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Abstract. In this paper, we consider the concepts 2-farthest orthogonality in gen-
eralized 2-normed spaces. We obtain a necessary and sufficient conditions for 2-
orthogonality of two elements in generalized 2-normed spaces. Also we consider e-2-
farthest orthogonality in generalized 2-normed spaces.
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Abstrak. Dalam paper ini, kita meninjau konsep Ortogonalitas Terjauh-2 di Ru-
ang bernorma-2 diperumum. Kita mendapatkan syarat perlu dan syarat cukup
untuk Ortogonalitas-2 dari dua unsur di ruang bernorma-2 diperumum. Kita juga
meninjau Ortogonalitas Terjauh-2-¢ di ruang bernorma-2 diperumum.

Kata kunci: Ruang bernorma-2 diperumum, Himpunan terbatas-2, Ortogonalitas
terjauh-2, Ortogonalitas terjauh-2-e.

1. INTRODUCTION

Approximation theory, which mainly consists of theory of nearest points (best
approximation) and theory of farthest points (worst approximation), is an old and
rich branch of analysis. The theory is as old as Mathematics itself. The ancient
Greeks approximated the area of a closed curve by the area of a polygon. Starting
in 1853, Russian mathematician P.L.. Chebyshev made significant contributions in
the theory of best approximation. The Weierstrass approximation theorem of 1885
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by K. Weierstrass is well known. The study was followed in the first half of the
20th Century by L.N.H. Bunt (1934), T.S. Motzkin (1935) and B. Jessen (1940).
B. Jessen was the first to make significant contributions in the theory of farthest
points in 1940. This theory is very less developed as compared to the theory of
best approximation (see [14]).

Let X be a real vector space with dim(X) > 2. A real-valued function
I, X x X — R is called a 2-norm on X if the following conditions hold:

(1) ||z, y|| = 0 if and only if  and y are linearly dependent.

(2) |z, y|| = ||ly, z|| for all z,y € X.

(3) oz, y|| = |||z, y|| for all @ € R and z,y € X.

4) |z, y + 2|l < [|lz;yll + ||x; 2]| for all z,y,z € X. The pair (X;]|.,.||) is then
called a 2-normed space.

The 2-norm concept was initially introduced by Gdhler in 1960’s [4]. Since
then, many researchers have developed and obtained various results, see for instance
[5, 6, 7, 11]. Geometrically, a 2-norm function generalizes the concept of area
function of parallelogram due to the fact that, in the standard case, it represents
the area of the usual parallelogram spanned by the two associated vectors. Observe
that in a 2-normed space we have ||z, y|| = ||z + ey, y|| for any o € R.

Definition 1.1. [12] Let X and Y be real linear spaces. Denote by D a non-empty
subset of X x'Y such that for everyx € X,y €Y thesets D, ={yeY : (x,y) €
D} and D, = {x € X : (z,y) € D} are linear subspaces of the spaces Y and X,
respectively. A function ||., .|| : D — [0,00) will be called a generalized 2-norm on
D if it satisfies the following conditions:

(1) ||z, ay|| = |-z, y|| = ||lax, y|| for any real number a and all (x,y) € D;

(2) llz,y + 2| < ll2,yll + [|@, 2|| for € X, y,z € Y with (x,y), (x,2) € D;

(3) e+ y, 2| < llz, 2l + lly, 2l for x,y € X, 2 € YV with (x,2),(y,2) € D.
The set D is called a 2-normed set.

In particular, if D = X x Y, the function ||.,.|| is said to be a generalized 2-
norm on X XY and the pair (X XY/ ||.,.]|) is called a generalized 2-normed space. If
X =Y, then the generalized 2-normed space (X x X, ||., .||) is denoted by (X, ||.,.||)-
In the case that X =Y and D = D~!, where D~ = {(y,z) : (z,y) € D}, and
|z, yll = lly, z|| for all (z,y) € D, we call |.,.]| a generalized symmetric 2-norm and
D a symmetric 2-normed set.

Recall that in Gahler definition of a 2-norm ||z, y|| = 0 if and only if  and y
are linearly dependent, and this is a crucial difference between Gdhlerfs approach
and Lewandowska’s one.

