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TWO-NORM CONTINUOUS

FUNCTIONALS ON L∞

Ch. Rini Indrati

Abstract. In this paper we regard L∞ as a two-norm space and prove a representation

theorem for two-norm continuous functionals defined on L∞.

1. INTRODUCTION

The classical Riesz representation theorems is well-known. It shows that
every continuous linear functional F defined on the space C[0, 1] of all continuous
functions on [0, 1] can be expressed in terms of a Riemann-Stieltjes integral. That
is, if F is a continuous linear functional on C[0, 1], then there is a function g of
bounded variation on [0, 1] such that

F (f) =
∫ 1

0

f(x)dg(x) for f ∈ C[0, 1].

Let BV [0, 1] denote the space of all functions of bounded variation on [0, 1].
In the language of functional analysis, the Riesz theorem says that the Banach
dual of C[0, 1] is BV [0, 1]. However, the Banach dual of BV [0, 1] is not C[0, 1] if we
endorse BV [0, 1] with the usual norm, namely, |f(0)|+V (f ; [0, 1]) where V (f ; [0, 1]
denotes the total variation of f on [0, 1]. The main difficulty is that BV [0, 1] is
non-separable. Hence the usual technique of proving such representation theorem
no longer applies. More precisely, the proof often contains the following two steps.
First, we prove the representation for some elementary functions, for example, step
functions. Secondly, we approximate a general function by a sequence of elementary
functions. Thus the representation for general functions follows from a convergence
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theorem for the integral. If the space is non-separable, the second step does not
work.

Hildebrandt [1] proved a representation theorem for BV [0, 1] by regarding
BV [0, 1] as a two-norm space [6]. Here we state the theorem without proof in the
form as given by Khaing [2].

A functional F defined on BV [0, 1] is said to be two-norm continuous if
F (fn) → F (f) as n → ∞ whenever V (fn; [0, 1]) ≤ M for all n and ‖fn − f‖ → 0
as n →∞, where ‖f‖ = sup0≤x≤1 |f(x)|.

Theorem 1 If F is a two-norm continuous linear functional on BV [0, 1] then there
exist bounded functions f1 and f2 such that the following Henstock-Stieltjes integral
and infinite series exist and

F (g) =
∫ b

a

f1dg∗ +
∞∑

i=1

[g(ti)− g∗(ti)]f2(ti)

for every g ∈ BV [0, 1], where ti, i = 1, 2, . . ., are the discontinuity points of g, and
g∗ is the normalized function of g.

In fact, the converse of Theorem 1 holds [2].

In this paper, following the same idea as above we regard L∞ as a two-norm
space and prove a representation theorem for two-norm continuous linear function-
als on L∞. Here L∞ denotes the space of all essentially bounded functions on [0, 1].

2. LINEAR FUNCTIONALS ON L∞

A function F is essentially bounded if it is bounded almost everywhere.
Let L∞ be the space of all essentially bounded functions on [0, 1]. The two

norms defined on L∞, as suggested by Orlicz [6], are the essential bound ‖f‖∞ and∫ 1

0
|f(x)|dx.

A sequence {fn} of functions is said to be two-norm convergent to f in
L∞ if ‖fn‖∞ ≤ M for all n and

∫ 1

0

|fn(x)− f(x)|dx → 0, as n →∞.

A functional F defined on L∞ is said to be two-norm continuous if

F (fn) → F (f) as n →∞
whenever {fn} is two-norm convergent to f in L∞.

We state without proof the big Sandwich Lemma [4]. We need it in proving
a convergence theorem for the Lebesgue integral.
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Lemma 2 If 0 ≤ an ≤ bkn for all n, k and

lim
k→∞

lim
n→∞

bkn = 0

then limn→∞ an = 0.

In what follows, when we say absolutely integrable we mean Lebesgue
integrable.

Lemma 3 If f is integrable and there is a positive constant K such that
∫ 1

0

|fg| ≤ K

∫ 1

0

|g|,

for every bounded measurable functions g on [0, 1], then f ∈ L∞ and ‖f‖∞ ≤ K.

Lemma 4 If {fn} is two-norm convergent to f in L∞, then f ∈ L∞.

Proof. Let An =
∫ 1

0
fn, for every n.

|An −Am| ≤ |
∫ 1

0

fn −
∫ 1

0

fm| ≤
∫ 1

0

|fn − fm|

≤
∫ 1

0

|fn − f |+
∫
−01|f − fm| → 0, as n,m →∞.

