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Abstract. Let (M, g(t)) be a compact Riemannian manifold and the metric g(t)

evolve by the Ricci-Bourguignon flow. We find the formula variation of the eigen-

values of geometric operator −∆φ + cR under the Ricci-Bourguignon flow, where

∆φ is the Witten-Laplacian operator and R is the scalar curvature. In the final

section, we show that some quantities dependent to the eigenvalues of the geometric

operator are nondecreasing along the Ricci-Bourguignon flow on closed manifolds

with nonnegative curvature.
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Abstrak. Misalkan (M, g(t)) adalah manifold Riemann kompak dan metrik g(t)

berevolusi mengikuti aliran Ricci-Bourguignon. Kita mencari variasi formula nilai-

nilai eigen dari operator geometrik −∆φ + cR di bawah aliran Ricci-Bourguignon,

dengan ∆φ menyatakan operator Laplace-Witten dan R adalah kurvatur skalar. Di

bagian akhir, kita menunjukkan bahwa beberapa besaran yang bergantung pada

nilai-nilai eigen dari operator geometrik bersifat tak turun sepanjang aliran Ricci-

Bourguignon pada manifold tutup dengan kurvatur taknegatif.

Kata kunci: Laplace, aliran Ricci-Bourguignon

1. Introduction

Let (M, g(t)) be a closed Riemannian manifold. Studying the eigenvalues
of geometric operators is a very powerful tool for the understanding Riemannian
manifolds. Recently, there has been a lot of work on the eigenvalue problem under

2000 Mathematics Subject Classification: Primary 58C40; Secondary 53C44.

Received: 31-01-2017, revised: 31-01-2017, accepted: 24-05-2017.

51



52 S. Azami

geometric flow. In [9], Perelman shows that the functional

F =

∫
M

(R+ |∇f |2)e−f dν

is nondecreasing along the Ricci flow coupled to a backward heat-type equation,
where R is the scalar curvature with respect to the metric g(t) and dν denote the
volume form of the metric g = g(t). The nondecreasing of the functional F implies
that the lowest eigenvalue of the operator −4∆+R is nondecreasing along the Ricci
flow. As an application, Perelman shown that there are no nontrivial steady or ex-
panding breathers on compact manifolds. Cao [2] extended the geometric operator
−4∆ +R to the operator ∆ + R

2 on closed Riemannian manifolds, and showed that

the eigenvalues of the operator ∆ + R
2 are nondecreasing along the Ricci flow with

nonnegative curvature operator. Then, Li [8] and Cao [3] considered the operator
−∆+cR and both them proved that the first eigenvalue of the operator −∆+cR for
c ≥ 1

4 is nondecreasing along the Ricci flow. Zeng and et’al [12] studied the mono-
tonicity of eigenvalues of the operator −∆ + cR along the Ricci-bourguignon flow.
Later Fang and Yang [7] studied the evolution for the first eigenvalue of geometric
operator −∆φ + R

2 under the Yamabe flow, where −∆φ is the Witten-Laplacian

operator, φ ∈ C2(M), and constructed some monotonic quantities under the Yam-
abe flow. Also, Wen and et’al [10] investigated the evolution and monotonicity for
eigenvalues of geometric operator −∆φ + R

2 under the Ricci flow. For the other
recent research in this direction, see [5, 6, 11].
We consider an n-dimensional closed Riemannain manifold M with a time depen-
dent Riemannian metric g(t), where g = g(t) is evolving according to the Ricci-
Bourguignon flow equation

∂

∂t
g = −2Ric+ 2ρRg = −2(Ric− ρRg), g(0) = g0 (1)

where Ric is the Ricci tensor of the manifold, R is scalar curvature and ρ is a real
constant. This family of geometric flows contains, as a special case, when ρ = 0,
this flow is the Ricci flow. At the first time the Ricci-Bourguignon introduced by
Bourguignon in [1] and then Catino and et ’al in [4] shown that if ρ < 1

2(n−1) , then

the evolution equation (1) has a unique solution for a position time interval on any
smooth n-dimensional closed Riemannian M with any initial metric g0 and shown
that some conditions on the curvature are preserved by the Ricci-Bourguignon flow.
Motivated by the above works, in this paper we will study the first eigenvalue of
the geometric operator whose metric satisfying the Ricci-Bourguignon flow (1).

