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INVARIANT RANDOM APPROXIMATION IN

NONCONVEX DOMAIN

R. Shrivastava, H. K. Nashine and C. L. Dewangan

Abstract. Random fixed point results in the setup of compact and weakly compact

domain of Banach spaces which is not necessary starshaped have been obtained in the

present work. Invariant random approximation results have also been determined as

its application. In this way, random version of invariant approximation results due to

Mukherjee and Som [13] and Singh [17] have been given.

1. INTRODUCTION

Probabilistic functional analysis is an important mathematical discipline be-
cause of its applications to probabilistic models in applied problems. Random
operator theory is needed for the study of various classes of random equations.
The theory of random fixed point theorems was initiated by the Prague school of
probabilistic in the 1950s. The interest in this subject enhanced after publication
of the survey paper by Bharucha Reid [5]. Random fixed point theory has received
much attention in recent years (see, e.g. [2, 14, 15, 16, 18]).

Interesting and valuable results applying various random fixed point theorems
appeared in the literature of approximation theory. In this direction, some of the
authors are Beg and Shahzad [1, 3, 4], Khan et al. [8], Lin [11], Tan and Yuan
[18] and Papageorgion [15, 16]. In the subject of best approximation, one often
wishes to know whether some useful property of the function being approximation
is inherited by the approximating function.

In fact, Meinardus [12] was the first who observed the general principle and
employed a fixed point theorem to established the existence of an invariant ap-
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proximation. Later on, a number of results were developed along this direction
under different conditions (see, e.g. [9, 12, 17]).

The aim of this paper is to establish existence of random fixed point as
random best approximation for compact and weakly compact domain of Banach
spaces which is not necessary starshaped. To achieve the goal, the contractive
jointly continuous family property given by Dotson [6] has been used. By doing
so, random version results of certain invariant approximation theorems obtained
by Mukherjee and Som [13] and Singh [17] have been obtained.

2. PRELIMINARIES

In the material to be produced here, the following definitions have been used:

Definition 2.1. [14]. Let (Ω,A) be a measurable space and X be a metric space.
Let 2X be the family of all nonempty subsets of X and C(X ) denote the family of all
nonempty compact subsets of X . Now, we call a mapping F : Ω → 2X measurable
(respectively, weakly measurable) if, for any closed (respectively, open) subset B of
X ,F−1(B) = {w ∈ Ω : F(w) ∩ B 6=} ∈ A. Note that, if F(w) ∈ C(X ) for every
w ∈ Ω, then F is weakly measurable if and only if measurable.

A mapping ξ : Ω → X is called a measurable selector of a measurable mapping
F : Ω → 2X , if ξ is measurable and, for any w ∈ Ω, ξ(w) ∈ F(w). A mapping
f : Ω× X → X is called a random operator if for any x ∈ X , f(., x)is measurable.
A measurable mapping ξ : Ω → X is called a random fixed point of a random
operator f : Ω×X → X if for every w ∈ Ω, ξ(w) = f(w, ξ(w)). A random operator
f : Ω×X → X is continuous if, for each w ∈ Ω, f(w, .) is continuous.

Definition 2.2. Let M be a nonempty subset of a Banach space X . For x0 ∈ X ,
define

d(x0,M) = inf
y∈M

‖x0 − y‖

and
PM(x0) = {y ∈M : ‖x0 − y‖ = d(x0,M)}.

Then an element y ∈ PM(x0) is called a best approximant of x0 of M. The set
PM(x0) is the set of all best approximants of x0 of M.

Further, definition providing the notion of contractive jointly continuous fam-
ily introduced by Dotson [6] may be written as:

Definition 2.3. [6]. Let M be a subset of metric space (X , d) and ∆ = {fα}α∈M
a family of functions from [0, 1] into M such that fα(1) = α for each α ∈M. The
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family ∆ is said to be contractive if whenever there exists a function θ : (0, 1) →
(0, 1) such that for all α, β ∈M and all ∈ (0, 1) we have

d(fα(t), fβ(t)) ≤ θ(t)d(α, β).

The family is said to be jointly continuous if t → t0 in [0, 1] and α → α0 in M
imply that fα(t) → f − α0(t0) in X .

Definition 2.4. [6]. Let M be a subset of metric space (X , d) and ∆ is a family as
in Definition 2.3, then ∆ is said to be jointly weakly continuous if t → t0 in [0, 1]
and α

w−→ α0 in M imply that fα(t) w−→ fα0(t0) in M.

