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Abstract. Let (M, g(t)) be a compact Riemannian manifold and the metric g(t)
evolve by the Ricci-Bourguignon flow. We find the formula variation of the eigen-
values of geometric operator —Ay + cR under the Ricci-Bourguignon flow, where
Ay is the Witten-Laplacian operator and R is the scalar curvature. In the final
section, we show that some quantities dependent to the eigenvalues of the geometric
operator are nondecreasing along the Ricci-Bourguignon flow on closed manifolds

with nonnegative curvature.
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Abstrak. Misalkan (M, g(t)) adalah manifold Riemann kompak dan metrik g(t)
berevolusi mengikuti aliran Ricci- Bourguignon. Kita mencari variasi formula nilai-
nilai eigen dari operator geometrik —Ay + cR di bawah aliran Ricci- Bourguignon,
dengan Ay menyatakan operator Laplace- Witten dan R adalah kurvatur skalar. Di
bagian akhir, kita menunjukkan bahwa beberapa besaran yang bergantung pada
nilai-nilai eigen dari operator geometrik bersifat tak turun sepanjang aliran Ricci-

Bourguignon pada manifold tutup dengan kurvatur taknegatif.

Kata kunci: Laplace, aliran Ricci-Bourguignon

1. INTRODUCTION

Let (M,g(t)) be a closed Riemannian manifold. Studying the eigenvalues
of geometric operators is a very powerful tool for the understanding Riemannian
manifolds. Recently, there has been a lot of work on the eigenvalue problem under
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geometric flow. In [9], Perelman shows that the functional
F :/ (R+ Ve dv
M

is nondecreasing along the Ricci flow coupled to a backward heat-type equation,
where R is the scalar curvature with respect to the metric g(¢t) and dv denote the
volume form of the metric g = ¢g(¢). The nondecreasing of the functional F' implies
that the lowest eigenvalue of the operator —4A + R is nondecreasing along the Ricci
flow. As an application, Perelman shown that there are no nontrivial steady or ex-
panding breathers on compact manifolds. Cao [2] extended the geometric operator
—4A + R to the operator A + g on closed Riemannian manifolds, and showed that
the eigenvalues of the operator A + g are nondecreasing along the Ricci flow with
nonnegative curvature operator. Then, Li [8] and Cao [3] considered the operator
—A+cR and both them proved that the first eigenvalue of the operator —A+cR for
c> i is nondecreasing along the Ricci flow. Zeng and et’al [12] studied the mono-
tonicity of eigenvalues of the operator —A + cR along the Ricci-bourguignon flow.
Later Fang and Yang [7] studied the evolution for the first eigenvalue of geometric
operator —Ay + % under the Yamabe flow, where —A, is the Witten-Laplacian
operator, ¢ € C?(M), and constructed some monotonic quantities under the Yam-
abe flow. Also, Wen and et’al [10] investigated the evolution and monotonicity for
eigenvalues of geometric operator —Ay + % under the Ricci flow. For the other
recent research in this direction, see [5, 6, 11].

We consider an n-dimensional closed Riemannain manifold M with a time depen-
dent Riemannian metric g(t), where g = g¢(t) is evolving according to the Ricci-
Bourguignon flow equation

%g = —2Ric+ 2pRg = —2(Ric — pRg), 9(0) = go (1)
where Ric is the Ricci tensor of the manifold, R is scalar curvature and p is a real
constant. This family of geometric flows contains, as a special case, when p = 0,
this flow is the Ricci flow. At the first time the Ricci-Bourguignon introduced by
Bourguignon in [1] and then Catino and et ’al in [4] shown that if p < ﬁ, then
the evolution equation (1) has a unique solution for a position time interval on any
smooth n-dimensional closed Riemannian M with any initial metric gg and shown
that some conditions on the curvature are preserved by the Ricci-Bourguignon flow.
Motivated by the above works, in this paper we will study the first eigenvalue of

the geometric operator whose metric satisfying the Ricci-Bourguignon flow (1).