Example 1.2. [12] Let X be a real linear space having two seminorms ||.||1 and
Il Then (X, ||, .l]) is a generalized 2-normed space with the 2-norm defined by

e, yll = llzlli-llyll2; 2,y € X.

Every 2-normed space is a locally convex topological vector space. In fact
for a fixed b € X, pp = ||=,b|l; + € X is a semi-norm on X and the family
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P = {py: b€ X} of semi-norms generates a locally convex topology. We know in
a topological vector space (X, 7) over a field F', W is called bounded if for every
neighborhood N of the zero vector there exists a scalar « such that

W C aN

with aN := {az|z € N}.
In 2-normed spaces , the set W is 2-bounded set if 0(M) < oo, where

o(M)=sup{||lz—z,y—2z|: z,y,z € M}.

Let (X, ||.,.||) be a 2-normed space and let W, and W5 be two subspaces of
X. Amap f: Wy xWs — Ris called a bilinear 2-functional on W7 x W5 whenever
for all xr1,To € Wl, Y1,Y2 € Wy and all /\1,/\2 S R;

(1) flz1 + 22,91 +y2) = flwr,y1) + f(@1,92) + f(z2,91) + f(22,92),
(i) f(hz1, Aeyr) = Midef (21, y1)-

A bilinear 2-functional f: W7 x Wy — R is called bounded if there exists a
non-negative real number M (called a Lipschitz constant for f) such that |f(z,y)| <
M|z, y| for all z € W; and all y € W5. Also, the norm of a bilinear 2-functional f
is defined by

Ifl =inf{M >0: M is a Lipschitz constant f}.

It is known that

Il = sup{lf(z,y)|: (z,y) € Wi x Wa, [lz,yl| < 1}
= Sup{'f(xayﬂ : ('r7y) € Wl X W27 ||J),y|| = 1}
= ot ), et o

For a generalized 2-normed space (X, ||.,.||) and 0 # b € X, we denote by
X, the Banach space of all bounded bilinear 2-functionals on X x < b >, where
< b > be the subspace of X generated by b.

2. 2-FARTHEST ORTHOGONALITY IN GENERALIZED 2-NORMED SPACES

In this section we consider farthest orthogonality in generalized 2-normed
spaces.

Definition 2.1. Let (X,||.,.||) be a generalized 2-normed space. For x,y € X, we
say that x is 2-farthest orthogonality to y and denote by x Lop y , if for all z € X,

[z, z[| > [l =y, 2]| and ||z =y, 2| # 0.

If W a subset of X and x € X, we say that xLopW if and only if x Lopy. for every
yew.
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Let (X, ||.,.]|) be a generalized 2-normed space and W be bounded subset of
X. A point yo € W is said to be a 2-farthest point for z € X, if

|l —yo,2|| > |l — vy, 2| forall z€ X and for all y € W.

If fw(z,2) = sup,ew |z — y, 2||, then yo is 2-farthest point of z, if ||z — yo, 2|| =
fw(z, 2) for all z € X. For all y € W, put

Fiy(2) = {yo € W+ ||z —yo, 2|l = fw(z,2) for all z € X}.

For z € X, if F(x) is nonempty, we say that W is 2-remotal. For z € X, if
F3,(z) is singleton, we say that W is 2-uniquely remotal. For z € X, if F§,(x) = 0,
we say that W is 2-anti-remotal.

A sequence {z,},>1 in a generalized 2-normed space (X, ||.,.||) is called a
convergent sequence if there exists an x € X such that lim,_co||zn, || = ||, 2| for
all z € X. If {z,}n>1 converges to x, we write z,, — & as n — oo.

Theorem 2.2. Let (X,].,.||) be a generalized 2-normed space and x,y € X. If for
some k € R\{0}, y =kz and x Lop y, then 0 < k < 2.

PROOF. Suppose y = kx, Therefore ||z, z|| > ||(1 —k)x, z|| for all z € X. It follows
that 1 > |1 — k|. Hence 0 < k < 2.

Theorem 2.3. Let (X, |.,.||) be a generalized 2-norm and x,t € X. For all z € X,
if |z, z|| > ||z —t, 2||, then for every k > 1, k||z, 2| > ||kz —t, 2||, that is, if x Lopt,
then for every k > 1, kx 1opy.

