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INTERVAL OSCILLATION CRITERIA
FOR HIGHER ORDER NEUTRAL

NONLINEAR DIFFERENTIAL EQUATIONS

WITH DEVIATING ARGUMENTS

Run Xu, Fanwei Meng

Abstract. Some oscillation criteria for nth order neutral differential equations with
deviating arguments of the form

[r(t)|(y(t) + p(t)y(τ(t)))
(n−1)|α−1

(y(t) + p(t)y(τ(t)))
(n−1)

]
′
+

m∑
i=1

qi(t)fi(y(σi(t))) = 0

n even are established. New oscillation criteria are different from most known ones in

the sense that they based on a class of new function H(t, s) defined in the sequel. The

results are sharper than some previous results which can be seen by the examples at the

end of this paper.

1. INTRODUCTION

In this paper we consider the oscillation behavior of solutions of the n-th
order neutral differential equations of the form

[r(t)|(y(t) + p(t)y(τ(t)))(n−1)|α−1(y(t) + p(t)y(τ(t)))(n−1)]′

+
m∑
i=1

qi(t)fi(y(σi(t))) = 0, (1)
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where t ≥ t0, n ≥ 2 is even integer, α > 0 are constant. In this paper, we assume
that

(I1) p(t) ∈ C([t0,∞); [0, 1)), qi(t) ∈ C([t0,∞); [0,∞)), fi ∈ C(R;R), i = 1, 2, · · · ,m,
t ∈ [t0,∞).

(I2) r(t) ∈ C1([t0,∞); (0,∞)), r′(t) ≥ 0, R1(t) :=
∫ t
t0

ds

r
1
α (s)

→∞(t→∞).

(I3) fi(x)
|x|α−1x ≥ βi > 0 for x 6= 0, βi are constants, i = 1, 2, · · · ,m.

(I4) τ(t), σi(t) ∈ C1([t0,∞); [0,∞)), τ(t) ≤ t, σi(t) ≤ t, σ′(t) > 0 for t ≥ t0
and lim

t→∞
σi(t) = lim

t→∞
σ(t) = lim

t→∞
τ(t) = ∞, i = 1, 2, · · · ,m, where σ(t) ≤

min{σ1(t), σ2(t), · · · , σm(t), t2}.

By a solution of Eq. (1), we mean a function y(t) ∈ Cn−1([Tx,∞);R) for
some Tx ≥ t0 which has the property that

r(t)|(y(t) + p(t)y(τ(t)))(n−1)|α−1(y(t) + p(t)y(τ(t)))(n−1) ∈ C1([Tx,∞);R)

and satisfies Eq. (1) on [Tx,∞).
A nontrivial solution of Eq. (1) is called oscillatory if it has arbitrary large

zero. Otherwise, it is called nonoscillatory. Eq. (1) is called oscillatory if all of its
solutions are oscillatory.

If p(t) = 0, r(t) = 1,m = 1, then Eq. (1) becomes

(|x(n−1)(t)|α−1x(n−1)(t))′ + q(t)f(x(σ(t))) = 0 (2)

and the related equations have been studied by Agarwal et. al. [2], Xu et. al. [15].
Eq. (1) with n = 2, p(t) = 0,m = 1, namely, the equation

[r(t)|x′(t)|α−1x′(t)]′ + q(t)f(x(σ(t))) = 0 (3)

and related equations have been investigated by Dzurina and Stavroulakis [4], Sun
and Meng [14], Mirzov [10-12], Elbert [5,6] Agarwal et. al. [1], Chern et. al. [3],
Li [7], Zhuang and Li [19].

Recently, Xu and Meng [16-18] have studied the oscillation properties of Eq.
(1) for n = 2. Very recently Meng and Xu [8,9] have investigated the oscillation
properties for higher order neutral differential equations.

