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THE RAMSEY NUMBERS OF LINEAR
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Abstract. For given two graphs G and H, a graph F is called a (G, H)-good graph if F

contains no G and F contains no H. Furthermore, any (G, H)-good graph on n vertices

will be denoted by (G, H, n)-good graph. The Ramsey number R(G, H) is defined as the

smallest natural number n such that no (G, H, n)-good graph exists. In this paper, we

determine the Ramsey numbers R(G, H) for disconnected graphs G and H. In particular,

G =
⋃k

i=1 Pni
and H = 3K3 ∪ 2K4.

1. INTRODUCTION

We consider finite undirected graphs without loops and multiple edges. Let
G(V, E) be a graph, the notation V (G) and E(G) (in short V and E) stand for the
vertex set and the edge set of the graph G, respectively. A graph H(V ′, E′) is a
subgraph of G if V ′ ⊆ V and E′ ⊆ E. For A ⊆ V , G[A] represents the subgraph
induced by A in G.

For given two graphs G and H, a graph F is called a (G,H)-good graph if F
contains no G and F contains no H. Furthermore, any (G,H)-good graph on n
vertices will be denoted by (G,H, n)-good graph. The Ramsey number R(G,H) is
defined as the smallest natural number n such that no (G,H, n)-good graph exists.
The Ramsey numbers R(G,H) for connected graphs G and H have been inten-
sively studied since Chvátal and Harary [4] established the general lower bound
R(G,H) ≥ (c(G)− 1)(h− 1) + 1, where h is the chromatic number of H and c(G)
is the number of vertices of the largest component of G. A connected graph G is
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called H-good if R(G,H) = (|G|−1)(h−1)+ s, where s is the chromatic surplus of
H. The chromatic surplus of H is the minimum cardinality of a color class taken
over all proper h colorings of H.

Let Gi be a graph with the vertex set Vi and the edge set Ei, i = 1, 2, ..., k.
The union G =

⋃k
i=1 Gi has the vertex set V =

⋃k
i=1 Vi and the edge set E =⋃k

i=1 Ei. We denote the union by kF when Gi = F for every i. If Gi is isomorphic
to a tree for every i then the union is called a forest. A forest is called linear forest,
if all the components are a path.

Some recent results on the Ramsey number for a combination of disconnected
(union) and connected graphs can be found in ([1], [2], [6], [7], [9], [10], [11]). Other
results concerning graph Ramsey numbers can be seen in [8]. In this note, we
determine the Ramsey numbers R(

⋃k
i=1 Pni , 3K3 ∪ 2K4).

2. MAIN RESULTS

Let us note firstly the previous theorems and lemmas used in the proof
of our results.

Theorem 1 (Chvátal [5]). Let Tn and Km be a tree of order n ≥ 1 and a clique
of order m ≥ 1, respectively. Then, R(Tn,Km) = (n− 1)(m− 1) + 1.

Theorem 2 (Sudarsana et al. [11]). Let k ≥ 1 and nk ≥ nk−1 ≥ ... ≥ n1 ≥ 6 be
integers. If G =

⋃k
i=1 Pni then

R(G, 2K4) = max
1≤i≤k

{
2ni +

k∑

j=i

nj

}
− 1. (1)

Lemma 1 (Sudarsana et al. [11]). Let k, t ≥ 1 be integers. Let H be a connected
graph with the chromatic number h ≥ 2 and the chromatic surplus s ≥ 1. Let Gi

be connected graphs and satisfies |Gk| ≥ |Gk−1| ≥ ... ≥ |G1| ≥
( |H|−s

h−1

)
st + 1. If

G =
⋃k

i=1 Gi and Gi is a H-good for every i = 1, 2, ..., k, then

R(G, tH) ≥ max
1≤i≤k

{
(|Gi| − 1)(h− 2) +

k∑

j=i

|Gj |
}

+ st− 1. (2)

Lemma 2 (Sudarsana et al. [11]). If Pn is a path of order n ≥ 4 then R(Pn, 2K3) =
2n.

Now, we are ready to prove our main results in the following.

Lemma 3 If Pn is a path of order n ≥ 7 then R(Pn, 3K3) = 2n + 1.
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Proof. The inequality R(Pn, 3K3) ≥ 2n + 1 is derived from Lemma 1. We will
show the reverse inequality R(Pn, 3K3) ≤ 2n + 1 by the following reason. Take
an arbitrary graph G on 2n + 1 vertices and contains no Pn. We will show that
G contains 3K3. Since |G| > 2n then by Lemma 2 we obtain G ⊇ 2K3. Let
B = {a1, b1, c1} ∪ {a2, b2, c2} be the vertex set of 2K3 in G. We let D = V (G)\B
and T = G[D]. Clearly, |T | = 2(n − 2) − 1. Theorem 1 gives that T ⊇ Pn−2 or
T ⊇ K3. If T ⊇ K3 then we finish the proof. Now, consider T contains Pn−2 and
call Pn−2 = (p1p2...pn−3pn−2). Let K = V (T )\V (Pn−2) and hence |K| = n − 3.
Now, we consider the connection of the end vertices of Pn−2 and the vertex set K.
Since G contains no Pn then we obtain the following facts.

