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Abstract. The aim of this article is to compute the signless and normalized Lapla-

cian spectrums of the power graph, its main supergraph and cyclic graph of dihedral

and dicyclic groups.
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Abstrak. Tujuan dari paper ini adalah untuk menghitung spektrum Laplasian

tanpa tanda dan dinormalkan dari graf pangkat, super graf utamanya, dan graf

siklis dari grup disiklis dan dihedral.

Kata kunci: Graf pangkat, Laplasian tanpa tanda, Laplasian dinormalkan, graf

siklis, supergraf utama.

1. Basic Concepts

All groups in this paper are assumed to be finite and graphs are simple. Let Γ
be a graph with vertex set V (Γ) and edge set E(Γ). For the vertex i in V (Γ), dΓ(i)
is degree of i that is equal to the number of neighbors of i. If each vertex of graph,
has the same degree of r, then graph is r-regular. The adjacency matrix A(Γ),
Laplacian matrix L(Γ), signless Laplacian matrix Q(Γ) and normalized Laplacian
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matrix L(Γ) are defined as follows:

A(Γ) = (aij) =

 1, ij ∈ E(Γ)

0, otherwise
,

L(Γ) = D(Γ)−A(Γ),

Q(Γ) = D(Γ) +A(Γ),

L(Γ) = (Lij) =


1, i = j and dΓ(i) 6= 0

− 1√
dΓ(i)dΓ(j)

, ij ∈ E(Γ)

0 otherwise

,

where D(Γ) is the diagonal matrix of degrees. If N is a square matrix, then
P (N, x) = det(xI−N) is characteristic polynomial of N . The multi-sets of all eigen-
values, Laplacian eigenvalues, signless Laplacian eigenvalues and normalized Lapla-
cian eigenvalues of Γ are denoted by Spec(Γ), SpecL(Γ), SpecQ(Γ) and SpecL(Γ),

respectively. We usually write Spec(Γ) = {λ(s1)
1 , . . . , λ

(sm)
m }, where λ1, . . . , λm are

distinct Γ-eigenvalues and sj is the multiplicity of λj , 1 ≤ j ≤ m.

Following Sabidussi [17, p. 396] the A-join of a set of graphs {Γa}a∈A is the
graph ∆ with the following vertex and edge sets:

V (∆) = {(x, y) | x ∈ V (A) & y ∈ V (Γx)},
E(∆) = {(x, y)(x′, y′) | xx′ ∈ E(A) or else x = x′ & yy′ ∈ E(Γx)}.

For the p-vertex graphA, theA−join ofH1, H2, · · · , Hp is denoted byA[H1, H2, · · · , Hp].

Let G be a finite group. For x ∈ G, the order of x is denoted by o(x). The
set of all element orders of G is denoted by πe(G) and the number of all elements of
G of order i is denoted by Ωi(G). The investigation of graphs related to algebraic
structures is important, because graphs like these have important applications (see,
for example, [10]) and are related to automata theory (see [8]). The Cayley graph
is the oldest simple graphs associated to the finite group G. The power graph was
introduced by Kelarev and Quinn in [13]. Two elements x, y ∈ G are adjacent in
the power graph if and only if one is a power of the other. Cameron and Ghosh in
[1], proved that abelian groups with the same number of elements of each possible
order can be characterized by their power graphs. For more information on power
graphs see [2, 9, 11, 12]. The cyclic graph ΓG is a simple graph with the vertex
set G. Two elements x, y ∈ G are adjacent in the cyclic graph if and only if 〈x, y〉
is cyclic [14]. Set πe(G) = {a1, . . . , ak} and define the graph ∆G with vertex set
πe(G) and edge set E(∆G) = {xy | x, y ∈ πe(G), x|y or y|x}. In [4, 5], the present
author introduced the main supergraph S(G), that is a graph with vertex set G in
which two vertices x and y are adjacent if and only if o(x)|o(y) or o(y)|o(x). In
the mentioned papers, they proved that S(G) = ∆G[KΩa1

