THE RAMSEY NUMBERS OF LINEAR FOREST VERSUS $3 K_{3} \cup 2 K_{4}$

I W. Sudarsana, E. T. Baskoro, H. Assiyatun, and S. Uttunggadewa

Abstract

For given two graphs G and H, a graph F is called a (G, H)-good graph if F contains no G and \bar{F} contains no H. Furthermore, any (G, H)-good graph on n vertices will be denoted by (G, H, n)-good graph. The Ramsey number $R(G, H)$ is defined as the smallest natural number n such that no (G, H, n)-good graph exists. In this paper, we determine the Ramsey numbers $R(G, H)$ for disconnected graphs G and H. In particular, $G=\bigcup_{i=1}^{k} P_{n_{i}}$ and $H=3 K_{3} \cup 2 K_{4}$

1. INTRODUCTION

We consider finite undirected graphs without loops and multiple edges. Let $G(V, E)$ be a graph, the notation $V(G)$ and $E(G)$ (in short V and E) stand for the vertex set and the edge set of the graph G, respectively. A graph $H\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. For $A \subseteq V, G[A]$ represents the subgraph induced by A in G.

For given two graphs G and H, a graph F is called a (G, H)-good graph if F contains no G and \bar{F} contains no H. Furthermore, any (G, H)-good graph on n vertices will be denoted by (G, H, n)-good graph. The Ramsey number $R(G, H)$ is defined as the smallest natural number n such that no (G, H, n)-good graph exists. The Ramsey numbers $R(G, H)$ for connected graphs G and H have been intensively studied since Chvátal and Harary [4] established the general lower bound $R(G, H) \geq(c(G)-1)(h-1)+1$, where h is the chromatic number of H and $c(G)$ is the number of vertices of the largest component of G. A connected graph G is
called H-good if $R(G, H)=(|G|-1)(h-1)+s$, where s is the chromatic surplus of H. The chromatic surplus of H is the minimum cardinality of a color class taken over all proper h colorings of H.

Let G_{i} be a graph with the vertex set V_{i} and the edge set $E_{i}, i=1,2, \ldots, k$. The union $G=\bigcup_{i=1}^{k} G_{i}$ has the vertex set $V=\bigcup_{i=1}^{k} V_{i}$ and the edge set $E=$ $\bigcup_{i=1}^{k} E_{i}$. We denote the union by $k F$ when $G_{i}=F$ for every i. If G_{i} is isomorphic to a tree for every i then the union is called a forest. A forest is called linear forest, if all the components are a path.

Some recent results on the Ramsey number for a combination of disconnected (union) and connected graphs can be found in ([1], [2], [6], [7], [9], [10], [11]). Other results concerning graph Ramsey numbers can be seen in [8]. In this note, we determine the Ramsey numbers $R\left(\bigcup_{i=1}^{k} P_{n_{i}}, 3 K_{3} \cup 2 K_{4}\right)$.

2. MAIN RESULTS

Let us note firstly the previous theorems and lemmas used in the proof of our results.

Theorem 1 (Chvátal [5]). Let T_{n} and K_{m} be a tree of order $n \geq 1$ and a clique of order $m \geq 1$, respectively. Then, $R\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1$.

Theorem 2 (Sudarsana et al. [11]). Let $k \geq 1$ and $n_{k} \geq n_{k-1} \geq \ldots \geq n_{1} \geq 6$ be integers. If $G=\bigcup_{i=1}^{k} P_{n_{i}}$ then

$$
\begin{equation*}
R\left(G, 2 K_{4}\right)=\max _{1 \leq i \leq k}\left\{2 n_{i}+\sum_{j=i}^{k} n_{j}\right\}-1 \tag{1}
\end{equation*}
$$

Lemma 1 (Sudarsana et al. [11]). Let $k, t \geq 1$ be integers. Let H be a connected graph with the chromatic number $h \geq 2$ and the chromatic surplus $s \geq 1$. Let G_{i} be connected graphs and satisfies $\left|G_{k}\right| \geq\left|G_{k-1}\right| \geq \ldots \geq\left|G_{1}\right| \geq\left(\frac{|H|-\bar{s}}{h-1}\right)$ st +1 . If $G=\bigcup_{i=1}^{k} G_{i}$ and G_{i} is a H-good for every $i=1,2, \ldots, k$, then

$$
\begin{equation*}
R(G, t H) \geq \max _{1 \leq i \leq k}\left\{\left(\left|G_{i}\right|-1\right)(h-2)+\sum_{j=i}^{k}\left|G_{j}\right|\right\}+s t-1 \tag{2}
\end{equation*}
$$

Lemma 2 (Sudarsana et al. [11]). If P_{n} is a path of order $n \geq 4$ then $R\left(P_{n}, 2 K_{3}\right)=$ $2 n$.