Motivated by the idea of Li [7], by using averaging functions and inequality,
in this paper we obtain several new interval criteria for oscillation, that is, criteria
are given by the behavior of Eq. (1) (or of r, p and qi) only on a sequence of
subintervals of [t,∞). Our results improve and extend the results of Li [7] and
Zhuang and Li [19]. In order to prove our Theorems, we use the function class X
to study the oscillatory of Eq. (1). We say that a function H = H(t, s) belongs to
the function class X, if H ∈ C(D;R+), where D = {(t, s) : t0 ≤ s ≤ t <∞}, which
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satisfies H(t, t) = 0, H(t, s) > 0 for t > s, and has partial derivative
∂H

∂s
and

∂H

∂t
on D such that

∂H

∂t
= h1(t, s)

√
H(t, s),

∂H

∂s
= −h2(t, s)

√
H(t, s), (4)

where h1(t, s), h2(t, s) are locally nonnegative continuous functions on D.

2. MAIN RESULTS

First, we give the following lemmas for our results.

Lemma 2.1. [13] Let u(t) ∈ Cn([t0,∞);R+). If u(n)(t) is eventually of one sign
for all large t, say t1 > t0, then there exist a tx > t0 and an integer l, 0 ≤ l ≤ n,
with n + l even for u(n)(t) ≥ 0 or n + l odd for u(n)(t) ≤ 0 such that l > 0
implies that u(k)(t) > 0 for t > tx, k = 0, 1, 2, · · · , l − 1, and l ≤ n− 1 implies that
(−1)l+ku(k)(t) > 0 for t > tx, k = l, l + 1, · · · , n− 1.

Lemma 2.2. [13] If the function u(t) is as in Lemma 2.1 and u(n−1)(t)u(n)(t) ≤ 0
for t > tx, then there exists a constant θ, 0 < θ < 1, such that

u(t) ≥ θ

(n− 1)!
tn−1u(n−1)(t) for all large t.

and

u′(
t

2
) ≥ θ

(n− 2)!
tn−2u(n−1)(t) for all large t.

Lemma 2.3. Suppose that y(t) is an eventually positive solution of Eq. (1), let

z(t) = y(t) + p(t)y(τ(t)), (5)

then there exists a number t1 ≥ t0 such that

z(t) > 0, z′(t) > 0, z(n−1)(t) > 0 and z(n)(t) ≤ 0, t ≥ t1. (6)

Proof. Since y(t) is an eventually positive solution of (1), from (I4), there exists a
number t1 ≥ t0 such that

y(t) > 0, y(τ(t)) > 0, y(σi(t)) > 0, t ≥ t1. (7)
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Noting that p(t) ≥ 0, we have z(t) > 0, t ≥ t1 and from (I1), (I3) we have

(r(t)|z(n−1)(t)|α−1z(n−1)(t))′ = −
m∑
i=1

qi(t)fi(y(σi(t))) ≤ 0, t ≥ t1.

So r(t)|z(n−1)(t)|α−1z(n−1)(t) is decreasing and z(n−1)(t) is eventually of one sign.
we claim that

z(n−1)(t) ≥ 0 for t ≥ t1. (8)

Otherwise, if there exist a t̃1 ≥ t1 such that z(n−1)(t̃1) < 0, then for all t ≥ t̃1,

r(t)|z(n−1)(t)|α−1z(n−1)(t) ≤ r(t̃1)|z(n−1)(t̃1)|α−1z(n−1)(t̃1) = −C(C > 0), (9)

then we have −z(n−1)(t) ≥
(
C

r(t)

) 1
α

, t ≥ t̃1, integrating the above inequality from

t̃1 to t, we have

z(n−2)(t) ≤ z(n−2)(t̃1)− C 1
α (R(t)−R(t̃1)).