PROOF. Suppose z € X, define F, : [0,00) = R by F,(k) = ||kx —t, z|| — ||k, z||.
Then F, is convex function such that F,(0) = ||t,z|| > F.(k) for every k € R,
F,(1) = ||z —t, 2| — ||z, z|| <0. Thus we have F,(k) <0 for every k > 1.

Example 2.4. Suppose X = R? with the 2-norm ||., .|| defined by ||(a1,az), (b1,b2)|| =
|a1ba — a1by| is a 2-norm. Then (3,3) Lar(2,2).

Proposition 2.5. Let (X,].,.]|) be a 2-normed space. Then:
(i) If x € X, then z13p0.

(i1) If xLopy and ||z, z|| = |y, 2|, for all z € X, then yLlopx.
(iti) If 0 Lopx for x € X, then x = 0.
(vi) For « € R, x Lapy if and only if axlaopay.

(v) If xp = , Yo =y and T, Lopyn, then xlopy.

PRrROOF. It is trivial. O
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Theorem 2.6. Let (X, ||.,.||) be a generalized 2-norm and z,y € X. Then the
following statements are equivalent:

(1) zJ—QFy;

(2)for every z € X, there exists a 2-bilinear functional T, € X} such that
(2, 2)| > |l =y, 2| and |T:| = 1.

PROOF. (2) = (1). For every z € X, suppose that there is a 2-bilinear functional
T, € X} such that |T,(z,2)| > ||z — v, 2|| and ||T;|| = 1. Then

e, 2l =z, 21T
2 |T.(z,2)]
>z =y 2

(1) = (2). Conversely suppose that zlopy and z € X. For all z € X, we have
|z =y, z|| # 0, it follows that ||«,z|| # 0. From Hahan Banach Theorem in the
context of 2-normed spaces (see Theorem 2.2 [12]), there exists a bilinear T, € X,
such that ||T,|| =1 and |T.(x, 2)| = ||z, ]| > ||l — y, z]|-

Theorem 2.7. Let (X, ||.,.]|) be a generalized 2-norm, W a bounded subset of X
and x € X. If for all z € X, there exists a 2-bilinear functional T, € X} such that
IT.(x,2)| = fw(x, z) and ||T.|| = 1, then zLopW,

PrOOF. For z € X and y € W, fw(z,2) > ||z — v, 2||. From Theorem 2.2, z1opy.
Therefore z1opW.

Theorem 2.8. Let (X, |.,.]|) be a generalized 2-norm and W a bounded subset of
X. If g1 € Fj,(2), g2 € F3,(y) and z € X,

(ii) If gg — W =W, then x — g1 LopW.

PROOF. (i) From definition of 2-farthest points, we have for every z € X

e —y,2ll < |z = g1, 2l, 1z =y, 2l < lly — g1, 2.

Therefore 2|z — y, z|| < ||l — g1, 2] + |lv — 92, 2]|-
(ii) For y € W,
[z =gzl = [lz—y =
= [lz—g1+g1 -y 2l
Suppose g1 —y = u, then u € W. Therefore x — g1 LopW.

Theorem 2.9. Let (X, ||.,.||) be a generalized 2-norm, W a bounded subset of X
and go € W. Then the set (F?w) !(g0) ={z € X : go € F (x)} is closed.

PROOF. Suppose {z,},>1 any sequence in (F?y)~!(go) and z € X such that
limy, 0oy = x. Then for every z € X and g € W and for n > 1 , we have

||$7l _ganH > ”mn _972H
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Y

By limiting to oo, we have for every z € X and for every g € W |z — go, 2|
|z — g,z||. That is z € (F?w) (go), and (F?y)~1(go) is closed.

Corollary 2.10. Let (X,|.,.||) be a generalized 2-norm and yo € X. Put E,, =
{r € X : zlopyo}, then By is closed in X.

PROOF. Suppose {z,}n>1 any sequence in Ey, and x € X such that lim,_ecrn =
x. Therefore for every z € X, lim,—o0||®n, 2| = ||z, 2||. Since z, Lapyo, for every
n > 1, ||zn, 2| > |lxn — yo,2||. Therefore ||z, z|| > || — yo,z||. It follows that
T Lopyo.