Now, we are ready to prove our main results in the following.
Lemma 3 If P_{n} is a path of order $n \geq 7$ then $R\left(P_{n}, 3 K_{3}\right)=2 n+1$.

Proof. The inequality $R\left(P_{n}, 3 K_{3}\right) \geq 2 n+1$ is derived from Lemma 1 . We will show the reverse inequality $R\left(P_{n}, 3 K_{3}\right) \leq 2 n+1$ by the following reason. Take an arbitrary graph G on $2 n+1$ vertices and contains no P_{n}. We will show that \bar{G} contains $3 K_{3}$. Since $|G|>2 n$ then by Lemma 2 we obtain $\bar{G} \supseteq 2 K_{3}$. Let $B=\left\{a_{1}, b_{1}, c_{1}\right\} \cup\left\{a_{2}, b_{2}, c_{2}\right\}$ be the vertex set of $2 K_{3}$ in \bar{G}. We let $D=V(G) \backslash B$ and $T=G[D]$. Clearly, $|T|=2(n-2)-1$. Theorem 1 gives that $T \supseteq P_{n-2}$ or $\bar{T} \supseteq K_{3}$. If $\bar{T} \supseteq K_{3}$ then we finish the proof. Now, consider T contains P_{n-2} and call $P_{n-2}=\left(p_{1} p_{2} \ldots p_{n-3} p_{n-2}\right)$. Let $K=V(T) \backslash V\left(P_{n-2}\right)$ and hence $|K|=n-3$. Now, we consider the connection of the end vertices of P_{n-2} and the vertex set K. Since G contains no P_{n} then we obtain the following facts.

Fact 1. The vertex p_{1} or p_{n-2} is adjacent to at least two vertices in K.
We let p_{1} adjacent to y_{1} and y_{2} in K. Since G does not contain P_{n} then $\left\{p_{n-2}, y_{1}, y_{2}\right\}$ is an independent set in G. Therefore, the vertex set $\left\{p_{n-2}, y_{1}, y_{2}\right\}$ forms a K_{3} in \bar{T} and together with B we have $\bar{G} \supseteq 3 K_{3}$.

Fact 2. The vertex p_{1} or p_{n-2} is adjacent to exactly one vertex in K.

We let p_{1} adjacent to x in K. Since G contains no P_{n} then p_{n-2} must not adjacent to any vertex in K except the vertex x. If $K \backslash x$ contains two independent vertices, call x_{1} and x_{2}, in T then the vertex p_{n-2} together with x_{1} and x_{2} induce a K_{3} in \bar{T} and hence $\bar{G} \supseteq 3 K_{3}$. Therefore, the vertex set $K \backslash x$ forms a K_{n-4} in T. Now, if there exists one vertex, say y, in $K \backslash x$ that is not adjacent to one vertex in B then the vertex set $\left\{p_{n-2}, x, y\right\} \cup B$ induces a $3 K_{3}$ in \bar{G}. Since otherwise we will get that every vertex in $K \backslash x$ is adjacent to every vertex in B, which is impossible since G does not contain P_{n} with $n \geq 7$. Thus, \bar{G} contains $3 K_{3}$.

Fact 3. The vertex p_{1} and p_{n-2} do not adjacent to any vertex in K.

If K contains two independent vertices, call x_{1} and x_{2}, in T then the vertex set $\left\{p_{n-2}, x_{1}, x_{2}\right\}$ induce a K_{3} in \bar{T}. Therefore, we finish the proof since we have $\bar{G} \supseteq 3 K_{3}$. Now, consider K shapes a K_{n-3} in T. Thus without loss of generality, one of the following conditions holds:
(i). The vertex p_{1} or p_{n-2} is adjacent to every vertices in B.

We let p_{1} adjacent to every vertex in B. Since G does not contain P_{n} then $\left\{p_{n-2}\right\} \cup B$ is an independent set in T which each element does not adjacent to any vertex in K. Therefore, it can be verified that the set $\left\{k_{1}, k_{2}, p_{n-2}\right\} \cup B$ induce a $3 K_{3}$ in \bar{T}, for any k_{1}, k_{2} in K. So, $\bar{G} \supseteq 3 K_{3}$.
(ii). The vertex p_{1} or p_{n-2} is adjacent to five vertices in B.