Letting t → ∞, from (I2), we get lim
t→∞

z(n−2)(t) = −∞, which implies z(n−1)(t)

and z(n−2)(t) are negative for all large t, from Lemma 2.1, no two consecutive
derivatives can be eventually negative, for this would imply that lim

t→∞
z(t) = −∞,

a contradiction. Hence z(n−1)(t) ≥ 0 for t ≥ t1. from Eq. (1) and (I1), (I2) we have

αr(t)(z(n−1)(t))α−1z(n)(t) = [r(t)(z(n−1)(t))α]′ − r′(t)(z(n−1)(t))α

= −
m∑
i=1

qi(t)fi(y(σi(t)))− r′(t)(z(n−1)(t))α ≤ 0, t ≥ t1,

this implies that z(n)(t) ≤ 0, t ≥ t1. From Lemma 2.1 again (note n is even), we
have z′(t) > 0, t ≥ t1. This completes the proof.

Theorem 2.1. Assume that there exist a positive, nondecreasing function ρ(t) ∈
C1([t0,∞)) such that for any constant M > 0, some H ∈ X and for each suffi-
cient large T0 ≥ t0, there exist increasing divergent sequences of positive numbers
{an}, {bn}, {cn} with T0 ≤ an < cn < bn such that

1
H(cn, an)

∫ cn

an

H(s, an)ρ(s)C1(s)ds+
1

H(bn, cn)

∫ bn

cn

H(bn, s)ρ(s)C1(s)ds

>
1

H(cn, an)

∫ cn

an

[
h1(s, an) +

√
H(s, an)

ρ′(s)
ρ(s)

]α+1
C2(s)

H
α−1

2 (s, an)
ds

+
1

H(bn, cn)

∫ bn

cn

[
h2(bn, s) +

√
H(bn, s)

ρ′(s)
ρ(s)

]α+1
C2(s)

H
α−1

2 (bn, s)
ds, (10)
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where

C1(t) =
m∑
i=1

βiqi(t)(1− p(σi(t)))α, C2(t) =
r(t)ρ(t)

Mα(α+ 1)α+1(σ′(t)σn−2(t))α
,

then every solution of Eq. (1) is oscillatory.

Proof. Suppose the contrary, let y(t) is a nonoscillatory solution of Eq. (1), without
loss of generality we assume

y(t) > 0, y(τ(t)) > 0 for t ≥ t1 ≥ t0.

Then

z(t) = y(t) + p(t)y(τ(t)) > 0 for t ≥ t1 ≥ t0. (11)

From Lemma 2.3, there exists t2 ≥ t1 such that

z(t) > 0, z′(t) > 0, z(n−1)(t) > 0 and z(n)(t) ≤ 0, t ≥ t2. (12)

It is easy to check that we can apply Lemma 2.2 and conclude that there exist
0 < θ < 1 and t3 > t2 such that

z′(σ(t)) ≥ θ

(n− 2)!
(2σ(t))n−2z(n−1)(2σ(t))

≥ θ

(n− 2)!
2n−2σn−2(t)z(n−1)(t) = Mσn−2(t)z(n−1)(t), t ≥ t3,

(13)

where M =
θ

(n− 2)!
2n−2.

From (5), we have

y(t) = z(t)− p(t)y(τ(t)) ≥ z(t)− p(t)z(τ(t)) ≥ z(t)(1− p(t)), t ≥ t3. (14)

Since lim
t→∞

σ(t) =∞, there exists t4 ≥ t3 such that σ(t) ≥ t3, t ≥ t4, so

y(σ(t)) ≥ z(σ(t))(1− p(σ(t))), t ≥ t4. (15)

By (I3) and (15) we get

fi(y(σi(t))) ≥ βiyα(σi(t)) ≥ βizα(σi(t))(1− p(σi(t)))α, t ≥ t4. (16)

From (1), (16), we get
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0 = [r(t)(z(n−1)(t))α]′ +
m∑
i=1

βiqi(t)fi(y(σi(t)))

