ON THE DIOPHANTINE EQUATION $2^{x}+17^{y}=z^{2}$

Julius Fergy T. Rabago
Department of Mathematics and Computer Science
College of Science
University of the Philippines Baguio
Baguio City 2600, Benguet, Philippines
e-mail: jfrabago@gmail.com

Abstract

We show that the Diophantine equation $2^{x}+17^{y}=z^{2}$ has exactly five solutions (x, y, z) in positive integers. The only solutions are $(3,1,5),(5,1,7)$, $(6,1,9),(7,3,71)$ and $(9,1,23)$. This note, in turn, addresses an open problem proposed by Sroysang in [10].

Key words and Phrases: Diophantine equation, integer solution.

Abstract

Abstrak. Pada paper ini kami memperlihatkan bahwa persamaan Diophantine $2^{x}+17^{y}=z^{2}$ mempunyai tepat lima solusi (x, y, z) dalam bilangan-bilangan bulat positif. Solusinya adalah $(3,1,5),(5,1,7),(6,1,9),(7,3,71)$ dan $(9,1,23)$. Hasil ini berkaitan dengan open problem yang diusulkan oleh Sroysang di [10].

Kata kunci: Persamaan Diophantine, solusi bilangan bulat.

1. Introduction

Several Diophantine equations of type $a^{x}+b^{y}=c^{z}$ have been of interest in previous decades, see, e.g., [1]-[12]. Most of these studies focused on the case when b is prime. For instance, in [1], Acu showed that $(3,0,3)$ and $(2,1,3)$ are the only solutions to the equation $2^{x}+5^{y}=z^{2}$ in the set of non-negative integers \mathbb{N}_{0}. Meanwhile, in [4], Suvarnamani et al. were able to show through Mihăilescu's Theorem [3] that the equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$ have no solution in \mathbb{N}_{0}. Quite recently, as motivated by the results delivered in $[6,8,9]$, Qi and Li [5] examined the solvability of the equation $8^{x}+p^{y}=z^{2}$ in \mathbb{N} for fixed prime p. In [12], on the other hand, a classification of solutions $(b, x, y, z) \in \mathbb{N}^{4}$ of the equation $2^{x}+b^{y}=c^{z}$ was given by Yu and Li. For instance, it was shown that the equation

[^0]Received: 13-11-2013, revised: 06-01-2017, accepted: 07-01-2017.
$2^{x}+b^{y}=c^{z}$ admits a solution for $x>1, y=1,2 \mid z$ and $2^{x}<b^{50 / 13}$. A particular solution to $2^{x}+b^{y}=c^{z}$ under the previously mentioned assumptions, however, was beyond the scope of the study presented in [12]. In this note, as inspired by these aforementioned works, we shall show using certain results on exponential Diophantine equations that the equation $2^{x}+17^{y}=z^{2}$ has exactly five solutions (x, y, z) in \mathbb{N}^{3}. More precisely, we prove that the only solution $(x, y, z) \in \mathbb{N}^{3}$ to $2^{x}+17^{y}=z^{2}$ are $(3,1,5),(5,1,7),(6,1,9),(7,3,71)$ and $(9,1,23)$. We emphasize that the problem we are considering here is in fact an open question raised by Sroysang in [10]. More precisely, Sroysang asked the set of all solutions (x, y, z) of the equation $2^{x}+17^{y}=z^{2}$, for non-negative integers x, y and z. Consequently, this work addresses the solution to this open problem put forward in [10]. We formally state and prove our main result in the next section.

2. Main Result

Our main result reads as follows.
Theorem 2.1. The only solution $(x, y, z) \in \mathbb{N}^{3}$ to the equation $2^{x}+17^{y}=z^{2}$ are $(3,1,5),(5,1,7),(6,1,9),(7,3,71)$ and $(9,1,23)$.

In proving the above theorem, we need the following results from $[2,3,6,12]$.
Lemma 2.2 ([3]). The equation $a^{x}-b^{y}=1, a, b, x, y \in \mathbb{N}, \min \{a, b, x, y\}>1$, has the only solution $(a, b, x, y)=(3,2,2,3)$.