Fact 1. The vertex p1 or pn−2 is adjacent to at least two vertices in K.

We let p1 adjacent to y1 and y2 in K. Since G does not contain Pn then
{pn−2, y1, y2} is an independent set in G. Therefore, the vertex set {pn−2, y1, y2}
forms a K3 in T and together with B we have G ⊇ 3K3.

Fact 2. The vertex p1 or pn−2 is adjacent to exactly one vertex in K.

We let p1 adjacent to x in K. Since G contains no Pn then pn−2 must not
adjacent to any vertex in K except the vertex x. If K\x contains two indepen-
dent vertices, call x1 and x2, in T then the vertex pn−2 together with x1 and x2

induce a K3 in T and hence G ⊇ 3K3. Therefore, the vertex set K\x forms a
Kn−4 in T . Now, if there exists one vertex, say y, in K\x that is not adjacent to
one vertex in B then the vertex set {pn−2, x, y} ∪ B induces a 3K3 in G. Since
otherwise we will get that every vertex in K\x is adjacent to every vertex in B,
which is impossible since G does not contain Pn with n ≥ 7. Thus, G contains 3K3.

Fact 3. The vertex p1 and pn−2 do not adjacent to any vertex in K.

If K contains two independent vertices, call x1 and x2, in T then the vertex
set {pn−2, x1, x2} induce a K3 in T . Therefore, we finish the proof since we have
G ⊇ 3K3. Now, consider K shapes a Kn−3 in T . Thus without loss of generality,
one of the following conditions holds:

(i). The vertex p1 or pn−2 is adjacent to every vertices in B.

We let p1 adjacent to every vertex in B. Since G does not contain Pn then
{pn−2}∪B is an independent set in T which each element does not adjacent to any
vertex in K. Therefore, it can be verified that the set {k1, k2, pn−2} ∪ B induce a
3K3 in T , for any k1, k2 in K. So, G ⊇ 3K3.

(ii). The vertex p1 or pn−2 is adjacent to five vertices in B.
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We let p1 adjacent to every vertex in B\a2. Since G contains no Pn then it is
not difficult to verify that the sets {pn−2, a2, c1}, {a1, c2, k2} and {b1, b2, k1} form
a 3K3 in G, for any k1, k2 in K.

(iii). The vertex p1 or pn−2 is adjacent to four vertices in B.

We let p1 adjacent to every vertex in B\{a2, c2}. Again, since G contains no
Pn then it can be verified that the sets {pn−2, a2, c2}, {a1, c1, k2} and {b1, b2, k1}
form a 3K3 in G, for any k1, k2 in K.

(iv). The vertex p1 or pn−2 is adjacent to three vertices in B.

Without loss of generality, we distinguish the following two cases.

Case 1. The vertex p1 is adjacent to a1, b1 and c1 in B

Thus the set {p1, a2, b2, c2} is an independent set in T . Since G contain no
Pn then it is easy verify that the sets {pn−2, a1, c2}, {a2, b2, p1} and {b1, c1, k} form
a 3K3 in G, for every k ∈ K.

Case 2. The vertex p1 is adjacent to a1, b1 and c2 in B

Therefore, the set {p1, a2, b2} is an independent set in T . Since G contain no
Pn then it is easy verify that the sets {p1, a2, b2}, {a1, c1, pn−2} and {b1, c2, k} form
a 3K3 in G, for every k ∈ K.

(v). The vertex p1 or pn−2 is adjacent to two vertices in B.

Without loss of generality, we distinguish the following two cases.

Case 1. The vertex p1 is adjacent to a1 and b1 in B

Thus the set {p1, a2, b2, c2} is an independent set in T . Now, if there exists one
vertex, call y, in K that is not adjacent to one vertex, say c2, in B\{a1, b1} then the
vertex sets {p1, a2, b2}, {b1, c2, y} and {a1, c1, pn−2} form a 3K3 in G. Since other-
wise we get that vertex set K∪{a2, b2, c2, c1} induces a graph Kn−3+(K3∪K1) in T ,
which is impossible since G does not contain Pn with n ≥ 7. Thus, G contains 3K3.

Case 2. The vertex p1 is adjacent to a1 and a2 in B

Since G contains no Pn then it is easy verify that the sets {pn−2, b1, c1},
{p1, b2, c2} and {a1, a2, k} form a 3K3 in G, for every k ∈ K.
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(vi). The vertex p1 or pn−2 is adjacent to one vertex in B.

We let p1 adjacent to a1 in B. Now, consider the vertex set {b1, c1, a2, b2, c2}.
If there exists a vertex, say k1, in K that is not adjacent to one vertex in {b1, c1, a2, b2, c2}
then the vertex set {p1, pn−2, k1}∪B induces a 3K3 in G. Since otherwise we obtain
that the vertex set K ∪ {b1, c1, a2, b2, c2} induces a graph Kn−3 + (K3 ∪K2) in T ,
which is impossible since G does not contain Pn with n ≥ 7. Thus, G contains 3K3.