≥ [r(t)(z(n−1)(t))α]′ +
m∑
i=1

βiqi(t)zα(σi(t))(1− p(σi(t)))α

≥ [r(t)(z(n−1)(t))α]′ +
m∑
i=1

βiqi(t)zα(σ(t))(1− p(σi(t)))α, t ≥ t4. (17)

Let

w(t) = ρ(t)
r(t)(z(n−1)(t))α

zα(σ(t))
, t ≥ t4, (18)

clearly, w(t) > 0, from (13), (17) and (18) we get

w′(t) =
ρ′(t)
ρ(t)

w(t) + ρ(t)
[r(t)(z(n−1)(t))α]′

zα(σ(t))

− ρ(t)
r(t)(z(n−1)(t))ααzα−1(σ(t))z′(σ(t))σ′(t)

z2α(σ(t))

≤ ρ′(t)
ρ(t)

w(t)− ρ(t)
m∑
i=1

βiqi(t)(1− p(σi(t)))α

− ασ′(t)ρ(t)
r(t)(z(n−1)(t))αz′(σ(t))

zα+1(σ(t))
,

≤ ρ′(t)
ρ(t)

w(t)− ρ(t)
m∑
i=1

βiqi(t)(1− p(σi(t)))α

− αMσ′(t)σn−2(t)
w
α+1
α (t)

(r(t)ρ(t))
1
α

≤ ρ′(t)
ρ(t)

w(t)− ρ(t)C1(t)− αMσ′(t)σn−2(t)
w
α+1
α (t)

(r(t)ρ(t))
1
α

.

Then from above inequality we have

ρ(t)C1(t) ≤ −w′(t) +
ρ′(t)
ρ(t)

w(t)− αMσ′(t)σn−2(t)
w
α+1
α (t)

(r(t)ρ(t))
1
α

. (19)

Multiplying (19) by H(s, t), integrating it with respect s from t to cn and
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using (4) we get that∫ cn

t

H(s, t)ρ(s)C1(s)ds ≤ −
∫ cn

t

w′(s)H(s, t)ds+
∫ cn

t

H(s, t)
ρ′(s)
ρ(s)

w(s)ds

− αM
∫ cn

t

H(s, t)σ′(s)σn−2(s)
w
α+1
α (s)

(r(s)ρ(s))
1
α

ds

= −H(cn, t)w(cn) +
∫ cn

t

w(s)h1(s, t)
√
H(s, t)ds

+
∫ cn

t

H(s, t)
ρ′(s)
ρ(s)

w(s)ds

− αM
∫ cn

t

H(s, t)σ′(s)σn−2(s)
w
α+1
α (s)

(r(s)ρ(s))
1
α

ds

= −H(cn, t)w(cn)

+
∫ cn

t

[
h1(s, t)

√
H(s, t) +H(s, t)

ρ′(s)
ρ(s)

]
w(s)ds

− αM
∫ cn

t

H(s, t)σ′(s)σn−2(s)
w
α+1
α (s)

(r(s)ρ(s))
1
α

ds

Set

F (w) =
[
h1

√
H +H

ρ′

ρ

]
w − αMHσ′σn−2 w

α+1
α

(rρ)
1
α

,

by simple calculate, we can get that when

w =

(
h1

√
H +H

ρ′

ρ

)α
rρ

[M(α+ 1)Hσ′σn−2]α
,

F (w) has the maximum value(
h1

√
H +H

ρ′

ρ

)α+1

rρ

[M(α+ 1)Hσ′σn−2]α(α+ 1)
,

that is

F (w) ≤ Fmax(w) =
(
h1 +

√
H
ρ′

ρ

)α+1

H
1−α

2 C2(s),

from above inequality, we get∫ cn

t

H(s, t)ρ(s)C1(s)ds ≤ −H(cn, t)w(cn)

+
∫ cn

t

(
h1(s, t) +

√
H(s, t)

ρ′(s)
ρ(s)

)α+1

H
1−α

2 (s, t)C2(s)ds.
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Letting t→ a+
n in the above, we obtain

1
H(cn, an)

∫ cn

an

H(s, an)ρ(s)C1(s)ds ≤ −w(cn)

+
1

H(cn, an)

∫ cn

an

[
h1(s, an) +

√
H(s, an)

ρ′(s)
ρ(s)

]α+1
C2(s)

H
α−1

2 (s, an)
ds.