That means {An} is Cauchy in real system, there exists a real number A such that
An → A as n → ∞. Let ε > 0 be given. There is a positive integer no such that
for every positive integer n, n ≥ no,

|An −A| < ε.

Therefore,

|A−
∫ 1

0

f | ≤ |A−Ano |+ |Ano −
∫ 1

0

fno |+ |
∫ 1

0

fno −
∫ 1

0

f | < 3ε.

That is, f is integrable. If g is bounded measurable function on [0, 1], then g is
integrable on [0, 1], then

|
∫ 1

0

fg| ≤
∫ 1

0

|(f − fno)g|+
∫ 1

0

|fnog| ≤
∫ 1

0

|(f − fno)|‖g‖1 + ‖fno‖∞‖g‖1.

By, Lemma 3, f ∈ L∞. 2

Theorem 5 Let g be absolutely integrable on [0, 1]. If {fn} is two-norm convergent
to f in L∞ then

lim
n→∞

∫ 1

0

fn(x)g(x)dx =
∫ 1

0

f(x)g(x)dx.
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Proof. Since g is absolutely integrable on [0, 1], there is a sequence {gk} of essen-
tially bounded functions on [0, 1] such that

∫ 1

0

|gk(x)− g(x)|dx → 0 as k →∞.

Since {fn} is two-norm convergent, we have ‖fn‖∞ ≤ M for all n. Hence the
convergence of the integrals follows from Lemma 2 and the inequality

|
∫ 1

0

fn(x)g(x)dx−
∫ 1

0

f(x)g(x)dx| ≤ 2M

∫ 1

0

|gk(x)− g(x)|dx

+ ‖gk‖∞
∫ 1

0

|fn(x)− f(x)|dx. 2

Corollary 6 If g is absolutely integrable on [0, 1] and

F (f) =
∫ 1

0

f(x)g(x)dx for f ∈ L∞,

then F defines a two-norm continuous linear functional on L∞.

We define

γt(x) =
{

1 untuk 0 ≤ x < t
0 untuk t ≤ x ≤ 1.

A function G defined on [0, 1] is said to be absolutely continuous if for
every ε > 0 there is δ > 0 such that

|(D)
∑

{G(v)−G(u)}| < ε

whenever (D)
∑ |v − u| < δ, where D = {[u, v]} denotes a partial division of [0, 1]

in which [u, v] stands for a typical interval in the partial division. We are using the
notation of Henstock integral ([5], [7]).

Lemma 7 Let F be a two-norm continuous linear functional on L∞. If G(t) =
F (γt) for t ∈ [0, 1] then G is absolutely continuous.

Proof. Suppose G is not absolutely continuous on [0, 1]. Then there is ε > 0 such
that for every δ there exists a partial division D = {[u, v]} satisfying

(D)
∑

|v − u| < δ and |(D)
∑

{G(v)−G(u)}| ≥ ε.

For each n, take δ = 1
n and Dn = D. For every x ∈ [0, 1], there is [u, v] ∈ D, put

fn(x) = (Dn)
∑ |γv − γu|. Then ‖fn‖∞ ≤ 1 for all n and

∫ 1

0

|fn(x)|dx = (Dn)
∑

|v − u| ↓ 0 as n →∞.
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That is, {fn} is two-norm convergent to 0 in L∞. Yet we have

F (fn) = |(Dn)
∑

{G(v)−G(u)}| ≥ ε for all n.

It contradicts the fact that F is two-norm continuous. Hence G is absolutely
continuous on [0, 1]. 2

Theorem 8 If F is a two-norm continuous linear functional on L∞ then there is
an absolutely integrable function g such that

F (f) =
∫ 1

0

f(x)g(x)dx for f ∈ L∞.

Proof. In view of Lemma 7 and using notation there, we obtain

F (γt) = G(t) =
∫ 1

0

γt(x)dG(x)

where the integral is the Riemann-Stieltjes integral and G is absolutely continuous
on [0, 1]. Note that G(0) = 0. Since F is linear,

F (f) =
∫ 1

0

f(x)dG(x)

for any step function f .
Next, write g(x) = G′(x) almost everywhere in [0, 1]. In view of integration by
substitution [4] p.74 Exercise 2.20, we have

F (f) =
∫ 1

0

f(x)g(x)dx

for any step function f . Take f ∈ L∞. Then there is a sequence {fn} of step
functions two-norm convergent to f . Hence the general case of the theorem follows
from Theorem 5.

3. CONCLUDING REMARKS

In conclusion, we have characterized completely two-norm continuous linear
functionals on L∞.
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