Lemma 2.3 ([6]). The only solution $(x, y, z) \in \mathbb{N}_{0}^{3}$ to the equation $8^{x}+17^{y}=z^{2}$ are $(1,0,3),(1,1,5),(2,1,9)$ and $(3,1,23)$.

Lemma 2.4 ([2]). The equation $2^{x}+b^{y}=z^{2}, b, x, y, z \in \mathbb{N}, \operatorname{gcd}(b, z)=1, b>1$, $x>1, y \geq 3$, has the only solution $(b, x, y, z)=(17,7,3,71)$.

Lemma 2.5 ([12]). The equation $2^{x}+b^{y}=c^{z}$ admits a solution for $x>1, y=1$, $2 \mid z$ and $2^{x}<b^{50 / 13}$.

Now we prove Theorem 2.1 as follows.
Proof of Theorem 2.1. Let $x, y, z \in \mathbb{N}$. First, we determine the parity of x, y and z. Since $x \geq 1$, then obviously z is odd. Moreover, it is clear that the equation $2^{x}+17^{y}=z^{2}$ may admit a solution (x, y, z) in \mathbb{N}^{3} provided y is odd, otherwise we'll obtain a contradiction (cf. [6]). Similarly, except for the possibility that x may take the number 6 as its value, x must always be odd. If not, we get $17^{y}=\left(z+2^{x^{\prime}}\right)\left(z-2^{x^{\prime}}\right), x^{\prime}=x / 2$, and so $17^{\beta}-17^{\alpha}=2^{x^{\prime}+1}$, where $\alpha+\beta=y$. Evidently, α cannot be at least the unity since, otherwise, $17\left(17^{\beta-1}-17^{\alpha-1}\right)=2^{x^{\prime}+1}$ which is not possible. Meanwhile, if $\alpha=0$, then $17^{y}-1=2^{x^{\prime}+1}$, or equivalently $17^{y}-2^{x^{\prime}+1}=1$. For $y>1$, employing Lemma
2.2 , this equation admits no solution in \mathbb{N}. On the other hand, if $y=1$, then we get $2^{x^{\prime}+1}=2^{4}$. This yields the value $x^{\prime}=3$, and $x=6$, giving us the solution $(x, y, z)=(6,1,9)$. So, except when $x=6, x$ is always odd. Suppose now that $2^{x}+17^{y}=z^{2}$ holds true for some triples $(x, y, z) \in \mathbb{N}^{3}$, where x, y and z are all odd. We consider two cases: (C.1) $3 \mid x$ and (C.2) $3 \nmid x$. Hereafter we assume $k \in \mathbb{N}$.

Case 1. If $x=3 k, 2 \nmid k$, then we have $2^{3 k}+17^{y}=z^{2}$, or equivalently $8^{k}+17^{y}=z^{2}$. In view of Lemma 2.3, the only solution $(k, y, z) \in \mathbb{N}^{3}$ are $(1,1,5)$ and $(3,1,23)$. Hence, we get $(3,1,5)$ and $(9,1,23)$ as the only solutions to $2^{x}+17^{y}=z^{2}$ in \mathbb{N}, for x divisible by three.

Case 2. Now, assume that $3 \nmid x$. First, we suppose that $x=1$. Then, we have $2+17^{y}=z^{2}$. Note that $17^{y} \equiv 1(\bmod 4)$. Hence, taking modulo 4 , we get $2+17^{y} \equiv 3(\bmod 4)$ while $z^{2} \equiv 1(\bmod 4)$, a contradiction. Therefore, $x>1$. Apparently, $17 \nmid z$ because the congruence $2^{x} \equiv 0(\bmod 17)$ is impossible. So, for $y \geq 3$, the only solution we get is $(x, y, z)=(7,3,71)$ because of Lemma 2.4. Now, we are left with the possibility that $y=1$. Since z has quadratic exponent, we know from Lemma 2.5 that the equation $2^{x}+17=z^{2}$ may admit a solution in \mathbb{N} such that

$$
x<\frac{50 \log 17}{13 \log 2}<16
$$

Since the bound for x is small, one can effectively use a simple mathematical program to find whether there is any integer x on the interval $(1,16)$ that makes the quantity $\sqrt{2^{x}+17}$ an integer. Nevertheless, the values of x that could satisfy the equation $2^{x}+17=z^{2}$ may be obtained theoretically, and this we show as follows.