2. PRELIMINARIES

In this section, we will first the definitions for the first eigenvalue of the
geometric operator

—A¢ + cR (2)

then we will find the formula for the evolution of the first eigenvalue of the geometric

operator (2) under the Ricci-Bourguignon flow on a closed manifold. Let (M, g(t))

be a compact Riemannian manifold, and (M, g(t)) be a smooth solution to the
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Ricci-Bourguignon flow (1) for ¢ € [0,T). Let V be the Levi-Civita connection on
(M,g(t)) and f : M — R be a smooth function on M or f belong to the Sobolev
space W12(M). The Laplacian of f defined as

Af = div(Vf) = g7 (9:0;f = T};00f). (3)

Suppose that dv the Riemannian volume measure, and du the weight volume mea-
sure on (M, g(t)); i.e.

dp = e @ dy (4)
where ¢ € C%(M). The Witten-Laplacian is defined by
Ay =A—-Vo.V (5)

which is a symmetric operator on L?(M, 1) and satisfies the following integration
by part formula:

/ <Vu,Vv>d,u:—/ UA¢ud,u:—/ ulAyvdp Yu,v € C*(M),
M M M

The Witten-Laplacian is generalize of Laplacian operator, for example, when ¢ is
a constant function, the Witten-Laplacian operator is just the Laplace-Belterami
operator. In this paper we consider a generalize of the Witten-Laplacian operator as
—Ag +cR where R is the scalar curvature. We say that A(t) is an eigenvalue of the
operator —Ay + cR at time ¢t € [0,T), and f(z,t) the corresponding eigenfunction,
whenever

Normalized eigenfuctions are defined as follow:

/M fdp=1, (7)

and assume that f(z,t) is a C'-family of smooth function on M.
Multiplying with f on both sides (6) and then by integration we get

A(t) = /N (FBf + R (®)

where defines the evolution of the first eigenvalue of the geometric operator (2)
under the variation of g(¢) where the eigenfunction associated to A(t) is normalized.
In [10] Wen and et ’al shown that the following lemma.

Lemma 2.1. ([10]) Suppose that A(t) is an eigenvalue of the operator —Ay+cR, f
is the eigenfunction of A(t) at the time t, and the metric g(t) evolves by %gij = v;j,
where vy; s a symmetric two-tensor. Then we have

d OR 1
ﬁ)\(t) = /M('Uijfij — Vi f; + Caf)dﬂ + /M(Uij,i - §W)fjfdﬂ 9)

where V- =tr(v), fi; =V,V,f, fi=V.f, ¢;=V,o.

Now, we find the evolution formula of eigenvalue A(¢t) under the Ricci-Bourguignon
flow (1).
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Theorem 2.2. Let g(t), t € [0,T), be a solution of the Ricci-Bourguignon flow (1)
on an n-dimensional closed manifold M. Assume that \(t) is the lowest eigenvalue
of =Ay + cR and f = f(z,t) satisfies in (6) with (7). Then under the Ricci-
Bourguignon flow, we have

d 1
S = 2A/MR\§Vf—fV¢|2du—A/MRf2A¢du
+[;A —14+(n—- 2)p]/ R|Vf|?du — M2A —14np) | Rf>*du  (10)
M M

+2/ Rijfifjdu+2c/ |Ric|2f2du+c(2A—1—|—(n—2)p)/ R2f2du
M M M

where A =c(1—2(n—1)p).

Proof. In [4], G. Catino and et’al shown that the evolution of scalar curvature under
the Ricci-Bourguignon flow is

OR

S = (1=2(n—1)p)AR + 2|Ric|* — 2pR°. (11)

Substiuting v;; = —2R;; + 2pRg;; and (11) into the equality (9) we get

GO = [ 2Rty 4 2RAS 4 2R 08, — 2R V0N fdu
M
~n-2)p [ ViRfifan (12)
M

+c/ [(1—2(n—1)p)AR f? + 2|Ric|* f* — 2pR* f?] dp.
M
Integration by parts results that

/fQARd/,L = 2/ R|Vf|2du+2/ RfAsfdp—2 | RfVG.Vfdu
M M M M

- / Rf?Addu + / Rf*IVoPdu. (13)
M M
and

/ Vinifdu:—/ RfA¢fdu—/ R|V f|?dp. (14)
M M M
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Also, using integration by parts and %VR = div Ric we have

- /M Risfisfdp / (Ruj fe=®), fudv

I
\

o(Ric) fe fidv + / Ry e fidv — / Rijfo;fie™

- ) o= o fdy — y f.
2/M VzRffze dV+/M Rz]fjfzd//f /M szf¢jfzdﬂ
—%/M R(ffi€_¢)idy+/M Rijfjfidu—/M Rijfo;fidu
21 2y, 1 1 .
5 | BVtPdu=5 [ Risgduss [ Rifods (15)
+/M Rijfjfid,u_/M Rij fo;fidp