(20)

Multiplying (19) by H(t, s), integrating it with respect s from cn to t, using (4)
and by simple calculate we get that

∫ t

cn

H(t, s)ρ(s)C1(s)ds ≤ −
∫ t

cn

w′(s)H(t, s)ds+
∫ t

cn

H(t, s)
ρ′(s)
ρ(s)

w(s)ds

− αM
∫ t

cn

H(t, s)σ′(s)σn−2(s)
w
α+1
α (s)

(r(s)ρ(s))
1
α

ds

= H(t, cn)w(cn)−
∫ t

cn

w(s)h2(t, s)
√
H(t, s)ds

+
∫ t

cn

H(t, s)
ρ′(s)
ρ(s)

w(s)ds

− αM
∫ t

cn

H(t, s)σ′(s)σn−2(s)
w
α+1
α (s)

(r(s)ρ(s))
1
α

ds

≤ H(t, cn)w(cn)

+
∫ t

cn

[
h2(t, s)

√
H(t, s) +H(t, s)

ρ′(s)
ρ(s)

]
w(s)ds

− αM
∫ t

cn

H(t, s)σ′(s)σn−2(s)
w
α+1
α (s)

(r(s)ρ(s))
1
α

ds

≤ H(t, cn)w(cn)

+
∫ t

cn

[
h2(t, s) +

√
H(t, s)

ρ′(s)
ρ(s)

]α+1

H
1−α

2 (t, s)C2(s)ds.

Letting t→ b+n in the above, we obtain

1
H(bn, cn)

∫ bn

cn

H(bn, s)ρ(s)C1(s)ds ≤ w(cn)

+
1

H(bn, cn)

∫ bn

cn

[
h2(bn, s) +

√
H(bn, s)

ρ′(s)
ρ(s)

]α+1
C2(s)

H
α−1

2 (bn, s)
ds. (21)
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Adding (20) and (21) we have the inequality

1
H(cn, an)

∫ cn

an

H(s, an)ρ(s)C1(s)ds+
1

H(bn, cn)

∫ bn

cn

H(bn, s)ρ(s)C1(s)ds

≤ 1
H(cn, an)

∫ cn

an

[
h1(s, an) +

√
H(s, an)

ρ′(s)
ρ(s)

]α+1
C2(s)

H
α−1

2 (s, an)
ds

+
1

H(bn, cn)

∫ bn

cn

[
h2(bn, s) +

√
H(bn, s)

ρ′(s)
ρ(s)

]α+1
C2(s)

H
α−1

2 (bn, s)
ds, t ≥ t4.

(22)

Which contradict the assumption (10). Thus, the claim holds, i.e., no nontrivial
solution of Eq. (1) can be eventually positive. Therefore, every solution of Eq. (1)
is oscillatory.

We can easily see that the following result is true.

Theorem 2.2. If there exists a positive, nondecreasing function ρ(t) ∈ C1([t0,∞)),
such that for any constant M > 0,

lim sup
t→∞

∫ t

l

[
H(s, l)ρ(s)C1(s)−

(
h1(s, l) +

√
H(s, l)

ρ′(s)

ρ(s)

)α+1
C2(s)

H
α−1

2 (s, l)

]
ds > 0

(23)

and

lim sup
t→∞

∫ t

l

[
H(t, s)ρ(s)C1(s)−

(
h2(t, s) +

√
H(t, s)

ρ′(s)

ρ(s)

)α+1
C2(s)

H
α−1

2 (t, s)

]
ds > 0

(24)

hold, where C1(t), C2(t) is defined as in Theorem 2.1, then every solution of Eq.
(1) is oscillatory.

