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Abstract. In this paper, we consider the concepts 2-farthest orthogonality in gen-

eralized 2-normed spaces. We obtain a necessary and sufficient conditions for 2-

orthogonality of two elements in generalized 2-normed spaces. Also we consider ε-2-

farthest orthogonality in generalized 2-normed spaces.
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Abstrak. Dalam paper ini, kita meninjau konsep Ortogonalitas Terjauh-2 di Ru-

ang bernorma-2 diperumum. Kita mendapatkan syarat perlu dan syarat cukup

untuk Ortogonalitas-2 dari dua unsur di ruang bernorma-2 diperumum. Kita juga

meninjau Ortogonalitas Terjauh-2-ε di ruang bernorma-2 diperumum.

Kata kunci: Ruang bernorma-2 diperumum, Himpunan terbatas-2, Ortogonalitas
terjauh-2, Ortogonalitas terjauh-2-ε.

1. Introduction

Approximation theory, which mainly consists of theory of nearest points (best
approximation) and theory of farthest points (worst approximation), is an old and
rich branch of analysis. The theory is as old as Mathematics itself. The ancient
Greeks approximated the area of a closed curve by the area of a polygon. Starting
in 1853, Russian mathematician P.L. Chebyshev made significant contributions in
the theory of best approximation. The Weierstrass approximation theorem of 1885
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by K. Weierstrass is well known. The study was followed in the first half of the
20th Century by L.N.H. Bunt (1934), T.S. Motzkin (1935) and B. Jessen (1940).
B. Jessen was the first to make significant contributions in the theory of farthest
points in 1940. This theory is very less developed as compared to the theory of
best approximation (see [14]).

Let X be a real vector space with dim(X) ≥ 2. A real-valued function
‖., .‖ : X ×X → R is called a 2-norm on X if the following conditions hold:

(1) ‖x, y‖ = 0 if and only if x and y are linearly dependent.

(2) ‖x, y‖ = ‖y, x‖ for all x, y ∈ X.

(3) ‖αx, y‖ = |α|‖x, y‖ for all α ∈ R and x, y ∈ X.

(4) ‖x, y+ z‖ ≤ ‖x; y‖+ ‖x; z‖ for all x, y, z ∈ X. The pair (X; ‖., .‖) is then
called a 2-normed space.

The 2-norm concept was initially introduced by Gähler in 1960’s [4]. Since
then, many researchers have developed and obtained various results, see for instance
[5, 6, 7, 11]. Geometrically, a 2-norm function generalizes the concept of area
function of parallelogram due to the fact that, in the standard case, it represents
the area of the usual parallelogram spanned by the two associated vectors. Observe
that in a 2-normed space we have ‖x, y‖ = ‖x+ αy, y‖ for any α ∈ R.

Definition 1.1. [12] Let X and Y be real linear spaces. Denote by D a non-empty
subset of X × Y such that for every x ∈ X, y ∈ Y the sets Dx = {y ∈ Y : (x, y) ∈
D} and Dy = {x ∈ X : (x, y) ∈ D} are linear subspaces of the spaces Y and X,
respectively. A function ‖., .‖ : D → [0,∞) will be called a generalized 2-norm on
D if it satisfies the following conditions:

(1) ‖x, αy‖ = |α|.‖x, y‖ = ‖αx, y‖ for any real number α and all (x, y) ∈ D;

(2) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖ for x ∈ X, y, z ∈ Y with (x, y), (x, z) ∈ D;

(3) ‖x + y, z‖ ≤ ‖x, z‖ + ‖y, z‖ for x, y ∈ X, z ∈ Y with (x, z), (y, z) ∈ D.
The set D is called a 2-normed set.