3. €-2-FARTHEST ORTHOGONALITY
In this section we consider e-2-farthest points in generalized 2-norm spaces.

Definition 3.1. Let (X, ||.,.||) be a generalized 2-norm space and z,y € X and
e > 0. We say that LS5y, if for all z € X,

[z, 2] = [lo =y, 2| — € and [lv —y, 2| # .

Also, if W is a subset of X and x € X, then 2 L5,W, if x 155y for every
ye W. Put

FI?V,e(x) :{yO eEW: ||x—y0,z|\ wa(x,z)—efor all ZGX}

Theorem 3.2. Let (X, ||.,.||) be a generalized 2-norm, x,y € X and ¢ > 0. Then
the following statements are equivalent:

(1) I‘L;ng

(2) for all z € X, there exists a 2-bilinear functional T, € X such that
T=(x, 2)| = ||z =y, 2| — € and ||T.| = 1.

PROOF. (2) = (1). For every z € X, suppose that there is a 2-bilinear functional
T. € X such that |T,(z,2)| > ||z —y, 2|| — € and ||T,|| = 1. Then

;2] =l 2]
> |T.(z,2)]
> lz—yzll—e

(1) = (2). Conversely, suppose z L5y and z € X. For all z € X, we have
|z — vy, z|| # €, it follows that ||z, z| # 0. From Hahan Banach Theorem in the
context of 2-normed spaces (see Theorem 2.2 [12]), there exists a bilinear T, € X7,
such that ||T.|| =1 and |T.(z, 2)| = ||z, 2] > ||z — v, 2| — €.

Theorem 3.3. Let (X,].,.]|) be a generalized 2-norm, W a subset of X, x € X
and € > 0. If for all z € X, there exists a 2-bilinear functional T, € X} such that
IT.(x,2)| = fw(x,z) — € and |T;|| = 1, then LS. W,

PrROOF. Forz € X andy € W, fw(x,z)—€e > ||z —y, z|| — €. From above Theorem,
xL15py. Therefore z 15, W.
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Theorem 3.4. Let (X, ||.,.||) be a generalized 2-norm and W a subset of X. If
g1 € Fiy, (), g2 € Fy, (y) and z € X, then

(i) 2(z =y, 2| =€) < |z = g1, 2l + |y — g2, 2],

(i) If g — W =W, then x — g1 L5 W.

(i1i) For o > 0, xL§py if and only if ax LS5y

PROOF. It is trivial.

Definition 3.5. Let (X, ||.,.||) be a generalized 2-norm and G and A be a non-
empty subset of X, z € X. A point go € G is called a simultaneous z-farthest point
to A from G if
p=(A,G) = supsup [lg — a, z|| = sup [lgo — a, 2.
geGacA acA
Put
FG(A) ={geG: sup lg —a, 2] = p=(A,G)}.

Theorem 3.6. Let (X, ||.,.||) be a generalized 2-norm and G and A be a non-empty
subset of X, z € X. Ifg € FE(A)NL(y, W) for somew,y € G. Theny,w € F&(A),
where L(y, W) ={ty+ (1 —t)W : 0 <t < 1}.

PROOF. Suppose g € F&(A)NL(y,w) for some w,y € G. Then sup,c 4 |lg—a,b| =
p2(A,G) and g = ty + (1 — t)w for some t € [0, 1]. Further

sup [|g — a, b| Ity + (1 = t)w — a, 2
acA

= sup [t(y —a) + (1 —a)(w —a), ||
acA

IN

tsup [ly —a,z|| + (1 — ) sup [|w — a, 2|
a€A a€A

< 1p(AG) + (1 —1)p(A,G)

= p:(4,G).
We assume that sup,c4 ||y — a, 2] < p-(A4,G) or sup,cq |lw —a,z|| < p.(4,G).
Then p,(A,G) < p(A, G), which is contradicition. Therefore

sup ||y — a, z|| = p.(A,G) = sup |[w — a, z|| = sup ||lg — a, 2]
acA acA acA

Therefore y, w € F&(A).
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