(G), . . . ,KΩak
(G)], where

Kn denotes the complete graph on n vertices. Note that the graphs S(G) and
ΓG are supergraphs of the power graph. Laplacian spectrum of power graphs of
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finite cyclic and dihedral groups computed by Chattopadhyaya and Panigrahi in
[3] and in [15], Mehranian et al. obtained spectrum of the power graphs of D2n,
T4n and SD8n. Also in [6, 7] the eigenvalues and Laplacian eigenvalues of S(G) are
computed. Throughout this paper we refer to [16] for group theory concepts and
for graph theoretical concepts and notations, we refer to [19].

In this paper we compute signless Laplacian and normalized Laplacian eigen-
values of the power graph and some of its supergraphs. As an application, signless
Laplacian and normalized Laplacian eigenvalues of the power graph and its super-
graphs are computed for the dihedral and dicyclic groups.

2. Main Results

The dihedral and dicyclic groups can be presented as follows:

D2n = < a, b|an = b2 = 1, bab = a−1 >,

T4n = < a, b|a2n = 1, an = b2, b−1ab = a−1 > .

We now state a result of [20] which is important in our next results.

Theorem 2.1. [20] Let H be a graph with V (H) = {1, 2, . . . , k}, and Gi’s be ri-
regular graphs of order ni(i = 1, 2, . . . , k). If Γ = H[G1, G2, · · · , Gk], then signless
Laplacian spectrum can be computed as follows:

SpecQ(Γ) =

(
k⋃

i=1

(Ni + (SpecQ(Gi)\{2ri}))

)⋃
Spec((CQ(H)),

where

Ni =


∑

j∈NH(i) nj , NH(i) 6= ∅

0, otherwise
,

and

CQ(H) = (cij)k×k =


2ri +Ni, i = j,

√
ninj , ij ∈ E(H),

0 otherwise.

The following result is an immediate consequence of Theorem 2.1 and the
fact that SpecQ(Kn) = {2n− 2, n− 2(n−1)}.

Corollary 2.2. Suppose S(G) = ∆G[KΩa1
(G), . . . ,KΩak

(G)]. Then the signless

Laplacian spectrum of the main supergraph is computed as follows:

SpecQ(S(G)) =

(
k⋃

i=1

(Ni + Ωai
(G)− 2)(Ωai

(G)−1)

)⋃
Spec(C),
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where

Ni =


∑

aj∈N∆G
(ai)

Ωaj
(G), N∆G

(ai) 6= ∅

0, otherwise

,

ρl,s = ρs,l =


√

Ωal
(G)Ωas(G), al|as or as|al

0, otherwise
,

and

C =


2Ωa1(G)− 2 +N1 ρ1,2 · · · ρ1,k

ρ2,1 2Ωa2
(G)− 2 +N2 · · · ρ2,k

...
...

. . . ρk−1,k

ρ1,k ρ2,k · · · 2Ωak
(G)− 2 +Nk

 .

In the next results, the signless Laplacian spectrum of the power graph of
some finite groups are computed.

Consider the dihedral group D2n. In this case ΓD2n
= P3[Kn−1,K1,Kn]. If

n is a prime power, then P(D2n) = P3[Kn−1,K1,Kn].

Corollary 2.3. The signless Laplacian eigenvalues of ΓD2n
, n 6= 1 and P(D2n)

where in this case n is a prime power, are n − 2 with multiplicity n − 2, 1 with
multiplicity n− 1 and three simple signless Laplacian eigenvalues as follows:

x1 =

3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

3

−
3(
−4

9
n2 +

2

3
n− 1)

3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

+
4n

3
− 1,

x2,3 = −
3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

6

+
3(
−4

9
n2 +

2

3
n− 1)

2
3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

+
4n

3
− 1± 1

2
i
√

3

(

3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

3

+
3(
−4

9
n2 +

2

3
n− 1)

3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

).