(vii). The vertex p1 or pn−2 does not adjacent to any vertices in B.

If there exists a vertex, say k, in K that is not adjacent to one vertex in
B then the vertex set {p1, pn−2, k} ∪ B induces a 3K3 in G. Since otherwise we
derive that the vertex set K ∪ {b1, c1, a2, b2, c2} induces a graph Kn−3 + (2K3) in
T , which is impossible since G does not contain Pn with n ≥ 7. Thus G ⊇ 3K3.
This completes the proof. ¤

Theorem 3 Let k ≥ 1 and nk ≥ nk−1 ≥ ... ≥ n1 ≥ 7 be integers. If G =
⋃k

i=1 Pni

then

R(G, 3K3) = max
1≤i≤k

{
ni +

k∑

j=i

nj

}
+ 1. (3)

Proof. For 1 ≤ i ≤ k, let G =
⋃k

i=1 Pni and Gi =
⋃k

j=i Pnj . Obviously, G = G1.
Suppose that the maximum of the right side of the equation (3) is achieved for i0.
Write t0 =

∑k
j=i0

nj and t = ni0 + t0. The lower bound R(G, 3K3) ≥ t + 1 can be
obtained by using Lemma 1. We will prove R(G, 3K3) ≤ t + 1.

Let F be a graph of order t + 1 and suppose that F contains no 3K3. We
shall show that F contains G. We prove this by induction on i. For i = k, we get
G = Pnk

. Since t + 1 ≥ 2nk + 1 and F + 3K3 then the theorem holds by Lemma
3. Let us state the inductive hypothesis: F contains Gi+1 for some 1 ≤ i ≤ k.
We will show that F contains Gi for any i ≥ 1. By induction hypothesis, we have
F ⊇ Gi+1. Clearly, |Gi+1| =

∑k
j=i+1 nj . Let A = V (F )\V (Gi+1) and W = F [A],

then |W | = (t + 1) −∑k
j=i+1 nj . By definition of t, we get t ≥ ni +

∑k
j=i nj for

every i = 1, 2, ..., k. Therefore, |W | ≥ 2ni + 1. Since W + 3K3 then Lemma 3
guarantees that W contains Pni . Therefore, F ⊇ Gi for any i ≥ 1. Thus F ⊇ G1.
¤

Theorem 4 Let k ≥ 1 and nk ≥ nk−1 ≥ ... ≥ n1 ≥ 9 be integers. Let G =⋃k
i=1 Pni and H = 3K3 ∪ 2K4. If R(G, 2K4)−R(G, 3K3) ≥ 9 then

R(G,H) = R(G, 2K4). (4)

Proof. By Theorem 2, we let R(G, 2K4) = l− 1. Since 2K4 ⊂ H then R(G,H) ≥
l − 1. Now, we will show that R(G,H) ≤ l − 1. Let U be a graph of order
l − 1 and contains no G. We shall show that U contains H. Theorem 2 provides
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U ⊇ 2K4. Let L = V (U)\V (2K4) and Q = U [L]. Clearly, |Q| = l − 9. By
Theorem 3, we let R(G, 3K3) = l′. Thus, |Q| = l − 9 = l′ + (l − l′) − 9 ≥ l′

when l − l′ ≥ 9. Since Q 6⊇ G then Q ⊇ 3K3. This concludes that U contains H.
¤

Remark. If ni = n for every i = 1, 2, ..., k, then the union G is isomorphic to
kPn. Therefore, by Theorem 3 we obtain R(kPn, 3K3) = (k + 1)n + 1 when n ≥ 7.
Meanwhile, Theorem 2 gives R(kPn, 2K4) = (k +2)n−1 when n ≥ 6 and Theorem
4 also provides R(kPn, 3K3 ∪ 2K4) = (k + 2)n − 1 when n ≥ 9. Furthermore, if
G =

⋃k
i=1 liPni

and li is the number of the paths of order ni in G then the following
corollaries hold.

Corollary 1 Let k ≥ 1 and nk ≥ nk−1 ≥ ... ≥ n1 ≥ 7 be integers. If G =⋃k
i=1 liPni then

R(G, 3K3) = max
1≤i≤k

{
ni +

k∑

j=i

ljnj

}
+ 1. (5)

Corollary 2 Let k ≥ 1 and nk ≥ nk−1 ≥ ... ≥ n1 ≥ 9 be integers. Let G =⋃k
i=1 liPni and H = 3K3 ∪ 2K4. If R(G, 2K4)−R(G, 3K3) ≥ 9 then

R(G,H) = max
1≤i≤k

{
2ni +

k∑

j=i

ljnj

}
− 1. (6)

REFERENCES

1. E.T Baskoro, Hasmawati, and H. Assiyatun, “The Ramsey number for disjoint

unions of trees”, Discrete Math. 306 (2006), 3297–3301.

2. H. Bielak, “Ramsey numbers for a disjoint of some graphs”, Appl. Math. Lett. 22

(2009), 475–477.

3. S. A. Burr, “Ramsey numbers involving graphs with long suspended paths”, J. London

Math. Soc. (2) 24 (1981), 405–413.
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