The following result would also be used in the sequel:

Theorem 2.1. [14]. Let (X , d) be a Polish space and T : Ω × X → X be a
continuous random operator. Suppose there is some h ∈ (0, 1) such that for x, y ∈ X
and w ∈ Ω, we have

d(T (w, x), T (w, y)) ≤ h max{d(x, y), d(x, T (w, x)), d(y, T (w, y)),
1
2
[d(x, T (w, x)) + d(y, T (w, y))]}.

Then T have a random fixed point.

3. MAIN RESULTS

We first prove, random fixed point result for compact subset of Banach space
which is not necessary starshaped.

Definition 2.1. Let X be a Banach space and M be a subset of X . Let T :
Ω ×M → M be continuous random operator. Suppose M is nonempty compact
and admits a contractive and jointly continuous family ∆. If T satisfies for x, y ∈
M, w ∈ Ω and t ∈ (0, 1)

‖T (w, x)− T (w, y)‖ ≤ max{‖x− y‖, dist(x, fT (w,x)(t)), dist(y, fT (w,y)(t)),
1
2
[dist(x, fT (w,y)(t)) + dist(y, fT (w,x)(t))]}, (1)

then there exists a measurable map ξ : Ω → D such that ξ(w) = T (w, ξ(w)) for
each w ∈ Ω.

Proof. Choose kn ∈ (0, 1) such that {kn} → 1 as n → ∞. Then for each n, define
a random operator Tn : Ω×M→M as

Tn(w, x) = fT (w,x)(kn). (2)
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Then Tn is a well-defined map from M into M and Tn is continuous because of the
joint continuity of fx(t)(x ∈M, t ∈ [0, 1]). It follows from 1 and 2 that

‖Tn(w, x)− Tn(w, y)‖ = ‖fT (w,x)(kn)− fT (w,y)(kn)‖
≤ φ(kn)‖T (w, x)− T (w, y)‖

≤ φ(kn)max{‖x− y‖, dist(x, fT (w,x)(kn)),
1
2
[dist(x, fT (w,y)(kn)) + dist(y, fT (w,y)(kn)),

dist(y, fT (w,x)(kn))]}
≤ φ(kn) max{‖x− y‖, ‖x− Tn(w, x)‖, ‖y − Tn(w, y)‖,

1
2
[‖x− Tn(w, y)‖+ ‖y − Tn(w, x)‖]}

i.e.,

‖Tn(w, x)− Tn(w, y)‖ ≤ φ(kn) max{‖x− y‖, ‖x− Tn(w, x)‖, ‖y − Tn(w, y)‖,
1
2
[‖x− Tn(w, y)‖+ ‖y − Tn(w, x)‖]}

for all x, y ∈M, w ∈ Ω and φ(kn) ∈ (0, 1).
By the continuity of Tn(., x)(x ∈ M), the inverse image of any open subset K of
M is open in w = [0, 1] and hence Lebsegue measurable. Thus each Tn(., x) is a
random operator. By Theorem 2.1, Tn has a random fixed point ξn of Tn such that
ξn(w) = Tn(w, ξn) for all n ∈ N .
For each n, define Gn : Ω → C(M) by Gn = cl{ξ(w) : i ≥ n} where C(M) is the set
of all nonempty compact subset of M.
Let G : Ω → C(M) be a mapping defined as G(w) = ∩∞n=1G(w). Then, by a result
of Himmelberg [7, Theorem 4.1] we see that G is measurable. The Kuratowski and
Ryll-Nardzewski selection Theorem [10] further implies that G has a measurable
selector ξ : Ω →M. We now show that ξ is the random fixed point of T . We first
fix w ∈ Ω. Since ξ(Ω) ∈ G(w), there exists a subsequence {ξm(w)} of {ξn(w)} that
converges to ξ(w); that is ξm(w) → ξ(w). Since Tm(w, ξm(w)) = ξm(w), we have
Tm(w, ξm(w)) → ξ(w).
Proceeding to the limit as m →∞, km →∞ and by using joint continuity,

Tm(w, ξm(w)) = fT (w,ξm(w))(km) → fT (w, ξ(w))(1) = T (w, ξ(w)).

This completes the proof.¤

An immediately consequence of the Theorem 3.2 is as follows:

Corollary 3.1. Let X be a Banach space and M be a subset of X . Let T : Ω×M→
M be continuous random operator. Suppose M is nonempty compact and admits
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a contractive and jointly continuous family ∆. If T satisfies for x, y ∈ M, w ∈ Ω
and t ∈ (0, 1)

‖T (w, x)− T (w, y)‖ ≤ max{‖x− y‖, dist(x, fT (w,x)(t)), dist(y, fT (w,y)(t)),
1
2
dist(x, fT (w,x)(t)),

1
2
dist(y, fT (w,x)(t))}, (3)

then there exists a measurable map ξ : Ω → D such that ξ(2) = T (2, ξ(w)) for each
w ∈ Ω.