We let p_{1} adjacent to every vertex in $B \backslash a_{2}$. Since G contains no P_{n} then it is not difficult to verify that the sets $\left\{p_{n-2}, a_{2}, c_{1}\right\},\left\{a_{1}, c_{2}, k_{2}\right\}$ and $\left\{b_{1}, b_{2}, k_{1}\right\}$ form a $3 K_{3}$ in \bar{G}, for any k_{1}, k_{2} in K.
(iii). The vertex p_{1} or p_{n-2} is adjacent to four vertices in B.

We let p_{1} adjacent to every vertex in $B \backslash\left\{a_{2}, c_{2}\right\}$. Again, since G contains no P_{n} then it can be verified that the sets $\left\{p_{n-2}, a_{2}, c_{2}\right\},\left\{a_{1}, c_{1}, k_{2}\right\}$ and $\left\{b_{1}, b_{2}, k_{1}\right\}$ form a $3 K_{3}$ in \bar{G}, for any k_{1}, k_{2} in K.
(iv). The vertex p_{1} or p_{n-2} is adjacent to three vertices in B.

Without loss of generality, we distinguish the following two cases.
Case 1. The vertex p_{1} is adjacent to a_{1}, b_{1} and c_{1} in B
Thus the set $\left\{p_{1}, a_{2}, b_{2}, c_{2}\right\}$ is an independent set in T. Since G contain no P_{n} then it is easy verify that the sets $\left\{p_{n-2}, a_{1}, c_{2}\right\},\left\{a_{2}, b_{2}, p_{1}\right\}$ and $\left\{b_{1}, c_{1}, k\right\}$ form a $3 K_{3}$ in \bar{G}, for every $k \in K$.

Case 2. The vertex p_{1} is adjacent to a_{1}, b_{1} and c_{2} in B
Therefore, the set $\left\{p_{1}, a_{2}, b_{2}\right\}$ is an independent set in T. Since G contain no P_{n} then it is easy verify that the sets $\left\{p_{1}, a_{2}, b_{2}\right\},\left\{a_{1}, c_{1}, p_{n-2}\right\}$ and $\left\{b_{1}, c_{2}, k\right\}$ form a $3 K_{3}$ in \bar{G}, for every $k \in K$.
(v). The vertex p_{1} or p_{n-2} is adjacent to two vertices in B.

Without loss of generality, we distinguish the following two cases.
Case 1. The vertex p_{1} is adjacent to a_{1} and b_{1} in B
Thus the set $\left\{p_{1}, a_{2}, b_{2}, c_{2}\right\}$ is an independent set in T. Now, if there exists one vertex, call y, in K that is not adjacent to one vertex, say c_{2}, in $B \backslash\left\{a_{1}, b_{1}\right\}$ then the vertex sets $\left\{p_{1}, a_{2}, b_{2}\right\},\left\{b_{1}, c_{2}, y\right\}$ and $\left\{a_{1}, c_{1}, p_{n-2}\right\}$ form a $3 K_{3}$ in \bar{G}. Since otherwise we get that vertex set $K \cup\left\{a_{2}, b_{2}, c_{2}, c_{1}\right\}$ induces a graph $K_{n-3}+\left(\bar{K}_{3} \cup K_{1}\right)$ in T, which is impossible since G does not contain P_{n} with $n \geq 7$. Thus, \bar{G} contains $3 K_{3}$.

Case 2. The vertex p_{1} is adjacent to a_{1} and a_{2} in B
Since G contains no P_{n} then it is easy verify that the sets $\left\{p_{n-2}, b_{1}, c_{1}\right\}$, $\left\{p_{1}, b_{2}, c_{2}\right\}$ and $\left\{a_{1}, a_{2}, k\right\}$ form a $3 K_{3}$ in \bar{G}, for every $k \in K$.
(vi). The vertex p_{1} or p_{n-2} is adjacent to one vertex in B.

We let p_{1} adjacent to a_{1} in B. Now, consider the vertex set $\left\{b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\right\}$. If there exists a vertex, say k_{1}, in K that is not adjacent to one vertex in $\left\{b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\right\}$ then the vertex set $\left\{p_{1}, p_{n-2}, k_{1}\right\} \cup B$ induces a $3 K_{3}$ in \bar{G}. Since otherwise we obtain that the vertex set $K \cup\left\{b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\right\}$ induces a graph $K_{n-3}+\left(\bar{K}_{3} \cup \bar{K}_{2}\right)$ in T, which is impossible since G does not contain P_{n} with $n \geq 7$. Thus, \bar{G} contains $3 K_{3}$.
(vii). The vertex p_{1} or p_{n-2} does not adjacent to any vertices in B.