Proof. For any T ≥ t0, let an = T, in (23) we choose l = an, then there exist
cn > an such that∫ cn

an

[
H(s, an)ρ(s)C1(s)−

(
h1(s, an) +

√
H(s, an)

ρ′(s)

ρ(s)

)α+1
C2(s)

H
α−1

2 (s, an)

]
ds > 0.

(25)

In (24) we choose l = cn, then there exist bn > cn such that∫ bn

cn

[
H(bn, s)ρ(s)C1(s)−

(
h2(bn, s) +

√
H(bn, s)

ρ′(s)

ρ(s)

)α+1
C2(s)

H
α−1

2 (bn, s)

]
ds > 0.

(26)
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Combining (25) and (26) we obtain (10). The conclusion thus comes from Theorem
2.1. the proof is complete.

Remark If we take p(t) = 0, n = 2,m = 1, f(x) = |x|α−1x, then Theorem 2.1
and Theorem 2.2 reduce to Theorem 2.1 and Theorem 2.2 of Li [7], respectively.
If r(t) = 1, n = 2, α = 1, then Theorem 2.1 and Theorem 2.2 reduce to Theorem
2.1 and Theorem 2.2 of Zhuang and Li [19], respectively. For the case where
H := H(t − s) ∈ X, we have h1(t − s) = h2(t − s) and denote them by h(t − s).
The subclass of X containing such H(t − s) is denoted by X1, applying Theorem
2.1 to X1 we obtain the following theorem.

Theorem 2.3. If for each T ≥ t0 and any constant M > 0, there exists a positive,
nondecreasing function ρ(t) ∈ C1([t0,∞)), H ∈ X1 and an, cn ∈ R such that T ≤
an < cn and∫ cn

an

H(s− an) [ρ(s)C1(s) + ρ(2cn − s)C1(2cn − s)] ds

>

∫ cn

an

[
h(s− an) +

√
H(s− an)

ρ′(s)
ρ(s)

]α+1
C2(s)

H
α−1

2 (s− an)
ds

+
∫ cn

an

[
h(s− an) +

√
H(s− an)

ρ′(2cn − s)
ρ(2cn − s)

]α+1
C2(2cn − s)
H

α−1
2 (s− an)

ds

(27)

hold, where C1(t), C2(t) is defined as in Theorem 2.1, then Eq. (1) is oscillatory.

Proof. Let bn = 2cn − an, then H(bn − cn) = H(cn − an) = H(
bn − an

2
) and for

any g ∈ L[an, bn],we have
∫ bn
cn
g(s)ds =

∫ cn
an
g(2cn − s)ds, hence,∫ bn

cn

H(bn − s)ρ(s)C1(s)ds =
∫ cn

an

H(s− an)ρ(2cn − s)C1(2cn − s)ds,

∫ bn

cn

(
h2(bn − s) +

√
H(bn − s)

ρ′(s)
ρ(s)

)α+1
C2(s)

H
α−1

2 (bn − s)
ds

=
∫ cn

an

(
h(s− an) +

√
H(s− an)

ρ′(2cn − s)
ρ(2cn − s)

)α+1
C2(2cn − s)
H

α−1
2 (s− an)

ds.

So that (27) holds implies that (10) holds for H ∈ X1, and therefore, Eq. (1) is
oscillatory by Theorem 2.1.

From above oscillation criteria, we can obtain different sufficient conditions
for oscillation of all solutions of Eq. (1) by different choices of H(t, s). Now we
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choose H(t, s) = (t− s)λ, t ≥ s ≥ t0, where λ > α is a constant. Then H ∈ X1 and
h(t−s) = λ(t−s)λ2−1, based on the above results we obtain the following corollary.