As an application of Theorem 3.2, we have following results on invariant ap-
proximations:

Theorem 3.3. Let X be a Banach space and T : Ω × X → M be continuous
random operator. Let M ⊆ X such that T (w, .) : ∂M → M, where ∂M stands
for the boundary of M. Let x0 ∈ X and x0 = T (w, x0). Suppose D = PM(x0) is
nonempty compact and admits a contractive and jointly continuous family ∆. If T
satisfies for x, y ∈ D ∪ {x0}, w ∈ Ω and t ∈ (0, 1)

‖T (w, x)− T (w, y)‖ ≤



‖x− x0‖, if y = x0,
max{‖x− y‖, dist(x, fT (w,x)(t)), dist(y, fT (w,y)(t)),
1
2 [dist(x, fT (w,y)(t)) + dist(y, fT (w,x)(t))]}, if y ∈ D,

(4)
then there exists a measurable map ξ : Ω → D such that ξ(w) = T (w, ξ(w)) for
each w ∈ Ω.

Proof. Let y ∈ D. Also, if y ∈ ∂M then W(w, y) ∈ M, because T (w, ∂M) ⊆ M
for each w ∈ Ω. Now since x0 = T (w, x0),

‖T (w, y)− x0‖ = ‖T (w, y)− T (w, x0)‖ ≤ ‖x− x0‖,
yielding thereby T (w, y) ∈ D; consequently D is T (w, .)-invariant, that is, T (w, .) ⊆
D. Now, Theorem 3.2 guarantees that there exists a measurable map ξ : Ω → D
such that ξ(w) = T (w, ξ(w)) for each w ∈ Ω.¤

Next, an immediate consequence of the Theorem 3.3 is as follows:

Corollary 3.2. Let X be a Banach space and T : Ω ×M → M be continuous
random operator. Let M ⊆ X such that T (w, .) : ∂M → M, where ∂M stands
for the boundary of M. Let x0 ∈ X and x0 = T (w, x0). Suppose D = PM(x0) is
nonempty compact and admits a contractive and jointly continuous family ∆. If T
satisfies for x, y ∈ D ∪ {x0}, w ∈ Ω and t ∈ (0, 1)

‖T (w, x)− T (w, y)‖ ≤



‖x− x0‖, if y = x0,
max{‖x− y‖, dist(x, fT (w,x)(t)), dist(y, fT (w,y)(t)),
1
2 [dist(x, fT (w,y)(t)) + dist(y, fT (w,x)(t))]}, if y ∈ D,

(5)
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then there exists a measurable map ξ : Ω → D such that ξ(w) = T (w, ξ(w)) for
each w ∈ Ω.

An analogue of the Theorem 3.2 for weakly compact subset is as follows:

Theorem 3.4. Let X be a Banach space and M be a subset of X . Let T :
Ω×M→M be weakly continuous random operator. Let M is nonempty separable
weakly compact and admits a contractive and jointly weakly continuous family ∆.If
T satisfies (3.1) for x, y ∈M, w ∈ Ω and t ∈ (0, 1), then there exists a measurable
map ξ : Ω →M such that ξ(w) = T (w, ξ(w)) for each w ∈ Ω, provided I − T (w, .)
is demiclosed at zero for each w ∈ Ω, where I is a identity mapping.

Proof. For each n ∈ N, define {kn}, {Tn} as in the proof of the Theorem 3.2. Also,
we have

‖Tn(w, x)− Tn(w, y)‖ ≤ φ(kn) max{‖x− y‖, ‖x− Tn(w, x)‖, ‖y − Tn(w, y)‖,
1
2
[‖x− Tn(w, y)‖+ ‖y − Tn(w, x)‖]}

for all x, y ∈ M, w ∈ Ω, and φ(kn) ∈ (0, 1). Since weak topology is Hausdorff and
M is weakly compact, it follows that M is strongly closed and is a completely
metric space. Thus, weak continuity of R, joint weakly continuous family ∆ and
Theorem 2.1 guarantee that there exists a random fixed point ξ of Tn such that
ξn = Tn(w, ξn(w)) for each w ∈ Ω.
For each n, define Gn : WC(M) by Gn = w − cl{ξi(w) : i ≥ n}, where WC(M) is
the set of all nonempty weakly compact subset of M and w − cl denotes the weak
closure. Define a mapping G : Ω →WC(M) by G(w) = ∩∞n=1Gn(w). Because M is
weakly compact and separable, the weak topology on M is a metric topology. Then
by result of Himmelberg [7, Theorem 4.1] implies that G is w−measurable. The
Kuratowski and Ryll-Nardzewski selection Theorem [10] further implies that G has
a measurable selector ξ : Ω →M. We now show that ξ is the random fixed point
of T . We first fix w ∈ Ω. Since ξ(w) ∈ G(w), therefore there exists a subsequence
{ξm(w)} of {ξn(w)} that converges weakly to ξ(w); that is ξm(w) w−→ ξ(w). Now,

