z11 = h11z11 + h21z
′
11

z12 = h11z12 + h21z
′
12

z21 = h12z11 + h22z
′
11

z22 = h12z12 + h22z
′
12.

By solving this equation system, following solutions are obtained:

h11 = 1, h21 = 0, h12 =
[z2 z

′
1]

[z1 z′1]
, h22 =

[z1 z2]

[z1 z′1]
.

If we use Aw = gAz in the equation A−1z Dz = H = A−1w Dw, we have A−1z Dz =
(gAz)−1Dw = A−1z g−1Dw that means Dz = g−1Dw and Dw = gDz. Matrix form
of the last equation is(

w11 w21

w12 w22

)
=

(
g11 g12
g21 g22

)(
z11 z21
z12 z22

)
.

From this matrix equation, w2 = gz2 that means y2− y1 = g(x2−x1). In that case
we have

y2 = gx2 + b (2)

Equations (1) and (2) complete the proof. �

Theorem 3.5. Let G = Aff(2,R) and f1(t), f2(t), f3(t), f4(t) be C∞−functions
such that t ∈ I ⊂ R. There exists a curve family {x1, x2} such that x1 is GL(n,R)−
regular, which satisfies the following equations:

[x′1 x
′′′
1 ]

[x′1 x
′′
1 ]

= f1(t),
[x′′′1 x′′1 ]

[x′1 x
′′
1 ]

= f2(t),

[x2 − x1 x′′1 ]

[x′1 x
′′
1 ]

= f3(t),
[x′1 x2 − x1]

[x′1 x
′′
1 ]

= f4(t).

Proof. Assume that x′1 = y1 and x2 − x1 = y2, then we have

[y1 y
′′
1 ]

[y1 y′1]
= f1(t),

[y′′1 y
′
1]

[y1 y′1]
= f2(t), (3)

[y2 y
′
1]

[y1 y′1]
= f3(t),

[y1 y2]

[y1 y′1]
= f4(t). (4)

On the other hand, assume that
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Ay1 =

(
y11 y′11
y12 y′12

)
, A′y1

=

(
y′11 y′′11
y′12 y′′12

)
and A−1y1

A′y1
= B. Since A′y1

= Ay1
B, we obtain following equation system:

y′11 = b11y11 + b21y
′
11

y′12 = b11y12 + b21y
′
12

y′11 = b12y11 + b22y
′
11

y′12 = b12y12 + b22y
′
12.

From this equation system, the following solutions are obtained:

b11 = 0, b21 = 1, b12 =
[y′′1 y

′
1]

[y1 y′1]
, b22 =

[y1 y
′′
1 ]

[y1 y′1]
.

In that case, we have the matrix B as follows:(
0 f2(t)
1 f1(t)

)
.

Since A′y1
= Ay1

B, we have

y′′11 = f2(t)y11 + f1(t)y′11

y′′12 = f2(t)y12 + f1(t)y′12.

Assume that z =

(
y11
y12

)
then z′′ = f1(t)z′ + f2(t)z is obtained. It’s well-known

that the last differential equation has at least one solution. Let the solution has
the form y1(t) = (w1(t), w2(t)). Therefore the curve y1(t) satisfies the equations in

(3). Consider the matrix A2 =

(
y11 y21
y12 y22

)
and assume that A−1y1

A2 = K. Hence

we have A2 = Ay1K which leads to the following equation system:

y11 = k11y11 + k21y
′
11

y12 = k11y12 + k21y
′
12

y21 = k12y11 + k22y
′
11

y22 = k12y12 + k22y
′
12.

From this equation system, the following solutions are obtained:

k11 = 1, b21 = 0, k12 =
[y2 y

′
1]

[y1 y′1]
, k22 =

[y1 y2]

[y1 y′1]
.

Namely, K =

(
1 f3(t)
0 f4(t)

)
. This let us write the following equation system:

y21 = f3(t)y11 + f4(t)y′11

y22 = f3(t)y12 + f4(t)y′12.
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By solving this equation system, a curve y2(t) = (u1(t), u2(t)) is obtained where

det

(
u1(t) u2(t)
u′1(t) u′2(t)

)
6= 0 and the curve y2(t) satisfies the equation (4). Since x′1 = y1

and x2 − x1 = y2, two curves x1(t) and x2(t) are obtained and have the following
form:

x1(t) =

∫
y1(t)dt+ c1

x2(t) = y2(t) +

∫
y1(t)dt+ c1.

This completes the proof. �

4. Conclusion and Future Work

• This study could be generalized to the case of n−curves.
• On the other hand, studies in this paper could be transferred to 3− dimen-

sional affine space.
• In that case, relation between surfaces and this study could be stated.
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