2. Preliminaries

In this section, we will first the definitions for the first eigenvalue of the
geometric operator

−∆φ + cR (2)

then we will find the formula for the evolution of the first eigenvalue of the geometric
operator (2) under the Ricci-Bourguignon flow on a closed manifold. Let (M, g(t))
be a compact Riemannian manifold, and (M, g(t)) be a smooth solution to the
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Ricci-Bourguignon flow (1) for t ∈ [0, T ). Let ∇ be the Levi-Civita connection on
(M, g(t)) and f : M → R be a smooth function on M or f belong to the Sobolev
space W 1,2(M). The Laplacian of f defined as

∆f = div(∇f) = gij(∂i∂jf − Γkij∂kf). (3)

Suppose that dν the Riemannian volume measure, and dµ the weight volume mea-
sure on (M, g(t)); i.e.

dµ = e−φ(x)dν (4)

where φ ∈ C2(M). The Witten-Laplacian is defined by

∆φ = ∆−∇φ.∇ (5)

which is a symmetric operator on L2(M,µ) and satisfies the following integration
by part formula:∫

M

< ∇u,∇v > dµ = −
∫
M

v∆φu dµ = −
∫
M

u∆φv dµ ∀u, v ∈ C∞(M),

The Witten-Laplacian is generalize of Laplacian operator, for example, when φ is
a constant function, the Witten-Laplacian operator is just the Laplace-Belterami
operator. In this paper we consider a generalize of the Witten-Laplacian operator as
−∆φ+ cR where R is the scalar curvature. We say that λ(t) is an eigenvalue of the
operator −∆φ + cR at time t ∈ [0, T ), and f(x, t) the corresponding eigenfunction,
whenever

−∆φf(x, t) + cRf(x, t) = λ(t)f(x, t). (6)

Normalized eigenfuctions are defined as follow:∫
M

f2 dµ = 1, (7)

and assume that f(x, t) is a C1-family of smooth function on M .
Multiplying with f on both sides (6) and then by integration we get

λ(t) =

∫
M

(−f∆φf + cRf2)dµ (8)

where defines the evolution of the first eigenvalue of the geometric operator (2)
under the variation of g(t) where the eigenfunction associated to λ(t) is normalized.
In [10] Wen and et ’al shown that the following lemma.

Lemma 2.1. ([10]) Suppose that λ(t) is an eigenvalue of the operator −∆φ+cR, f

is the eigenfunction of λ(t) at the time t, and the metric g(t) evolves by ∂
∂tgij = vij,

where vij is a symmetric two-tensor. Then we have

d

dt
λ(t) =

∫
M

(vijfij − vijφifj + c
∂R

∂t
f)dµ+

∫
M

(vij,i −
1

2
Vi)fjfdµ (9)

where V = tr(v), fij = ∇i∇jf, fi = ∇if, φi = ∇iφ.

Now, we find the evolution formula of eigenvalue λ(t) under the Ricci-Bourguignon
flow (1).
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Theorem 2.2. Let g(t), t ∈ [0, T ), be a solution of the Ricci-Bourguignon flow (1)
on an n-dimensional closed manifold M . Assume that λ(t) is the lowest eigenvalue
of −∆φ + cR and f = f(x, t) satisfies in (6) with (7). Then under the Ricci-
Bourguignon flow, we have

d

dt
λ(t) = 2A

∫
M

R|1
2
∇f − f∇φ|2dµ−A

∫
M

Rf2∆φdµ

+[
3

2
A− 1 + (n− 2)ρ]

∫
M

R|∇f |2dµ− λ(2A− 1 + nρ)

∫
M

Rf2dµ (10)

+2

∫
M

Rijfifjdµ+ 2c

∫
M

|Ric|2f2dµ+ c(2A− 1 + (n− 2)ρ)

∫
M

R2f2dµ

where A = c(1− 2(n− 1)ρ).

Proof. In [4], G. Catino and et’al shown that the evolution of scalar curvature under
the Ricci-Bourguignon flow is

∂R

∂t
= (1− 2(n− 1)ρ)∆R+ 2|Ric|2 − 2ρR2. (11)

Substiuting vij = −2Rij + 2ρRgij and (11) into the equality (9) we get

d

dt
λ(t) =

∫
M

[−2Rijfij + 2ρR∆f + 2Rijφifj − 2ρR∇φ.∇f ] fdµ

−(n− 2)ρ

∫
M

∇iRfifdµ (12)

+c

∫
M

[
(1− 2(n− 1)ρ)∆Rf2 + 2|Ric|2f2 − 2ρR2f2

]
dµ.

