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CONSISTENCY OF A KERNEL-TYPE
ESTIMATOR OF THE INTENCITY OF

THE CYCLIC POISSON PROCESS

WITH THE LINEAR TREND

I Wayan Mangku, Siswadi, and Retno Budiarti

Abstract. A consistent kernel-type nonparametric estimator of the intensity function of

a cyclic Poisson process in the presence of linear trend is constructed and investigated. It

is assumed that only a single realization of the Poisson process is observed in a bounded

window. We prove that the proposed estimator is consistent when the size of the window

indefinitely expands.

1. INTRODUCTION

Let N be a Poisson process on [0,∞) with (unknown) locally integrable in-
tensity function λ. We assume that λ consists of two components, namely a cyclic
(periodic) component with period τ > 0 and a linear trend. In other words, for
each point s ∈ [0,∞), we can write λ as

λ(s) = λc(s) + as, (1)

where λc(s) is (unknown) periodic function with (known) period τ and a denotes
(unknown) slope of the linear trend. In this paper, we do not assume any parametric
form of λc, except that it is periodic. That is, for each point s ∈ [0,∞) and all
k ∈ Z, with Z denotes the set of integers, we have

λc(s+ kτ) = λc(s). (2)
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Here we consider a Poisson process on [0,∞) instead of, for example, on R because
λ has to satisfy (1) and must be non negative. For the same reason we also restrict
our attention to the case a ≥ 0. The present paper (cf. also [2]) aims at extending
previous work for the purely cyclic case, i.e. a = 0, (cf. [3], [4], [6], section 2.3 of
[7]) to the more general model (1).

Suppose now that, for some ω ∈ Ω, a single realization N(ω) of the Poisson
process N defined on a probability space (Ω,F ,P) with intensity function λ (cf.
(1)) is observed, though only within a bounded interval Wn = [0, n] ⊂ [0,∞). Our
goal in this paper is to construct a consistent (general) kernel-type estimator of
λc at a given point s ∈ [0,∞) using only a single realization N(ω) of the Poisson
process N observed in interval Wn = [0, n].

There are many practical situations where we have to use only a single re-
alization for estimating intensity of a cyclic Poisson process. A review of such
applications can be seen in [3], and a number of them can also be found in [1], [5],
[7], [9] and [10].

We will assume throughout that s is a Lebesgue point of λ, that is we have

lim
h↓0

1
2h

∫ h

−h
|λ(s+ x)− λ(s)|dx = 0 (3)

(eg. see [11], p.107-108), which automatically means that s is a Lebesgue point of
λc as well.

Note that, since λc is a periodic function with period τ , the problem of
estimating λc at a given point s ∈ [0,∞) can be reduced into a problem of estimating
λc at a given point s ∈ [0, τ). Hence, for the rest of this paper, we will assume that
s ∈ [0, τ).

Note also that, the meaning of the asymptotic n→∞ in this paper is some-
what different from the classical one. Here n does not denote our sample size, but
it denotes the length of the interval of observations. The size of our samples is a
random variable denoted by N([0, n]).

2. Construction of the estimator and results

Let K : R → R be a real valued function, called kernel, which satisfies the
following conditions: (K1) K is a probability density function, (K2) K is bounded,
and (K3) K has (closed) support [−1, 1]. Let also hn be a sequence of positive real
numbers converging to 0, that is,

hn ↓ 0, (1)

as n→∞.
Using the introduced notations, we may define the estimators of respectively

a and λc at a given point s ∈ [0, τ) as follows

ân :=
2N([0, n])

n2
, (2)
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and

λ̂c,n,K(s) :=
1

ln(nτ )

∞∑
k=1

1
khn

∫ n

0

K

(
x− (s+ kτ)

hn

)
N(dx)− ân

(
s+

n

ln(nτ )

)
. (3)

The estimator given in (3) is a generalization of the estimator discussed and
investigated in Helmers and Mangku [2] for the case that the period τ is known.
A general kernel-type estimator of the intensity of a purely cyclic Poisson process
(i.e. a = 0) was proposed and studied in Helmers, Mangku and Zitikis ([3], [4]).