In particular, if D = X × Y , the function ‖., .‖ is said to be a generalized 2-
norm on X×Y and the pair (X×Y, ‖., .‖) is called a generalized 2-normed space. If
X = Y , then the generalized 2-normed space (X×X, ‖., .‖) is denoted by (X, ‖., .‖).
In the case that X = Y and D = D−1, where D−1 = {(y, x) : (x, y) ∈ D}, and
‖x, y‖ = ‖y, x‖ for all (x, y) ∈ D, we call ‖., .‖ a generalized symmetric 2-norm and
D a symmetric 2-normed set.

Recall that in Gähler definition of a 2-norm ‖x, y‖ = 0 if and only if x and y
are linearly dependent, and this is a crucial difference between Gählerfs approach
and Lewandowska’s one.

Example 1.2. [12] Let X be a real linear space having two seminorms ‖.‖1 and
‖.‖2. Then (X, ‖., .‖) is a generalized 2-normed space with the 2-norm defined by

‖x, y‖ = ‖x‖1.‖y‖2; x, y ∈ X.

Every 2-normed space is a locally convex topological vector space. In fact
for a fixed b ∈ X, pb = ‖x, b‖; x ∈ X is a semi-norm on X and the family
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P = {pb : b ∈ X} of semi-norms generates a locally convex topology. We know in
a topological vector space (X, τ) over a field F , W is called bounded if for every
neighborhood N of the zero vector there exists a scalar α such that

W ⊆ αN

with αN := {αx|x ∈ N}.
In 2-normed spaces , the set W is 2-bounded set if σ(M) <∞, where

σ(M) = sup{‖x− z, y − z‖ : x, y, z ∈M}.

Let (X, ‖., .‖) be a 2-normed space and let W1 and W2 be two subspaces of
X. A map f : W1×W2 → R is called a bilinear 2-functional on W1×W2 whenever
for all x1, x2 ∈W1, y1, y2 ∈W2 and all λ1, λ2 ∈ R;
(i) f(x1 + x2, y1 + y2) = f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2),
(ii) f(λ1x1, λ2y1) = λ1λ2f(x1, y1).

A bilinear 2-functional f : W1 ×W2 → R is called bounded if there exists a
non-negative real number M (called a Lipschitz constant for f) such that |f(x, y)| ≤
M‖x, y‖ for all x ∈W1 and all y ∈W2. Also, the norm of a bilinear 2-functional f
is defined by

‖f‖ = inf{M ≥ 0 : M is a Lipschitz constant f}.

It is known that

‖f‖ = sup{|f(x, y)| : (x, y) ∈W1 ×W2, ‖x, y‖ ≤ 1}
= sup{|f(x, y)| : (x, y) ∈W1 ×W2, ‖x, y‖ = 1}

= sup{ |f(x, y)|
‖x, y‖

: (x, y) ∈W1 ×W2, ‖x, y‖ > 0}.

For a generalized 2-normed space (X, ‖., .‖) and 0 6= b ∈ X, we denote by
X∗b , the Banach space of all bounded bilinear 2-functionals on X× < b >, where
< b > be the subspace of X generated by b.

2. 2-Farthest Orthogonality in Generalized 2-Normed Spaces

In this section we consider farthest orthogonality in generalized 2-normed
spaces.

Definition 2.1. Let (X, ‖., .‖) be a generalized 2-normed space. For x, y ∈ X, we
say that x is 2-farthest orthogonality to y and denote by x ⊥2F y , if for all z ∈ X,

‖x, z‖ ≥ ‖x− y, z‖ and ‖x− y, z‖ 6= 0.

If W a subset of X and x ∈ X, we say that x⊥2FW if and only if x⊥2F y. for every
y ∈W .
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Let (X, ‖., .‖) be a generalized 2-normed space and W be bounded subset of
X. A point y0 ∈W is said to be a 2-farthest point for x ∈ X, if

‖x− y0, z‖ ≥ ‖x− y, z‖ for all z ∈ X and for all y ∈W.

If fW (x, z) = supy∈W ‖x − y, z‖, then y0 is 2-farthest point of x, if ‖x − y0, z‖ =
fW (x, z) for all z ∈ X. For all y ∈W, put

F 2
W (x) = {y0 ∈W : ‖x− y0, z‖ = fW (x, z) for all z ∈ X}.