Corollary 2.1. Every solution of Eq. (1) is oscillatory provided that for any
constant M > 0, there exist a positive, nondecreasing function ρ(t) ∈ C1([t0,∞))
such that for each l ≥ t0 and for some λ > α, the following two inequalities hold:

lim sup
t→∞

1

tλ−α

∫ t

l

[
(s− l)λρ(s)C1(s)− C2(s)(s− l)λ−α−1

(
λ+

ρ′(s)

ρ(s)
(s− l)

)α+1
]
ds > 0,

lim sup
t→∞

1

tλ−α

∫ t

l

[
(t− s)λρ(s)C1(s)− C2(s)(t− s)λ−α−1

(
λ+

ρ′(s)

ρ(s)
(t− s)

)α+1
]
ds > 0.

where C1(t), C2(t) is defined as in Theorem 2.1.

Define

R(t) =
∫ t

l

ds

r
1
α (s)

, t ≥ l ≥ t0

and let
H(t, s) = [R(t)−R(s)]λ, t ≥ t0,

where λ > α is constant.
If we take ρ(t) = 1, then by Theorem 2.2 we have the following important

oscillation criterion.

Theorem 2.1. Assume that lim
t→∞

R(t) = ∞, then every solution of Eq.(1.1) is
oscillatory provided that for any constant M > 0, there exist a positive, nonde-
creasing function ρ(t) ∈ C1([t0,∞)) such that for each l ≥ t0 and for some λ > α,
the following two inequalities hold:

lim sup
t→∞

1

Rλ−α(t)

∫ t

l

[(R(s)−R(l)]λC1(s)(σ′(s)σn−2(s))αds >
λα+1

Mα(α+ 1)α+1(λ− α)
,

(28)

and

lim sup
t→∞

1

Rλ−α(t)

∫ t

l

[(R(t)−R(s)]λC1(s)(σ′(s)σn−2(s))αds >
λα+1

Mα(α+ 1)α+1(λ− α)
,

(29)

where C1(t), C2(t) is defined as in Theorem 2.1.

Proof. By assumption, we have

h1(t, s) = h2(t, s) = λ[(R(t)−R(s)]
λ−2

2
1

r
1
α (t)

,
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noting that∫ t

l

h1(s, l)α+1C2(s)

H
α−1

2 (s, l)
(σ′(s)σn−2(s))αds =

∫ t

l

λα+1[(R(s)−R(l)]λ−α−1r(s)

r
α+1
α (s)Mα(α+ 1)α+1

=
λα+1[(R(t)−R(l)]λ−α

(λ− α)Mα(α+ 1)α+1
,

and ∫ t

l

h2(t, s)α+1C2(s)

H
α−1

2 (t, s)
(σ′(s)σn−2(s))αds =

∫ t

l

λα+1[(R(t)−R(s)]λ−α−1r(s)

r
α+1
α (s)Mα(α+ 1)α+1

=
λα+1[(R(t)−R(l)]λ−α

(λ− α)Mα(α+ 1)α+1
,

in view of lim
t→∞

R(t) =∞, we have

lim
t→∞

1
Rλ−α(t)

∫ t

l

h1(s, l)α+1C2(s)

H
α−1

2 (s, l)
(σ′(s)σn−2(s))αds =

λα+1

Mα(α+ 1)α+1(λ− α)
,

(30)

and

lim
t→∞

1
Rλ−α(t)

∫ t

l

h2(t, s)α+1C2(s)

H
α−1

2 (t, s)
(σ′(s)σn−2(s))αds =

λα+1

Mα(α+ 1)α+1(λ− α)
.