ξm(w)− T (w, ξm(w)) = Tm(w, ξm(w))− T (w, ξm(w))
= fT (w,ξm(w))(km)− T (w, ξm(w)).

Since M is bounded and km → 1, it follows from joint weakly continuity that

ξm(w)− T (w, ξm(w)) = fT (w,ξ(w))(1)− T (w, ξ(w))
= T (w, ξ(w))− T (w, ξ(w))
= 0.

Now, ym = ξm(w) − T (w, ξm(w)) = (I − T )(w, ξm(w)) and ym → 0. Since (I −
T )(w, .) is demiclosed at 0, so 0 ∈ (I − T )(w, ξ(w)). This implies that ξ(w) =
T (w, ξ(w)). This completes the proof.¤
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An immediate consequence of the Theorem 3.4 is as follows:

Corollary 3.3. Let X be a Banach space and M be a subset of X . Let T :
Ω ×M → M be weakly continuous random operator. Suppose M is nonempty
separable weakly compact and admits a contractive and jointly weakly continuous
family ∆. If T satisfies (3.3) for x, y ∈M, w ∈ Ω and t ∈ (0, 1), then there exists a
measurable map ξ : Ω →M such that ξ(w) = T (w, ξ(w)) for each w ∈ Ω, provided
I − T (w, .) is demiclosed at zero for each w ∈ Ω, where I is a identity mapping.

As an application of Theorem 3.4, we have following results on invariant ap-
proximations:

Theorem 3.5. Let X be a Banach space and T : Ω×X → X be weakly continuous
random operator. Let M ⊆ X such that T (w, .) : ∂M → M, where ∂M stands
for the boundary of M. Let x0 ∈ X and x0 = T (w, x0). Suppose D = PM(x0)
is nonempty separable weakly compact and admits a contractive and jointly weakly
continuous family ∆. Further, suppose T satisfies the condition (3.4) forx, y ∈
D ∪ {x0}, w ∈ Ω and t ∈ (0, 1). Then there exists a measurable map ξ : Ω → D
such that ξ(w) = T (w, ξ(w)) for each w ∈ Ω, provided I − T (w, .) is demiclosed at
zero for each w ∈ Ω, where I is a identity mapping.

Proof. It follows from the proof of the Theorem 3.3.

Next, an immediate consequence of the Theorem 3.5 is as follows:

Corollary 3.4. Let X be a Banach space and X : Ω×X → X be weakly continuous
random operator. Let M ⊆ X such that T (w, .) : ∂M → M, where ∂M stands
for the boundary of M. Let x0 ∈ X and x0 = T (w, x0). Suppose D = PX (x0)
is nonempty separable weakly compact and admits a contractive and jointly weakly
continuous family ∆. Further, suppose T satisfies the condition (3.5) for x, y ∈
D ∪ {x0}, w ∈ Ω and t ∈ (0, 1). Then there exists a measurable map ξ : Ω → D
such that ξ(w) = T (w, ξ(w)) for each w ∈ Ω, provided I − T (w, .) is demiclosed at
zero for each w ∈ Ω, where I is a identity mapping.

Remark 3.1. In the light of the comment given by Dotson [6] and Khan et al.
[9] if M ⊆ X is p−starshaped and fα(t) = (1 − t)p + tα, (α ∈ M, t ∈ [0, 1]), then
{fα}α∈M is a contractive jointly continuous family with φ(t) = t. Thus the class
of subsets of X with the property of contractiveness and joint continuity contains
the class of starshaped sets which in turn contain the class of convex sets.

Remark 3.2. Theorem 3.3, Corollary 3.2, Theorem 3.5 and Corollary 3.4 gener-
alize and give random version of the result due to Mukherjee and Som [13].

Remark 3.2. With the Remark 3.1, Theorem 3.3, Corollary 3.2, Theorem 3.5 and
Corollary 3.4 generalize and give random version of the result of Singh [17] without
star- shapedness condition of domain.
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