1 .1
- _z _ - A Cpp T b Fodu
2/MR|Vf| du 2/MRf ¢fd,u+/MRUf]f1du /MRuf(b]fsz

Inserting (13), (14) and (15) in (12), yields

d

77

[ RIVIPdu= [ RfSofau+2 [ Ryfifidu=2 [ Rt i
o= 2p [ RIAufdu+ (n-2)p [ RIVIPd
M M
+2¢(1 —2(n —1)p) /M RIVf2dp + 2¢(1 — 2(n — 1)p) /M RfA,fdp
—2¢(1 —2(n —1)p) /M RfV®.Vfdu —c(1 —2(n—1)p) /M Rf2A¢du

+2c(1—2(n—1)p)/ Rf2|V¢\2du—|—20/ \Ric|2f2du—20p/ R2f%dpu,
M M M
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therefore
d
GNO = A= 14 (-2] [ RIVSPAu+ 2414 ng] [ RFAusdn
+2/ Rijfifjd,u—i-Qc/ |Ric|2f2d,u—2cp/ R%f%du (16)
M M M
—2A/ Rqub.Vfdu—A/ Rf2A¢du+2A/ Rf?|Vo|?du
M M M
1
= 2A/ R|7Vf—fv¢|2du—A/ Rf*A¢du
M2 M
3
+[7A—1+(n—2)p]/ RIVSPdu
2 M
+(24 — 1—|—np)/ R(—=Af? + cRf?*)du
M
+2/ Rijfifjdﬂ+2c/ |Ric|2f2d,uf2cp/ R%f%dp.
M M M
Here in the last equality we have used (6). O

In theorem (2.2) if ¢ is a constant function, we can get the evolution for the
first eigenvalue of the geometric operator —A + ¢R under the Ricci-Bourguignon
flow (1), which studied in [12].

Remark: In theorem (2.2), we assume that ¢ does not dependent on the time
t. If ¢ is depend to ¢ then the eigenvalue A(t) introduced in (6) and (7) satisfies

d _ 1os_ 20, 2 (D),

S0 = 24 /M RISV~ V6Pdu— A /M Rf*Adu + /M Fi(6)i fp
+[%A — 1+ (n—2)p] /M RIV f|2du — M(2A — 1 +np) /M Rf%du
+2/M Rijfifjdu+2c/M|Ric|2f2du (17)

+c(2A =14 (n—2)p) / R%f2du
M

where A = ¢(1—2(n—1)p). Because the evolution equation of eigenvalues will have
an additional term [, fi(¢¢)i fdpu.

In the following we show that some quantity dependent on the eigenvalue of
geometric operator (6) are monotonic along the Ricci-Bourguignon flow. Not that
the scalar curvature under the Ricci-Bourguignon flow evolves by

%Jf = (1 —2(n —1)p)AR + 2|Ric|* — 2pR?,

by |Ric|?> < R? we have
OR

5 < (120 = Dp)AR+2(1 - p)R*.
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Let o(t) be the solution to the ODE 3’ = 2(1—p)y? with initial value a = max R(0).
0SS

By the maximum principle, we have
!
R(t) <o(t) = (—2(1 —p)t+ a) (18)

on [0,7"), where T/ = min T, m Also, the inequality |Ric|? > %2 result that
OR
ot =

we assume that () be the solution to the ODE y’ = 2(1 — p)y? with initial value
8= mi]rv} R(0). Then the maximum principle implies that
zTE

u—ﬂn—U)AR+%%—mR2

M
n—2(1—np)st
Theorem 2.3. Let (M, g(t)) be a solution of the Ricci- Bourguignon flow (1) for
t € [0,T] on a closed n-dimensional manifold M and p < 3=T) with nonnegative

scalar curvature. Let the Ricci curvature operator be a nonnegative along the Ricci-
Bourguignon flow and scalar curvature satisfies

1-2(n—1)p
R22A—1+( —2)p

R(t) > (1) = on [0,7). (19)

A¢, in M x [0,T]. (20)

If A(t) is the first eigenvalue of (2) then for ¢ > %, the quantity

eJo[=@A+np) (M) +o(ldT ) (1)

is nondecreasing under the Ricci-Bourguignon flow on [0,T") where A = ¢(1—2(n—
1)p) and o(t) and y(t) introduced in (18) and (19), respectively.