If there exists a vertex, say k, in K that is not adjacent to one vertex in B then the vertex set $\left\{p_{1}, p_{n-2}, k\right\} \cup B$ induces a $3 K_{3}$ in \bar{G}. Since otherwise we derive that the vertex set $K \cup\left\{b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\right\}$ induces a graph $K_{n-3}+\left(2 \bar{K}_{3}\right)$ in T, which is impossible since G does not contain P_{n} with $n \geq 7$. Thus $\bar{G} \supseteq 3 K_{3}$. This completes the proof.

Theorem 3 Let $k \geq 1$ and $n_{k} \geq n_{k-1} \geq \ldots \geq n_{1} \geq 7$ be integers. If $G=\bigcup_{i=1}^{k} P_{n_{i}}$ then

$$
\begin{equation*}
R\left(G, 3 K_{3}\right)=\max _{1 \leq i \leq k}\left\{n_{i}+\sum_{j=i}^{k} n_{j}\right\}+1 \tag{3}
\end{equation*}
$$

Proof. For $1 \leq i \leq k$, let $G=\bigcup_{i=1}^{k} P_{n_{i}}$ and $G_{i}=\bigcup_{j=i}^{k} P_{n_{j}}$. Obviously, $G=G_{1}$. Suppose that the maximum of the right side of the equation (3) is achieved for i_{0}. Write $t_{0}=\sum_{j=i_{0}}^{k} n_{j}$ and $t=n_{i_{0}}+t_{0}$. The lower bound $R\left(G, 3 K_{3}\right) \geq t+1$ can be obtained by using Lemma 1 . We will prove $R\left(G, 3 K_{3}\right) \leq t+1$.

Let F be a graph of order $t+1$ and suppose that \bar{F} contains no $3 K_{3}$. We shall show that F contains G. We prove this by induction on i. For $i=k$, we get $G=P_{n_{k}}$. Since $t+1 \geq 2 n_{k}+1$ and $\bar{F} \nsupseteq 3 K_{3}$ then the theorem holds by Lemma 3. Let us state the inductive hypothesis: F contains G_{i+1} for some $1 \leq i \leq k$. We will show that F contains G_{i} for any $i \geq 1$. By induction hypothesis, we have $F \supseteq G_{i+1}$. Clearly, $\left|G_{i+1}\right|=\sum_{j=i+1}^{k} n_{j}$. Let $A=V(F) \backslash V\left(G_{i+1}\right)$ and $W=F[A]$, then $|W|=(t+1)-\sum_{j=i+1}^{k} n_{j}$. By definition of t, we get $t \geq n_{i}+\sum_{j=i}^{k} n_{j}$ for every $i=1,2, \ldots, k$. Therefore, $|W| \geq 2 n_{i}+1$. Since $\bar{W} \nsupseteq 3 K_{3}$ then Lemma 3 guarantees that W contains $P_{n_{i}}$. Therefore, $F \supseteq G_{i}$ for any $i \geq 1$. Thus $F \supseteq G_{1}$.

Theorem 4 Let $k \geq 1$ and $n_{k} \geq n_{k-1} \geq \ldots \geq n_{1} \geq 9$ be integers. Let $G=$ $\bigcup_{i=1}^{k} P_{n_{i}}$ and $H=3 K_{3} \cup 2 K_{4}$. If $R\left(G, 2 K_{4}\right)-R\left(G, 3 K_{3}\right) \geq 9$ then

$$
\begin{equation*}
R(G, H)=R\left(G, 2 K_{4}\right) \tag{4}
\end{equation*}
$$

Proof. By Theorem 2, we let $R\left(G, 2 K_{4}\right)=l-1$. Since $2 K_{4} \subset H$ then $R(G, H) \geq$ $l-1$. Now, we will show that $R(G, H) \leq l-1$. Let U be a graph of order $l-1$ and contains no G. We shall show that \bar{U} contains H. Theorem 2 provides
$\bar{U} \supseteq 2 K_{4}$. Let $L=V(U) \backslash V\left(2 K_{4}\right)$ and $Q=U[L]$. Clearly, $|Q|=l-9$. By Theorem 3, we let $R\left(G, 3 K_{3}\right)=l^{\prime}$. Thus, $|Q|=l-9=l^{\prime}+\left(l-l^{\prime}\right)-9 \geq l^{\prime}$ when $l-l^{\prime} \geq 9$. Since $Q \nsupseteq G$ then $\bar{Q} \supseteq 3 K_{3}$. This concludes that \bar{U} contains H.