Integration by parts results that

∫
M

f2∆Rdµ = 2

∫
M

R|∇f |2dµ+ 2

∫
M

Rf∆φfdµ− 2

∫
M

Rf∇φ.∇fdµ

−
∫
M

Rf2∆φdµ+

∫
M

Rf2|∇φ|2dµ, (13)

and ∫
M

∇iRfifdµ = −
∫
M

Rf∆φfdµ−
∫
M

R|∇f |2dµ. (14)
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Also, using integration by parts and 1
2∇R = div Ric we have

−
∫
M

Rijfijfdµ =

∫
M

(Rijfe
−φ)jfidν

=

∫
M

div(Ric)fe−φfidν +

∫
M

Rijfje
−φfidν −

∫
M

Rijfφjfie
−φdν

=
1

2

∫
M

∇iRffie−φdν +

∫
M

Rijfjfidµ−
∫
M

Rijfφjfidµ

= −1

2

∫
M

R(ffie
−φ)idν +

∫
M

Rijfjfidµ−
∫
M

Rijfφjfidµ

= −1

2

∫
M

R|∇f |2dµ− 1

2

∫
M

Rf∆fdµ+
1

2

∫
M

Rffiφidµ (15)

+

∫
M

Rijfjfidµ−
∫
M

Rijfφjfidµ

= −1

2

∫
M

R|∇f |2dµ− 1

2

∫
M

Rf∆φfdµ+

∫
M

Rijfjfidµ−
∫
M

Rijfφjfidµ.

Inserting (13), (14) and (15) in (12), yields

d

dt
λ(t) = −

∫
M

R|∇f |2dµ−
∫
M

Rf∆φfdµ+ 2

∫
M

Rijfifjdµ− 2

∫
M

Rijfiφjfdµ

+2ρ

∫
M

Rf∆fdµ+ 2

∫
M

Rijfjφifdµ− 2ρ

∫
M

Rf∇φ.∇fdµ

+(n− 2)ρ

∫
M

Rf∆φfdµ+ (n− 2)ρ

∫
M

R|∇f |2dµ

+2c(1− 2(n− 1)ρ)

∫
M

R|∇f |2dµ+ 2c(1− 2(n− 1)ρ)

∫
M

Rf∆φfdµ

−2c(1− 2(n− 1)ρ)

∫
M

Rf∇φ.∇fdµ− c(1− 2(n− 1)ρ)

∫
M

Rf2∆φdµ

+2c(1− 2(n− 1)ρ)

∫
M

Rf2|∇φ|2dµ+ 2c

∫
M

|Ric|2f2dµ− 2cρ

∫
M

R2f2dµ,
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therefore

d

dt
λ(t) = [2A− 1 + (n− 2)ρ]

∫
M

R|∇f |2dµ+ [2A− 1 + nρ]

∫
M

Rf∆φfdµ

+2

∫
M

Rijfifjdµ+ 2c

∫
M

|Ric|2f2dµ− 2cρ

∫
M

R2f2dµ (16)

−2A

∫
M

Rf∇φ.∇fdµ−A
∫
M

Rf2∆φdµ+ 2A

∫
M

Rf2|∇φ|2dµ

= 2A

∫
M

R|1
2
∇f − f∇φ|2dµ−A

∫
M

Rf2∆φdµ

+[
3

2
A− 1 + (n− 2)ρ]

∫
M

R|∇f |2dµ

+(2A− 1 + nρ)

∫
M

R(−λf2 + cRf2)dµ

+2

∫
M

Rijfifjdµ+ 2c

∫
M

|Ric|2f2dµ− 2cρ

∫
M

R2f2dµ.

Here in the last equality we have used (6). �

In theorem (2.2) if φ is a constant function, we can get the evolution for the
first eigenvalue of the geometric operator −∆ + cR under the Ricci-Bourguignon
flow (1), which studied in [12].