For x ∈ X, if F 2
W (x) is nonempty, we say that W is 2-remotal. For x ∈ X, if

F 2
W (x) is singleton, we say that W is 2-uniquely remotal. For x ∈ X, if F 2

W (x) = ∅,
we say that W is 2-anti-remotal.

A sequence {xn}n≥1 in a generalized 2-normed space (X, ‖., .‖) is called a
convergent sequence if there exists an x ∈ X such that limn→∞‖xn, z‖ = ‖x, z‖ for
all z ∈ X. If {xn}n≥1 converges to x, we write xn → x as n→∞.

Theorem 2.2. Let (X, ‖., .‖) be a generalized 2-normed space and x, y ∈ X. If for
some k ∈ R\{0}, y = kx and x ⊥2F y, then 0 ≤ k ≤ 2.

Proof. Suppose y = kx, Therefore ‖x, z‖ ≥ ‖(1−k)x, z‖ for all z ∈ X. It follows
that 1 ≥ |1− k|. Hence 0 ≤ k ≤ 2.

Theorem 2.3. Let (X, ‖., .‖) be a generalized 2-norm and x, t ∈ X. For all z ∈ X,
if ‖x, z‖ ≥ ‖x− t, z‖, then for every k ≥ 1, k‖x, z‖ ≥ ‖kx− t, z‖, that is, if x⊥2F t,
then for every k ≥ 1, kx⊥2F y.

Proof. Suppose z ∈ X, define Fz : [0,∞)→ R by Fz(k) = ‖kx− t, z‖ − ‖kx, z‖.
Then Fz is convex function such that Fz(0) = ‖t, z‖ ≥ Fz(k) for every k ∈ R,
Fz(1) = ‖x− t, z‖ − ‖x, z‖ ≤ 0. Thus we have Fz(k) ≤ 0 for every k ≥ 1.

Example 2.4. Suppose X = R2 with the 2-norm ‖., .‖ defined by ‖(a1, a2), (b1, b2)‖ =
|a1b2 − a1b1| is a 2-norm. Then (3, 3)⊥2F (2, 2).

Proposition 2.5. Let (X, ‖., .‖) be a 2-normed space. Then:

(i) If x ∈ X, then x⊥2F 0.

(ii) If x⊥2F y and ‖x, z‖ = ‖y, z‖, for all z ∈ X, then y⊥2Fx.

(iii) If 0⊥2Fx for x ∈ X, then x = 0.

(vi) For α ∈ R, x⊥2F y if and only if αx⊥2Fαy.

(v) If xn → x, yn → y and xn⊥2F yn, then x⊥2F y.

Proof. It is trivial. �
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Theorem 2.6. Let (X, ‖., .‖) be a generalized 2-norm and x, y ∈ X. Then the
following statements are equivalent:

(1) x⊥2F y,

(2)for every z ∈ X, there exists a 2-bilinear functional Tz ∈ X∗z such that
|Tz(x, z)| ≥ ‖x− y, z‖ and ‖Tz‖ = 1.

Proof. (2) ⇒ (1). For every z ∈ X, suppose that there is a 2-bilinear functional
Tz ∈ X∗z such that |Tz(x, z)| ≥ ‖x− y, z‖ and ‖Tz‖ = 1. Then

‖x, z‖ = ‖x, z‖‖Tz‖
≥ |Tz(x, z)|
≥ ‖x− y, z‖.

(1) ⇒ (2). Conversely suppose that x⊥2F y and z ∈ X. For all z ∈ X, we have
‖x − y, z‖ 6= 0, it follows that ‖x, z‖ 6= 0. From Hahan Banach Theorem in the
context of 2-normed spaces (see Theorem 2.2 [12]), there exists a bilinear Tz ∈ X∗z ,
such that ‖Tz‖ = 1 and |Tz(x, z)| = ‖x, z‖ ≥ ‖x− y, z‖.