Proof. According to hypothesis of the theorem the Ricci curvature operator is non-
negative along the Ricci-Bourguignon flow and on the other hand in [4], shown that
the nonnegative of the scalar curvature is preserved along the Ricci-Bourguignon

flow. Therefore (10) and (20) imply that for p < y and ¢ > 20=(n=2)p) o

2(n—1) 3(1-2(n—1)p)
get

%szA@A—1+mq/fﬁ%uzAmA+nmww—owL (21)
M

in last inequality we used [,, f?du = 1. Hence the theorem follows from the last
inequality. [l

Theorem 2.4. Let g(t), t € [0,T) be a solution to the Ricci-Bourguignon flow (1)
on a closed Riemannian manifold M™ with nonnegative scalar curvature and the
scalar curvature satisfies
2(n—1)
T de(n—1)—n+2

Ao, in M x [0,T). (22)
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Suppose that n > 3 and the Ricci curvature satisfies

. 1 9 4c 9 .
- > — M T 2
|Ric o 1VV¢| Z o= 1)2|VV¢>| , in M x[0,T) (23)
where ¢ > 2(7;7121) and ¢ € C*°(M) satisfies the heat equation
9¢
— = A¢. 24

Then for p < 0 the quantity e~ fot(*P”7(7)+4PC("*1)”(7))d7)\(t) is nondecreasing along
the Ricci-Bourguignon flow, where o(t) and ~y(t) introduced in (18) and (19), re-
spectively.

Proof. From (12) and (17), we have

d n—2
0 = 2 [ [-RisfeRfosi+ VR A
+c(n—1)AR f? + cR* %] du (25)
+/ (2R fij f + 2Rijdi f; f + cAR f? + 2¢|Ric|* f* + fi(¢e)i f] dpe
M
we set

I= /M [—RfAf +Rfoifi + nT_2V¢Rf¢f+c(n — 1)AR f? +cR2f2] dy
and
II = /M (2R fij f + 2Ri;di f; f + cAR f? + 2¢|Ric|* > + fi(¢e)i f] dp.
Notice that, using (13) and (14) we can rewrite I as follow:

I = dn=1) [ RIVf - OePdut (et 2tm—1)+d [ Ry

(-1 Feln 1) /MR|Vf|2du ~ [~ 5 +2(n - 1)])\/M R f2dp

—c(n —1) /M Rf?*Addp, (26)

on the other hand, in [10], has been shown that

I = 1/ |Rij+¢ij|2€_¢dﬂ+4c_1/ |Ricl*e™"dp
2 M 2 M
1 1
+/ (Vijdij + 5%‘(A¢)i)€7wdﬂ— 5/ bi(¢r)ie” Y dp (27)
o M

where f2 = e~¥ for some smooth function . Therefore if % = A¢ then we have

1 1
—3 [ o =5 [ waoyean 3)
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Combining (25), (26), (27) and (28) we arrive at

d 1 _, 4c—1 . W _
— A1) = */ |Rij + i [Pe™Vdp + / |Ric|?e #dﬂ‘F/ PijpizeVdp

1
—2pc(n — 1) / R|=Vy — Vo|?e Vdu
v 2

_2,0[_%(; +2c%(n—1) + /M R%e~Ydp (29)

Bl — D —ctn=1)]) [ RIVUF

—|—2p[—E + 2¢(n — 1)])\/ Re Ydu+ 2pc(n —1) / Re Y A¢dpu
2 M M
1 _
= 5/ |Rij + iy + ¢yl eV dp
M

4c—1 1 9 4c 2\
+ D) /M(‘RZJ 40_1(15@3‘ (46_1)2‘¢1]| e~ Vdp

1
—2pc(n — 1) / R|=V — Vo|?e Ydu
o2

72,0[7%0 +2c%(n—1) + /M R%e Vdu

+

[\l

(G =D =cn=1)] [ RIVoPevdn

+2p[—g +2¢(n — 1)])\/M

Re Ydu+ 2pc(n — 1) / Re ™" A¢dyp.
M
The nonnegative scalar curvature is preserved along the Ricci-Bourguignon flow,
then (22) and (23) for p < 0 and ¢ > 2(’;7121) imply that
d
a)\(t) > 2p[—g + 2¢(n — 1)])\/ Re Ydu > [—pny(t) + 4pc(n — 1o (t)] X (30)
M
the last inequality complete the proof of theorem. ([

If we assume that ¢ is constant function and p = 0 then (29) implies that
for ¢ > % the eigenvalues is strictly increasing under the Ricci-Bourguignon flow,
where this result funded by Cao in [3].
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