If we are interested in estimating λ(s) at a given point s, then λ(s) can be
estimated by

λ̂n,K(s) = λ̂c,n,K(s) + âns. (4)

To obtain the estimator ân of a, it suffices to note that

EN([0, n]) =
a

2
n2 +O(n),

as n → ∞, which directly yields the estimator given in (2). Note also that, if N
were a Poisson proses with intensity function λ(s) = as, then ân would be the
maximum likelihood estimator of a (see [8]).

Next we describe the idea behind the construction of the kernel-type estimator
λ̂c,n,K(s) of λc(s). By (1) and (2) we have that, for any point s and k ∈ N (N
denotes the set of natural numbers),

λc(s) = λc(s+ kτ) = λ(s+ kτ)− a(s+ kτ). (5)

Let Bh(x) := [x − h, x + h] and Ln :=
∑∞
k=−∞ k−1I(s + kτ ∈ [0, n]). By (5), we

can write

λc(s) =
1
Ln

∞∑
k=1

1
k

(λc(s+ kτ)) I(s+ kτ ∈ [0, n])

=
1
Ln

∞∑
k=1

1
k

(λ(s+ kτ)− a(s+ kτ)) I(s+ kτ ∈ [0, n])

=
1
Ln

∞∑
k=1

1
k

(λ(s+ kτ)) I(s+ kτ ∈ [0, n])− as

− aτ
Ln

∞∑
k=1

I(s+ kτ ∈ [0, n]). (6)
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By (1) and the assumption that s is a Lebesgue point of λ, we have

λc(s) ≈ 1
Ln

∞∑
k=1

1
k

1
|Bhn(s+ kτ)|

∫
Bhn (s+kτ)∩[0,n]

λ(x)dx− as− an

Ln

=
1
Ln

∞∑
k=1

1
k

EN(Bhn
(s+ kτ) ∩ [0, n])

2hn
− a

(
s+

n

Ln

)

≈ 1
Ln

∞∑
k=1

1
k

N(Bhn
(s+ kτ) ∩ [0, n])

2hn
− a

(
s+

n

Ln

)
. (7)

In the first ≈ in (7) we also have used the fact that

aτ

Ln

∞∑
k=1

I(s+ kτ ∈ [0, n]) =
aτ

Ln

(n
τ

+O(1)
)

=
an

Ln
+O

(
1
Ln

)
≈ an

Ln
.

From the second ≈ in (7) and by noting that Ln ∼ ln(n/τ) as n → ∞, we
see that

λ̄c,n(s) =
1

ln(nτ )

∞∑
k=1

1
k

N([s+ kτ − hn, s+ kτ + hn] ∩ [0, n])
2hn

− a
(
s+

n

ln(nτ )

)
(8)

can be viewed as an estimator of λc(s), provided the slope a of the linear trend
to be known. If a is unknown, we replace a by ân (cf. (2)) and one obtains the
estimator of λc(s) given by

λ̂c,n(s) =
1

ln(nτ )

∞∑
k=1

1
k

N([s+ kτ − hn, s+ kτ + hn] ∩ [0, n])
2hn

− ân
(
s+

n

ln(nτ )

)
. (9)

Now note that the estimator λ̂c,n(s) given in (9) is a special case of the estimator
λ̂c,n,K(s) in (3), that is in (9) we use the uniform kernel K̄ = 1

2I[−1,1](.). Replacing
this uniform kernel by a general kernel K, we then obtain the estimator of λc given
in (3).

In Helmers and Mangku [2] has been proved the following lemma.

Lema 1. Suppose that the intensity function λ satisfies (1) and is locally integrable.
Then we have

E (ân) = a+
2θ
n

+O
(

1
n2

)
(10)

and

V ar (ân) =
2a
n2

+O
(

1
n3

)
(11)
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as n→∞, where θ = τ−1
∫ τ

0
λc(s)ds, the global intensity of the periodic component

λc. Hence ân is a consistent estimator of a. Its MSE (mean-squared-error) is given
by

MSE (ân) =
4θ2 + 2a

n2
+O

(
1
n3

)
(12)

as n→∞.

Our main results are presented in the following theorem and corollary.

Theorem 1. Suppose that the intensity function λ satisfies (1) and is locally
integrable. If the kernel K satisfies conditions (K1), (K2), (K3), and hn satisfies
assumptions (1) and

hn lnn→∞, (13)

then
λ̂c,n,K(s)

p→ λc(s), (14)

as n → ∞, provided s is a Lebesgue point of λc. In other words, λ̂c,n,K(s) is a
consistent estimator of λc(s). In addition, the MSE of λ̂c,n,K(s) converges to 0, as
n→∞.