Theorem 2.7. Let (X, ‖., .‖) be a generalized 2-norm, W a bounded subset of X
and x ∈ X. If for all z ∈ X, there exists a 2-bilinear functional Tz ∈ X∗z such that
|Tz(x, z)| = fW (x, z) and ‖Tz‖ = 1, then x⊥2FW ,

Proof. For z ∈ X and y ∈W , fW (x, z) ≥ ‖x− y, z‖. From Theorem 2.2, x⊥2F y.
Therefore x⊥2FW .

Theorem 2.8. Let (X, ‖., .‖) be a generalized 2-norm and W a bounded subset of
X. If g1 ∈ F 2

W (x), g2 ∈ F 2
W (y) and z ∈ X,

(i) 2‖x− y, z‖ ≤ ‖x− g1, z‖+ ‖y − g2, z‖,
(ii) If g1 −W = W , then x− g1⊥2FW .

Proof. (i) From definition of 2-farthest points, we have for every z ∈ X

‖x− y, z‖ ≤ ‖x− g1, z‖, ‖x− y, z‖ ≤ ‖y − g1, z‖.

Therefore 2‖x− y, z‖ ≤ ‖x− g1, z‖+ ‖y − g2, z‖.
(ii) For y ∈W ,

‖x− g1, z‖ ≥ ‖x− y, z‖
= ‖x− g1 + g1 − y, z‖.

Suppose g1 − y = u, then u ∈W . Therefore x− g1⊥2FW .

Theorem 2.9. Let (X, ‖., .‖) be a generalized 2-norm, W a bounded subset of X
and g0 ∈W . Then the set (F 2

W )−1(g0) = {x ∈ X : g0 ∈ F 2
W (x)} is closed.

Proof. Suppose {xn}n≥1 any sequence in (F 2
W )−1(g0) and x ∈ X such that

limn→∞xn = x. Then for every z ∈ X and g ∈W and for n ≥ 1 , we have

‖xn − g0, z‖ ≥ ‖xn − g, z‖.
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By limiting to ∞, we have for every z ∈ X and for every g ∈ W ‖x − g0, z‖ ≥
‖x− g, z‖. That is x ∈ (F 2

W )−1(g0), and (F 2
W )−1(g0) is closed.

Corollary 2.10. Let (X, ‖., .‖) be a generalized 2-norm and y0 ∈ X. Put Ey0 =
{x ∈ X : x⊥2F y0}, then Ey0 is closed in X.

Proof. Suppose {xn}n≥1 any sequence in Ey0 and x ∈ X such that limn→∞xn =
x. Therefore for every z ∈ X, limn→∞‖xn, z‖ = ‖x, z‖. Since xn⊥2F y0, for every
n ≥ 1, ‖xn, z| ≥ ‖xn − y0, z‖. Therefore ‖x, z‖ ≥ ‖x − y0, z‖. It follows that
x⊥2F y0.

3. ε-2-Farthest Orthogonality

In this section we consider ε-2-farthest points in generalized 2-norm spaces.

Definition 3.1. Let (X, ‖., .‖) be a generalized 2-norm space and x, y ∈ X and
ε > 0. We say that x⊥ε2F y, if for all z ∈ X,

‖x, z‖ ≥ ‖x− y, z‖ − ε, and ‖x− y, z‖ 6= ε.

Also, if W is a subset of X and x ∈ X, then x⊥ε2FW , if x⊥ε2F y for every
y ∈W . Put

F 2
W,ε(x) = {y0 ∈W : ‖x− y0, z‖ ≥ fW (x, z)− ε for all z ∈ X}.

Theorem 3.2. Let (X, ‖., .‖) be a generalized 2-norm, x, y ∈ X and ε > 0. Then
the following statements are equivalent:

(1) x⊥ε2F y,

(2) for all z ∈ X, there exists a 2-bilinear functional Tz ∈ X∗z such that
|Tz(x, z)| ≥ ‖x− y, z‖ − ε and ‖Tz‖ = 1.