Signless and Normalized Laplacian Spectrums 65

Proof. By Theorem 2.1,

CQ(P3) =

 2n− 3
√
n− 1 0√

n− 1 2n− 1
√
n

0
√
n 1

 .

Now by computing eigenvalues of the matrix CQ(P3), the result will be completed.
�

Corollary 2.4. The signless Laplacian eigenvalues of ΓT4n and P(T4n) where in
this case n is a power of 2, are 2n−2 with multiplicity 2n−3, 4n−2 with multiplicity
1, 2 with multiplicity n, 4 with multiplicity n−1 and three simple signless Laplacian
eigenvalues as follows:

x1 =
2

3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

3

−
3(−16

9
n2 +

8

3
n− 4)

2
3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

+
8n

3
,

x2,3 = −
3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

3

+
3(−16

9
n2 +

8

3
n− 4)

4
3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

+
8n

3
± 1

2
i
√

3

(
2

3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

3

+
3(−16

9
n2 +

8

3
n− 4)

2
3

√
−8n3 + 45n2 − 54n+ 27 + 3

√
−48n5 + 225n4 − 420n3 + 378n2 − 162n

).

Proof. A simple investigation of dicyclic group T4n shows that

ΓT4n = W [K2n−2,K2,K2,K2, · · · ,K2︸ ︷︷ ︸
n

],

where W is depicted in Figure 1. If n is a power of 2, then

P(T4n) = W [K2n−2,K2,K2,K2, · · · ,K2︸ ︷︷ ︸
n

].
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Figure 1. The graph W related to the cyclic graph and power
graph of T4n.

So by Theorem 2.1,

CQ(W ) =



4n− 4 2
√
n− 1 0 0 0 · · · 0

2
√
n− 1 4n 2 2 2 · · · 2
0 2 4 0 0 · · · 0
0 2 0 4 0 · · · 0
0 2 0 0 4 · · · 0
...

...
...

...
...

. . .
...

0 2 0 0 0 · · · 4


.

Now by computing eigenvalues of the matrix CQ(W ), the proof is completed. �

Theorem 2.5. (See Tamizh Chelvam and Sattanathan [18]) Let G be an elemen-
tary abelian group of order pn for some prime number p and positive integer n.

Then P(G) ∼= K1 + ∪li=1Kp−1, where l =
pn − 1

p− 1
.

Let E(pn) denote the elementary abelian group of order pn, p is prime, n is

positive integer and l =
pn − 1

p− 1
. By Theorem 2.5, P(E(pn)) ∼= K1 +∪li=1Kp−1 and

so

P(E(pn)) ∼= M [K1,Kp−1, · · · ,Kp−1︸ ︷︷ ︸
l

],

where M = K1 + K̄l.

Corollary 2.6. The signless Laplacian eigenvalues of E(pn), are p− 2 with mul-
tiplicity l(p − 2), 2p − 3 with multiplicity l − 1 and two simple signless Laplacian
eigenvalues as follows:

x1,2 = −3

2
+
lp

2
− l

2
+ p±

√
9 + 14lp− 10l − 12p+ l2p2 − 2l2p− 4lp2 + l2 + 4p2

2
.
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Proof. By Theorem 2.1 and the structure of P(E(pn)),

CQ(M) =



l(p− 1)
√
p− 1

√
p− 1

√
p− 1

√
p− 1 · · ·

√
p− 1√

p− 1 2p− 3 0 0 0 · · · 0√
p− 1 0 2p− 3 0 0 · · · 0√
p− 1 0 0 2p− 3 0 · · · 0√
p− 1 0 0 0 2p− 3 · · · 0

...
...

...
...

...
. . .

...√
p− 1 2 0 0 0 · · · 2p− 3


.

Now by computing eigenvalues of the matrix CQ(M), the result is obtained. �

We now state another result of [20] which is crucial in computing normalized
Laplacian eigenvalues ΓD2n

, P(D2n), ΓT4n
and P(T4n).