Remark. If $n_{i}=n$ for every $i=1,2, \ldots, k$, then the union G is isomorphic to $k P_{n}$. Therefore, by Theorem 3 we obtain $R\left(k P_{n}, 3 K_{3}\right)=(k+1) n+1$ when $n \geq 7$. Meanwhile, Theorem 2 gives $R\left(k P_{n}, 2 K_{4}\right)=(k+2) n-1$ when $n \geq 6$ and Theorem 4 also provides $R\left(k P_{n}, 3 K_{3} \cup 2 K_{4}\right)=(k+2) n-1$ when $n \geq 9$. Furthermore, if $G=\bigcup_{i=1}^{k} l_{i} P_{n_{i}}$ and l_{i} is the number of the paths of order n_{i} in G then the following corollaries hold.

Corollary 1 Let $k \geq 1$ and $n_{k} \geq n_{k-1} \geq \ldots \geq n_{1} \geq 7$ be integers. If $G=$ $\bigcup_{i=1}^{k} l_{i} P_{n_{i}}$ then

$$
\begin{equation*}
R\left(G, 3 K_{3}\right)=\max _{1 \leq i \leq k}\left\{n_{i}+\sum_{j=i}^{k} l_{j} n_{j}\right\}+1 \tag{5}
\end{equation*}
$$

Corollary 2 Let $k \geq 1$ and $n_{k} \geq n_{k-1} \geq \ldots \geq n_{1} \geq 9$ be integers. Let $G=$ $\bigcup_{i=1}^{k} l_{i} P_{n_{i}}$ and $H=3 K_{3} \cup 2 K_{4}$. If $R\left(G, 2 K_{4}\right)-R\left(G, 3 K_{3}\right) \geq 9$ then

$$
\begin{equation*}
R(G, H)=\max _{1 \leq i \leq k}\left\{2 n_{i}+\sum_{j=i}^{k} l_{j} n_{j}\right\}-1 \tag{6}
\end{equation*}
$$

REFERENCES

1. E.T Baskoro, Hasmawati, and H. Assiyatun, "The Ramsey number for disjoint unions of trees", Discrete Math. 306 (2006), 3297-3301.
2. H. Bielak, "Ramsey numbers for a disjoint of some graphs", Appl. Math. Lett. 22 (2009), 475-477.
3. S. A. Burr, "Ramsey numbers involving graphs with long suspended paths", J. London Math. Soc. (2) 24 (1981), 405-413.
4. V. Chvátal and F. Harary, "Generalized Ramsey theory for graphs, III: small offdiagonal numbers", Pac. J. Math. 41 (1972), 335-345.
5. V. ChVÁtal, "Tree complete graphs Ramsey number", J. Graph Theory $\mathbf{1}$ (1977), 93.
6. Hasmawati, E.T Baskoro, and H. Assiyatun, "The Ramsey number for disjoint unions of graphs", Discrete Math. 308 (2008), 2046-2049.
7. Hasmawati, H. Assiyatun, E.T. Baskoro, and A.N.M. Salman, "Ramsey numbers on a union of identical stars versus a small cycle", LNCS 4535 (2008), 85-89.
8. S. P. Radziszowski, "Small Ramsey numbers", Electron. J. Combin. August 2006 DS1.9. 〈 http://www.combinatorics.org/ >.
9. I W. Sudarsana, E. T. Baskoro, H. Assiyatun, and S. Uttunggadewa, "On the Ramsey Numbers $R\left(S_{2, m}, K_{2, q}\right)$ and $R\left(s K_{2}, K_{s}+C_{n}\right)$ ", Ars Combin. to appear
10. I W. Sudarsana, E. T. Baskoro, H. Assiyatun, and S. Uttunggadewa, "On the Ramsey numbers of certain forest respect to small wheels", J. Combin. Math. Combin. Comput. 71 (2009), 257-264.
11. I W. Sudarsana, E. T. Baskoro, H. Assiyatun, and S. Uttunggadewa, "The Ramsey numbers for the union graph with H-good components", Far East J. Math. Sci. (FJMS) 39:1 (2010), 29-40.

I W. Sudarsana: Combinatorial Mathematics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesha No. 10 Bandung 40132, Indonesia dan Jurusan Matematika, FMIPA, Universitas Tadulako (UNTAD), Jl. Soekarno-Hatta Km. 8 Palu 94118, Indonesia. E-mail: sudarsanaiwayan@yahoo.co.id
E. T. Baskoro: Combinatorial Mathematics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesha No. 10 Bandung 40132, Indonesia.
E-mail: ebaskoro@math.itb.ac.id
H. Assiyatun: Combinatorial Mathematics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesha No. 10 Bandung 40132, Indonesia.
E-mail: hilda@math.itb.ac.id
S. Uttunggadewa: Combinatorial Mathematics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesha No. 10 Bandung 40132, Indonesia.
E-mail: s_uttunggadewa \} @math.itb.ac.id