Proof. (2) ⇒ (1). For every z ∈ X, suppose that there is a 2-bilinear functional
Tz ∈ X∗z such that |Tz(x, z)| ≥ ‖x− y, z‖ − ε and ‖Tz‖ = 1. Then

‖x, z‖ = ‖x, z‖‖Tz‖
≥ |Tz(x, z)|
≥ ‖x− y, z‖ − ε.

(1) ⇒ (2). Conversely, suppose x⊥ε2F y and z ∈ X. For all z ∈ X, we have
‖x − y, z‖ 6= ε, it follows that ‖x, z‖ 6= 0. From Hahan Banach Theorem in the
context of 2-normed spaces (see Theorem 2.2 [12]), there exists a bilinear Tz ∈ X∗z ,
such that ‖Tz‖ = 1 and |Tz(x, z)| = ‖x, z‖ ≥ ‖x− y, z‖ − ε.

Theorem 3.3. Let (X, ‖., .‖) be a generalized 2-norm, W a subset of X, x ∈ X
and ε > 0. If for all z ∈ X, there exists a 2-bilinear functional Tz ∈ X∗z such that
|Tz(x, z)| = fW (x, z)− ε and ‖Tz‖ = 1, then x⊥ε2FW ,

Proof. For z ∈ X and y ∈W , fW (x, z)−ε ≥ ‖x−y, z‖−ε. From above Theorem,
x⊥ε2F y. Therefore x⊥ε2FW .
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Theorem 3.4. Let (X, ‖., .‖) be a generalized 2-norm and W a subset of X. If
g1 ∈ F 2

W,ε(x), g2 ∈ F 2
W,ε(y) and z ∈ X, then

(i) 2(‖x− y, z‖ − ε) ≤ ‖x− g1, z‖+ ‖y − g2, z‖,
(ii) If g1 −W = W , then x− g1⊥ε2FW .

(iii) For α ≥ 0, x⊥ε2F y if and only if αx⊥αε2Fαy

Proof. It is trivial.

Definition 3.5. Let (X, ‖., .‖) be a generalized 2-norm and G and A be a non-
empty subset of X, z ∈ X. A point g0 ∈ G is called a simultaneous z-farthest point
to A from G if

ρz(A,G) = sup
g∈G

sup
a∈A
‖g − a, z‖ = sup

a∈A
‖g0 − a, z‖.

Put

F zG(A) = {g ∈ G : sup
a∈A
‖g − a, z‖ = ρz(A,G)}.

Theorem 3.6. Let (X, ‖., .‖) be a generalized 2-norm and G and A be a non-empty
subset of X, z ∈ X. If g ∈ F zG(A)∩L(y,W ) for some w, y ∈ G. Then y, w ∈ F zG(A),
where L(y,W ) = {ty + (1− t)W : 0 < t < 1}.

Proof. Suppose g ∈ F zG(A)∩L(y, w) for some w, y ∈ G. Then supa∈A ‖g−a, b‖ =
ρz(A,G) and g = ty + (1− t)w for some t ∈ [0, 1]. Further

sup
a∈A
‖g − a, b‖ = ‖ty + (1− t)w − a, z‖

= sup
a∈A
‖t(y − a) + (1− a)(w − a), z‖

≤ t sup
a∈A
‖y − a, z‖+ (1− t) sup

a∈A
‖w − a, z‖

≤ tρz(A,G) + (1− t)ρz(A,G)

= ρz(A,G).

We assume that supa∈A ‖y − a, z‖ < ρz(A,G) or supa∈A ‖w − a, z‖ < ρz(A,G).
Then ρz(A,G) < ρz(A,G), which is contradicition. Therefore

sup
a∈A
‖y − a, z‖ = ρz(A,G) = sup

a∈A
‖w − a, z‖ = sup

a∈A
‖g − a, z‖.

Therefore y, w ∈ F zG(A).
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