We note that, Lemma 1 and Theorem 1 together imply the following result.

Corollary 1. Suppose that the intensity function λ satisfies (1) and is locally
integrable. If the kernel K satisfies conditions (K1), (K2), (K3), and hn satisfies
assumptions (1) and (13), then

λ̂n,K(s)
p→ λ(s), (15)

as n → ∞, provided s is a Lebesgue point of λ. In other words, λ̂n,K(s) in (4) is
a consistent estimator of λ(s). In addition, the MSE of λ̂n,K(s) converges to 0, as
n→∞.

3. Proofs of Theorem 1

To prove Theorem 1, it suffices to verify the following two lemmas.

Lemma 2. (Asymptotic unbiasedness) Suppose that the intensity function λ satisfies
(1) and is locally integrable. If the kernel K satisfies conditions (K1), (K2), (K3),
and hn satisfies assumptions (1) and (13), then

Eλ̂c,n,K(s) → λc(s), (1)
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as n→∞, provided s is a Lebesgue point of λc.

Lemma 3. (Convergence of the variance) Suppose that the intensity function λ satis-
fies (1) and is locally integrable. If the kernel K satisfies conditions (K1), (K2), (K3),
and hn satisfies assumptions (1) and (13), then

V ar
(
λ̂c,n,K(s)

)
→ 0, (2)

as n→∞, provided s is a Lebesgue point of λc.

Proof of Lemma 2

Note that

Eλ̂c,n,K(s) =
1

ln(nτ )

∞∑
k=1

1
khn

∫ n

0

K

(
x− (s+ kτ)

hn

)
EN(dx)−

(
s+

n

ln(nτ )

)
Eân.

(3)
First we consider the first term on the r.h.s. of (3). This term can be written as

1
ln(nτ )

∞∑
k=1

1
khn

∫ n

0

K

(
x− (s+ kτ)

hn

)
λ(x)dx

=
1

ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x− (s+ kτ)

hn

)
λ(x)I(x ∈ [0, n])dx. (4)

By a change of variable and using (1) and (2), we can write the r.h.s. of (4) as

1
ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x

hn

)
λ(x+ s+ kτ)I(x+ s+ kτ ∈ [0, n])dx

=
1

ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x

hn

)
λc(x+ s)I(x+ s+ kτ ∈ [0, n])dx

+
1

ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x

hn

)
a(x+ s+ kτ)I(x+ s+ kτ ∈ [0, n])dx. (5)

We will first show that the first term on the r.h.s. of (3), that is the r.h.s. of
(5), is equal to

λc(s) + as+
an

ln(nτ )
+ o(1), (6)

as n→∞, by showing that the first term on the r.h.s. of (5) is equal to λc(s)+o(1)
and its second term is equal to as+ an/ ln(n/τ) + o(1), as n→∞. To check this,
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note that the first term on the r.h.s. of (5) is equal to

1
ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x

hn

)
(λc(x+ s)− λc(s)) I(x+ s+ kτ ∈ [0, n])dx

+
λc(s)
ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x

hn

)
I(x+ s+ kτ ∈ [0, n])dx

=
1

hn ln(nτ )

∫
R

K

(
x

hn

)
(λc(x+ s)− λc(s))

∞∑
k=1

1
k
I(x+ s+ kτ ∈ [0, n])dx

+
λc(s)

hn ln(nτ )

∫
R

K

(
x

hn

) ∞∑
k=1

1
k
I(x+ s+ kτ ∈ [0, n])dx. (7)

Using the fact that

∞∑
k=1

1
k
I(x+ s+ kτ ∈ [0, n]) = ln(

n

τ
) +O(1), (8)

as n→∞ uniformly in x ∈ [−hn, hn], the r.h.s. of (7) can be written as

=
1

hn ln(nτ )

∫
R

K

(
x

hn

)
(λc(x+ s)− λc(s))

(
ln(

n

τ
) +O(1)

)
dx

+
λc(s)

hn ln(nτ )

∫
R

K

(
x

hn

)(
ln(

n

τ
) +O(1)