Rewriting $2^{x}+17=z^{2}$ as $3\left[\left(2^{x}+1\right) / 3\right]=(z+4)(z-4)$, we see that z must be at least 5 . We know that z is odd, so $z=2 l+1$ for some integer $l \geq 2$. It follows that $2^{x}+17=(2 l+1)^{2}=4 l^{2}+4 l+1$, or equivalently $4 l^{2}+4 l-2^{x}=16$. Suppose that l is even, say $l=2^{s} m$ for some $s, m \in \mathbb{N}$ where m is odd. Then,

$$
\begin{equation*}
2^{x}\left(2^{2 s+2-x} m^{2}+2^{s+2-x} m-1\right)=2^{4} \tag{1}
\end{equation*}
$$

Recall that $x>1,3 \nmid x$ and x is odd, so x must be at least 5 . Thus, from (1), we get a contradiction, and so l cannot be an even integer. Hence, l is odd. For $x \geq 5$ and l odd, we have

$$
2^{x}=4 l^{2}+4 l-16 \quad \Longleftrightarrow \quad 2^{2}\left(2^{x-4}+1\right)=l(l+1)
$$

Now, l being odd implies that $l+1=4$, or equivalently $l=3$. On the other hand, we get $2^{x-4}=2$, from which we obtain $x=5$. Finally, this give us the solution $(x, y, z)=(5,1,7)$.

In concluding, the only solution (x, y, z) in \mathbb{N}^{3} to the equation $2^{x}+17^{y}=z^{2}$ are $(3,1,5),(5,1,7),(6,1,9),(7,3,71)$ and $(9,1,23)$.

Corollary 2.6. Let $n \in \mathbb{N} \backslash\{1\}$. Then, the Diophantine equation $2^{x}+17^{y}=w^{2 n}$ has a unique solution in positive integers, i.e., $(n, x, y, z)=(1,6,1,3)$.

Proof. Let $n>1$ be a natural number and suppose that the equation $2^{x}+17^{y}=$ $\left(w^{n}\right)^{2}$ has a solution in positive integers. We let $z=w^{n}$, then we have $2^{x}+17^{y}=z^{2}$.

By Theorem 2.1, $z \in\{5,7,9,23,71\}$. Hence, $w^{n}=5,7,9,23$ or 71 . The case when $w^{n}=5,7,23$ and 71 are only possible when $n=1$. This contradicts the assumption that $n>1$. On the other hand, the equation $w^{n}=9$ implies that $w=3$ and $n=2$. Thus, $2^{x}+31^{y}=w^{2 n}$ has a unique solution $(n, x, y, z)=(1,6,1,3)$ in \mathbb{N}^{4}.

We end our discussion with the following remark.
Remark 1. If we allow x, y or z in Theorem 2.1 to be zero, then $(x, y, z)=(3,0,3)$ is a solution to $2^{x}+17^{y}=z^{2}$ because $2^{3}+17^{0}=9=3^{2}$. Meanwhile, x can never be zero since the equation $17^{y}=z^{2}-1$ will lead to a contradiction. Indeed, for y, z in \mathbb{N}, we have $17^{\alpha}\left(17^{\beta-\alpha}-1\right)=17^{\beta}-17^{\alpha}=(z+1)-(z-1)=2$, where $\alpha+\beta=y$. Evidently, $\alpha=0$, and we get $17^{y}=3$ which is clearly impossible. Thus, we have the unique solution $(x, y, z)=(3,0,3)$ in \mathbb{N}_{0}^{3}, with at least one of x, y and z is zero, to the equation $2^{x}+17^{y}=z^{2}$. This result, together with Theorem 2.1, answers completely the question raised by Sroysang in [10].