Remark: In theorem (2.2), we assume that φ does not dependent on the time
t. If φ is depend to t then the eigenvalue λ(t) introduced in (6) and (7) satisfies

d

dt
λ(t) = 2A

∫
M

R|1
2
∇f − f∇φ|2dµ−A

∫
M

Rf2∆φdµ+

∫
M

fi(φt)ifdµ

+[
3

2
A− 1 + (n− 2)ρ]

∫
M

R|∇f |2dµ− λ(2A− 1 + nρ)

∫
M

Rf2dµ

+2

∫
M

Rijfifjdµ+ 2c

∫
M

|Ric|2f2dµ (17)

+c(2A− 1 + (n− 2)ρ)

∫
M

R2f2dµ

where A = c(1−2(n−1)ρ). Because the evolution equation of eigenvalues will have
an additional term

∫
M
fi(φt)ifdµ.

In the following we show that some quantity dependent on the eigenvalue of
geometric operator (6) are monotonic along the Ricci-Bourguignon flow. Not that
the scalar curvature under the Ricci-Bourguignon flow evolves by

∂R

∂t
= (1− 2(n− 1)ρ)∆R+ 2|Ric|2 − 2ρR2,

by |Ric|2 ≤ R2 we have

∂R

∂t
≤ (1− 2(n− 1)ρ)∆R+ 2(1− ρ)R2.
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Let σ(t) be the solution to the ODE y′ = 2(1−ρ)y2 with initial value α = max
x∈M

R(0).

By the maximum principle, we have

R(t) ≤ σ(t) =

(
−2(1− ρ)t+

1

α

)−1
(18)

on [0, T ′), where T ′ = minT, 1
2(1−ρ)α . Also, the inequality |Ric|2 ≥ R2

n result that

∂R

∂t
≥ (1− 2(n− 1)ρ)∆R+ 2(

1

n
− ρ)R2.

we assume that γ(t) be the solution to the ODE y′ = 2( 1
n − ρ)y2 with initial value

β = min
x∈M

R(0). Then the maximum principle implies that

R(t) ≥ γ(t) =
nβ

n− 2(1− nρ)βt
on [0, T ). (19)

Theorem 2.3. Let (M, g(t)) be a solution of the Ricci-Bourguignon flow (1) for
t ∈ [0, T ] on a closed n-dimensional manifold M and ρ < 1

2(n−1) with nonnegative

scalar curvature. Let the Ricci curvature operator be a nonnegative along the Ricci-
Bourguignon flow and scalar curvature satisfies

R ≥ 1− 2(n− 1)ρ

2A− 1 + (n− 2)ρ
∆φ, in M × [0, T ]. (20)

If λ(t) is the first eigenvalue of (2) then for c ≥ 2(1−(n−2)ρ)
3(1−2(n−1)ρ) , the quantity

e
∫ t
0
[−(2A+nρ)γ(τ)+σ(τ)]dτλ(t)

is nondecreasing under the Ricci-Bourguignon flow on [0, T ′) where A = c(1−2(n−
1)ρ) and σ(t) and γ(t) introduced in (18) and (19), respectively.

Proof. According to hypothesis of the theorem the Ricci curvature operator is non-
negative along the Ricci-Bourguignon flow and on the other hand in [4], shown that
the nonnegative of the scalar curvature is preserved along the Ricci-Bourguignon

flow. Therefore (10) and (20) imply that for ρ < 1
2(n−1) and c ≥ 2(1−(n−2)ρ)

3(1−2(n−1)ρ) we
get

d

dt
λ(t) ≥ λ(2A− 1 + nρ)

∫
M

Rf2dµ ≥ λ[(2A+ nρ)γ(t)− σ(t)]. (21)

in last inequality we used
∫
M
f2dµ = 1. Hence the theorem follows from the last

inequality. �

Theorem 2.4. Let g(t), t ∈ [0, T ) be a solution to the Ricci-Bourguignon flow (1)
on a closed Riemannian manifold Mn with nonnegative scalar curvature and the
scalar curvature satisfies

R ≥ 2(n− 1)

4c(n− 1)− n+ 2
∆φ, in M × [0, T ). (22)
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Suppose that n ≥ 3 and the Ricci curvature satisfies

|Ric− 1

4c− 1
∇∇φ|2 ≥ 4c

(4c− 1)2
|∇∇φ|2, in M × [0, T ) (23)

where c > n−2
2(n−1) and φ ∈ C∞(M) satisfies the heat equation

∂φ

∂t
= ∆φ. (24)

Then for ρ ≤ 0 the quantity e−
∫ t
0
(−ρnγ(τ)+4ρc(n−1)σ(τ))dτλ(t) is nondecreasing along

the Ricci-Bourguignon flow, where σ(t) and γ(t) introduced in (18) and (19), re-
spectively.