)
dx

=
∫
R

K

(
x

hn

)
1
hn

(λc(x+ s)− λc(s)) dx

+λc(s)
∫
R

K(x)dx+O
(

1
hn lnn

)
, (9)

as n → ∞. Since s is a Lebesque of λc (cf. (3)) and the kernel K satisfies
conditions (K2) and (K3), it easily seen that the first term on the r.h.s. of (9) is
o(1), as n → ∞. By the assumption:

∫
R
K(x)dx = 1 (cf. (K1)), the second term

on the r.h.s. of (9) is equal to λc(s). A simple argument using assumption (13)
shows that the third term on the r.h.s. of (9) is o(1), as n → ∞. Hence, the first
term on the r.h.s. of (5) is equal to λc(s) + o(1), as n→∞.

Next we show that the second term on the r.h.s. of (5) is equal to
as + an/ ln(n/τ) + o(1), as n → ∞. To verify this, note that this term can be
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written as

a

ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x

hn

)
xI(x+ s+ kτ ∈ [0, n])dx

+
as

ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x

hn

)
I(x+ s+ kτ ∈ [0, n])dx

+
aτ

ln(nτ )

∞∑
k=1

1
khn

∫
R

K

(
x

hn

)
kI(x+ s+ kτ ∈ [0, n])dx

=
a

hn ln(nτ )

∫
R

K

(
x

hn

)
x

∞∑
k=1

1
k
I(x+ s+ kτ ∈ [0, n])dx

+
as

hn ln(nτ )

∫
R

K

(
x

hn

) ∞∑
k=1

1
k
I(x+ s+ kτ ∈ [0, n])dx

+
aτ

hn ln(nτ )

∫
R

K

(
x

hn

) ∞∑
k=1

I(x+ s+ kτ ∈ [0, n])dx. (10)

Using (8), and the fact that
∞∑
k=1

I(x+ s+ kτ ∈ [0, n]) =
n

τ
+O(1),

as n→∞ uniformly in x ∈ [−hn, hn], the quantity in (10) can be written as

a

hn ln(nτ )

(
ln(

n

τ
) +O(1)

)∫
R

K

(
x

hn

)
xdx

+
as

hn ln(nτ )

(
ln(

n

τ
) +O(1)

)∫
R

K

(
x

hn

)
dx

+
aτ

hn ln(nτ )

(n
τ

+O(1)
)∫

R

K

(
x

hn

)
dx. (11)

Since K is bounded and
∫ 1

−1
xdx = 0, the first term of (11) is equal to zero. A

simple calculation shows that the second term of (11) is equal to as+ o(1) and the
third term of (11) is equal to an/ ln(n/τ) + o(1) as n → ∞. Hence, we have that
the second term on the r.h.s. of (5) is equal to as+ an/ ln(n/τ) + o(1) as n→∞.
Combining this with the previous result, we obtain (6).

Finally we consider the second term on the r.h.s. of (3). By (10) of Lemma
1, this term can be computed as follows

−
(
s+

n

lnn

)(
a+

2θ
n

+O
(

1
n2

))
= −as− an

ln(nτ )
+ o(1), (12)

as n → ∞. Combining (6) and (12) we obtain (1). This completes the proof of
Lemma 2.
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Proof of Lemma 3

The variance of λ̂c,n,K(s) can be computed as follows

V ar
(
λ̂c,n,K(s)

)
= V ar

(
1

ln(nτ )

∞∑
k=1

1
khn

∫ n

0

K

(
x− (s+ kτ)

hn

)
N(dx)

)

+V ar
(
ân

(
s+

n

ln(nτ )

))
+2Cov

(
1

ln(nτ )

∞∑
k=1

1
khn

∫ n

0

K

(
x− (s+ kτ)

hn

)
N(dx), ân

(
s+

n

ln(nτ )

))
.

(13)

We will prove Lemma 3 by showing that each term on the r.h.s. of (13) is o(1) as
n→∞.