Appendix

An Alternative Proof to Lemma 2.3. Lemma 2.3, which was originally proposed as open problem in [8], has been proven by the author in [6] independently from the approach presented here. Nevertheless, the complete set of solution to the equation $8^{x}+17^{y}=z^{2}$ in \mathbb{N}_{0} can be obtained using Lemma 2.4 and Lemma 2.5 without any difficulty. Indeed, suppose $8^{x}+17^{y}=z^{2}$ admits a solution $(x, y, z) \in \mathbb{N}^{3}$. Clearly, $17 \nmid z$, and so by Lemma 2.4 we only need to consider the case when $y \in\{1,2\}$. However, the case $y=2$ is impossible since the equation $8^{x}+17^{2}=z^{2}$ would imply that $2^{\alpha}\left(2^{\beta-\alpha}-1\right)=2 \cdot 17$. This equation, in turn, would mean that $\alpha=1$, and so $2^{3 x-1}=2^{4}$ or equivalently, $x=5 / 3$ which is a obviously a contradiction to the assumption that $x \in \mathbb{N}$. This leaves us to consider the case when $y=1$. Now, from Lemma 2.5, we see that $2^{3 x}<17^{50 / 13}$. A quick computation gives the bound $1 \leq x<5.24$. Since the upper bound for x is small, then we can manually test each $x \in\{1,2,3,4,5\}$ to see which of these quantities give an integer value for $\sqrt{8^{x}+17}$. However, for $x=2 x^{\prime}, x^{\prime} \in \mathbb{N}$, we get $z^{2}-\left(2^{3 x^{\prime}}\right)^{2}=17$ which implies that $2^{3 x^{\prime}+1}=2^{4}$, giving us $x^{\prime}=1$. Therefore, the only possible even value for x is 2 , eliminating the possibility that $x=4$. So, we have $(x, y, z)=(2,1,9)$. The remaining possibility is easily verified by direct substitution, leaving the value $x=5$ inadmissible. Therefore, we obtain the other two solutions $(1,1,5)$ and $(3,1,23)$ for $(x, y, z) \in \mathbb{N}^{3}$. Now, expanding the set of solutions to \mathbb{N}_{0}^{3} yields the only additional solution $(x, y, z)=(1,0,3)$. This completes the proof of Lemma 2.3 in an alternative fashion.

References

[1] Acu, D., On a Diophantine equation $2^{x}+5^{y}=z^{2}$, Gen. Math., 15:4 (2007), 145-148.
[2] Ivorra, W., Sur les équations $x^{p}+2^{\beta} y^{p}=z^{2}$ et $x^{p}+2^{\beta} y^{p}=2 z^{2}$, Acta Arith., 108:4 (2003), 327-338.
[3] Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167-195.
[4] Suvarnamani, A., Singta, A. and Chotchaisthit, S., On two Diophantine equations $4^{x}+7^{y}=$ z^{2} and $4^{x}+11^{y}=z^{2}$, Sci. Technol. RMUTT J., 1 (2011), 25-28.
[5] Qi, L. and Li, X., The Diophantine equation $8^{x}+p^{y}=z^{2}$, Sci. World J., Vol. 2015, Article ID 306590, 3 pages.
[6] Rabago, J.F.T., On an open problem by B. Sroysang, Konuralp J. Math., 1:2 (2013), 30-32.
[7] Rabago, J.F.T., A note on an open problem by B. Sroysang, Sci. Technol. RMUTT J., 3:1 (2013), 41-43.
[8] Sroysang, B., More on the Diophantine equation $8^{x}+19^{y}=z^{2}$, Int. J. Pure Appl. Math., 81:4 (2012), 601-604.
[9] Sroysang, B., On the Diophantine equation $31^{x}+32^{y}=z^{2}$, Int. J. Pure Appl. Math., 81:4 (2012), 609-612.
[10] Sroysang, B., More on Diophantine equation $2^{x}+19^{y}=z^{2}$, Int. J. Pure Appl. Math., 88:1 (2013), 157-160.
[11] Sroysang, B., More on the Diophantine equation $8^{x}+13^{y}=z^{2}$, Int. J. Pure Appl. Math., 90:1 (2014), 69-72.
[12] Yu, Y. and Li, X., The exponential Diophantine equation $2^{x}+b^{y}=c^{z}$, Sci. World J., Vol. 2014, Article ID 401816, 3 pages.

[^0]: 2000 Mathematics Subject Classification: 11D61.