Proof. From (12) and (17), we have

d

dt
λ(t) = −2ρ

∫
M

[
−Rf∆f +Rfφifi +

n− 2

2
∇iRfif

+c(n− 1)∆Rf2 + cR2f2
]
dµ (25)

+

∫
M

[
−2Rijfijf + 2Rijφifjf + c∆Rf2 + 2c|Ric|2f2 + fi(φt)if

]
dµ

we set

I =

∫
M

[
−Rf∆f +Rfφifi +

n− 2

2
∇iRfif + c(n− 1)∆Rf2 + cR2f2

]
dµ

and

II =

∫
M

[
−2Rijfijf + 2Rijφifjf + c∆Rf2 + 2c|Ric|2f2 + fi(φt)if

]
dµ.

Notice that, using (13) and (14) we can rewrite I as follow:

I = c(n− 1)

∫
M

R|∇f − f∇φ|2dµ+ [−n
2
c+ 2c2(n− 1) + c]

∫
M

R2f2dµ

+[−(
n

2
− 1) + c(n− 1)]

∫
M

R|∇f |2dµ− [−n
2

+ 2c(n− 1)]λ

∫
M

Rf2dµ

−c(n− 1)

∫
M

Rf2∆φdµ, (26)

on the other hand, in [10], has been shown that

II =
1

2

∫
M

|Rij + ψij |2e−ψdµ+
4c− 1

2

∫
M

|Ric|2e−ψdµ

+

∫
M

(ψijφij +
1

2
ψi(∆φ)i)e

−ψdµ− 1

2

∫
M

ψi(φt)ie
−ψdµ (27)

where f2 = e−ψ for some smooth function ψ. Therefore if ∂φ
∂t = ∆φ then we have

−1

2

∫
M

ψi(φt)ie
−ψdµ = −1

2

∫
M

ψi(∆φ)ie
−ψdµ. (28)
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Combining (25), (26), (27) and (28) we arrive at

d

dt
λ(t) =

1

2

∫
M

|Rij + ψij |2e−ψdµ+
4c− 1

2

∫
M

|Ric|2e−ψdµ+

∫
M

ψijφije
−ψdµ

−2ρc(n− 1)

∫
M

R|1
2
∇ψ −∇φ|2e−ψdµ

−2ρ[−n
2
c+ 2c2(n− 1) + c]

∫
M

R2e−ψdµ (29)

+
ρ

2
[(
n

2
− 1)− c(n− 1)]

∫
M

R|∇ψ|2e−ψdµ

+2ρ[−n
2

+ 2c(n− 1)]λ

∫
M

Re−ψdµ+ 2ρc(n− 1)

∫
M

Re−ψ∆φdµ

=
1

2

∫
M

|Rij + ψij + φij |2e−ψdµ

+
4c− 1

2

∫
M

(|Rij −
1

4c− 1
φij |2 −

4c

(4c− 1)2
|φij |2)e−ψdµ

−2ρc(n− 1)

∫
M

R|1
2
∇ψ −∇φ|2e−ψdµ

−2ρ[−n
2
c+ 2c2(n− 1) + c]

∫
M

R2e−ψdµ

+
ρ

2
[(
n

2
− 1)− c(n− 1)]

∫
M

R|∇ψ|2e−ψdµ

+2ρ[−n
2

+ 2c(n− 1)]λ

∫
M

Re−ψdµ+ 2ρc(n− 1)

∫
M

Re−ψ∆φdµ.

The nonnegative scalar curvature is preserved along the Ricci-Bourguignon flow,
then (22) and (23) for ρ ≤ 0 and c > n−2

2(n−1) imply that

d

dt
λ(t) ≥ 2ρ[−n

2
+ 2c(n− 1)]λ

∫
M

Re−ψdµ ≥ [−ρnγ(t) + 4ρc(n− 1)σ(t)]λ (30)

the last inequality complete the proof of theorem. �

If we assume that φ is constant function and ρ = 0 then (29) implies that
for c ≥ 1

4 the eigenvalues is strictly increasing under the Ricci-Bourguignon flow,
where this result funded by Cao in [3].
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