First we check that the first term on the r.h.s. of (13) is o(1) as n → ∞.
To do this, we argue as follows. By (1), for sufficiently large n, we have that the
intervals [s + kτ − hn, s + kτ + hn] and [s + jτ − hn, s + jτ + hn] are not overlap
for all k 6= j. This implies, for all k 6= j,

K

(
x− (s+ kτ)

hn

)
N(dx) and K

(
x− (s+ jτ)

hn

)
N(dx)

are independent. Hence, the variance in the first term on the r.h.s. of (13) can be
computed as follows

1
(hn ln(nτ ))2

∞∑
k=1

1
k2

∫ n

0

K2

(
x− (s+ kτ)

hn

)
V ar(N(dx))

=
1

(hn ln(nτ ))2

∞∑
k=1

1
k2

∫ n

0

K2

(
x− (s+ kτ)

hn

)
EN(dx)

=
1

(hn ln(nτ ))2

∞∑
k=1

1
k2

∫ n

0

K2

(
x− (s+ kτ)

hn

)
λ(x)dx. (14)

By a change of variable and using (1) and (2), the r.h.s. of (14) can be written as

1

(hn ln(n
τ
))2

∞∑
k=1

1

k2

∫
R

K2

(
x

hn

)
λ(x+ s+ kτ)I(x+ s+ kτ ∈ [0, n])dx

=
1

(hn ln(n
τ
))2

∞∑
k=1

1

k2

∫
R

K2

(
x

hn

)
λc(x+ s)I(x+ s+ kτ ∈ [0, n])dx

+
1

(hn ln(n
τ
))2

∞∑
k=1

1

k2

∫
R

K2

(
x

hn

)
a(x+ s+ kτ)I(x+ s+ kτ ∈ [0, n])dx. (15)
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The first term on the r.h.s. of (15) is equal to

1

(hn ln(n
τ
))2

∫
R

K2

(
x

hn

)
(λc(x+ s)− λc(s) + λc(s))

∞∑
k=1

1

k2
I(x+ s+ kτ ∈ [0, n])dx

=
1

(hn ln(n
τ
))2

∫
R

K2

(
x

hn

)
(λc(x+ s)− λc(s))

∞∑
k=1

1

k2
I(x+ s+ kτ ∈ [0, n])dx

+
λc(s)

(hn ln(n
τ
))2

∫
R

K2

(
x

hn

) ∞∑
k=1

1

k2
I(x+ s+ kτ ∈ [0, n])dx. (16)

Note that
∞∑
k=1

1
k2

I(x+ s+ kτ ∈ [0, n]) = O(1), (17)

as n → ∞, uniformly in x ∈ [−hn, hn]. Since the kernel K is bounded and has
support in [−1, 1], by (3) and (17) we see that the first term on the r.h.s. of (16)
is of order o((lnn)−2(hn)−1)) = o(1), as n → ∞ (cf. (13)). A similar argument
shows that the second term on the r.h.s. of (16) is of order O((hn lnn)−2) = o(1),
as n→∞.

Next we consider the second term on the r.h.s. of (15). This term can be
written as

a

(hn ln(nτ ))2

∫
R

K2

(
x

hn

)
(x+ s)

∞∑
k=1

1
k2

I(x+ s+ kτ ∈ [0, n])dx

+
aτ

(hn ln(nτ ))2

∫
R

K2

(
x

hn

) ∞∑
k=1

1
k
I(x+ s+ kτ ∈ [0, n])dx. (18)

By (17), the first term of (18) reduces to

O(1)
a

(hn ln(nτ ))2

∫
R

K2

(
x

hn

)
(x+ s)dx

= O(1)
a

(ln(nτ ))2hn

∫
R

K2(x)(xhn + s)dx

= O
(

1
(ln(nτ ))2hn

)
= o(1), (19)

as n → ∞. By a similar argument and using (8), we see that the second term of
(18) is of order O((hn lnn)−1) = o(1), as n→∞ (cf. (13)). Hence we have proved
that the first term on the r.h.s. of (13) is o(1), as n→∞.

Next we consider the second term on the r.h.s. of (13). By (11) of Lemma 1,
this term can be computed as follows(
s+

n

ln(nτ )

)2

V ar (ân) =
(
s2 +

n2

(ln(nτ ))2
+

2sn
ln(nτ )

)(
2a
n2

+O
(

1
n3

))
= o(1), (20)
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as n→∞.
Finally, we consider the third term on the r.h.s. of (13). Since the first and

second terms on the r.h.s. of (13) are both of order o(1) as n → ∞, by Cauchy-
Schwarz, it easily seen that the third term on the r.h.s. of (13) is o(1) as n → ∞.
Therefore, all terms on the r.h.s. of (13) are indeed of order o(1) as n→∞, which
imply (2). This completes the proof of Lemma 3.
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