Theorem 2.7. [20] Let H be a graph with no isolated vertices and V (H) =
{1, 2, . . . , k}, and Gi’s be ri-regular graphs of order ni(i = 1, 2, . . . , k). If Γ =
H[G1, G2, · · · , Gk], then normalized Laplacian spectrum can be computed as fol-
lows:

SpecL(Γ) =

(
k⋃

i=1

(
Ni

ri +Ni
+

ri
ri +Ni

(SpecL(Gi)\{0}))

)⋃
Spec((CL(H)),

where

Ni =


∑

j∈NH(i) nj , NH(i) 6= ∅,

0, otherwise.

and

CL(H) = (cij)k×k =



Ni

ri+Ni
, i = j,

−
√

ninj

(ri+Ni)(rj+Nj) , ij ∈ E(H),

0 otherwise.

The following results are immediate consequences of Theorem 2.7 and the

fact that SpecL(Kn) = {0, n
n−1

(n−1)}.

Corollary 2.8. The normalized Laplacian eigenvalues of ΓD2n , n 6= 1 and P(D2n)
where in this case n is a prime power, are n

n−1 with multiplicity n−2, 1 with multi-
plicity n−1, 0 with multiplicity 1 and two simple normalized Laplacian eigenvalues
as follows:

x1,2 =
−4n+ 1 + 4n2 ±

√
32n2 − 12n− 28n3 + 1 + 8n4

2(2n2 − 3n+ 1)
.
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Proof. Consider the dihedral group D2n. In this case ΓD2n
= P3[Kn−1,K1,Kn]. If

n is a prime power, then P(D2n) = P3[Kn−1,K1,Kn]. By Theorem 2.7,

CL(P3) =


1

n−1 −
√

1
2n−1 0

−
√

1
2n−1 1 −

√
n

2n−1

0 −
√

n
2n−1 1

 .

Now by computing eigenvalues of the matrix CL(P3), we will prove the result. �

Corollary 2.9. The normalized Laplacian eigenvalues of ΓT4n and P(T4n) where in
this case n is a power of 2, are 2n

2n−1 with multiplicity 2n−3, 4n
4n−1 with multiplicity

1, 4
3 with multiplicity n, and Spec(C) that

C =



2
n−1

−
√

2(2n−2)
(2n−1)(4n−1)

0 0 0 · · · 0

−
√

2(2n−2)
(2n−1)(4n−1)

4n−2
4n−1

−
√

4
3(4n−1)

−
√

4
3(4n−1)

−
√

4
3(4n−1)

· · · −
√

4
3(4n−1)

0 −
√

4
3(4n−1)

2
3

0 0 · · · 0

0 −
√

4
3(4n−1)

0 2
3

0 · · · 0

0 −
√

4
3(4n−1)

0 0 2
3

· · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 −
√

4
3(4n−1)

0 0 0 · · · 2
3



.

Proof. the proof is similar to Corollary 2.8. �

Corollary 2.10. The normalized Laplacian eigenvalues of E(pn), are p
p−1 with

multiplicity l(p− 2) + 1, 1
p−1 with multiplicity l − 1 and 0 with multiplicity 1.

Proof. By Theorem 2.7 and the structure of P(E(pn)),

CL(M) =



1
√

1
l(p−1) −

√
1

l(p−1)

√
1

l(p−1)

√
1

l(p−1) · · ·
√

1
l(p−1)√

1
l(p−1)

1
p−1 0 0 0 · · · 0√

1
l(p−1) 0 1

p−1 0 0 · · · 0√
1

l(p−1) 0 0 1
p−1 0 · · · 0√

1
l(p−1) 0 0 0 1

p−1 · · · 0

...
...

...
...

...
. . .

...√
1

l(p−1) 2 0 0 0 · · · 1
p−1


.

Now by computing eigenvalues of this matrix, the proof is completed. �
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