(31)

From (28) and (30), we have that

lim sup
t→∞

1

Rλ−α(t)

∫ t

l

[
(R(s)−R(l))λC1(s)− h1(s, l)α+1C2(s)

H
α−1

2 (s, l)

]
(σ′(s)σn−2(s))αds =

lim sup
t→∞

1

Rλ−α(t)

∫ t

l

(R(s)−R(l))λC1(s)(σ′(s)σn−2(s))αds− λα+1

Mα(α+ 1)α+1(λ− α)
> 0,

(32)

i.e., (23) holds. Similarly, (29) and (31) imply that (24) holds. By Theorem 2.2,
every solution of Eq. (1) is oscillatory.

This complete the proof.

Example Consider the following equation :

[|(x(t) + (1− e−µt)x(t− π))(n−1)|α−1(x(t) + (1− e−µt)x(t− π))(n−1)]′

+
β

tα(n−1)+1
eγαµt|x(γt)|α−1x(γt) = 0, t ≥ 1, (33)
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where n ≥ 2 is even and α > 0, β > 0, µ ≥ 0, 0 < γ ≤ 1.

Here p(t) = 1− e−µt, q(t) =
βeγαµt

tα(n−1)+1
,m = 1, σ1(t) = γt.

Then R(t) =
∫ t

1
dt = t− 1, R′(t) = 1, lim

t→∞
R(t) =∞, σ′1(t) = γ, if 0 < γ ≤ 1

2
,

then σ(t) = γt. if
1
2
< γ ≤ 1, then σ(t) =

t

2
.

For ρ(t) ≡ 1, λ > α. If 0 < γ ≤ 1
2
, then σ(t) = σ1(t) = γt,

lim
t→∞

1
Rλ−α(t)

∫ t

l

[(R(s)−R(l)]λC1(s)(σ′(s)σn−2(s))αds

= lim
t→∞

1
(t− 1)λ−α

∫ t

l

(s− l)λ βeλαµs

sα(n−1)+1
(1− p(γs))α(γ(γs)n−2)αds

= lim
t→∞

1
(t− 1)λ−α

∫ t

l

(s− l)λ βγ
α(n−1)

sα+1
ds

= lim
t→∞

(t− l)λ

(λ− α)(t− 1)λ−α−1

1
tα+1

βγα(n−1) =
βγα(n−1)

λ− α
. (34)

Next, we will prove that∫ t

l

[(R(t)−R(s)]λC1(s)(σ′(s)σn−2(s))αds

≥
∫ t

l

[(R(s)−R(l)]λC1(s)(σ′(s)σn−2(s))αds. (35)

Let

G(t) =
∫ t

l

{[(R(t)−R(s)]λ − [(R(s)−R(l)]λ}C1(s)(σ′(s)σn−2(s))αds

=
∫ t

l

{(t− s)λ − (s− l)λ} β

sα(n−1)+1eµαγs
γα(n−1)sα(n−2)ds

= βγα(n−1)

∫ t

l

{(t− s)λ − (s− l)λ} 1
sα+1eµαγs

ds,

then G(l) = 0, and for t ≥ l,

G′(t) = βγα(n−1)

∫ t

l

λ(t− s)λ−1 1
sα+1eµαγs

ds− (t− l)λ 1
tα+1eµαγt

≥ βγα(n−1) 1
tα+1eµαγt

[∫ t

l

λ(t− s)λ−1ds− (t− l)λ
]

=
βγα(n−1)

tα+1eµαγt
[
−(t− s)λ|tl − (t− l)λ

]
= 0.
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Hence G(t) ≥ G(l) = 0 for t ≥ l, i.e., (2.31) holds. By (34) and (35), we have

lim
t→∞

1
(t− 1)λ−α

∫ t

l

[(R(t)−R(s)]λC1(s)(σ′(s)σn−2(s))αds >
βγα(n−1)

λ− α
.

Then for β >
(

α

α+ 1
)α+1

Mαγα(n−1)
, there exists λ > α such that

Mαγα(n−1)β

λ− α
>

λα+1

(λ− α)(α+ 1)α+1
>

αα+1

(λ− α)(α+ 1)α+1
,

this means that
γα(n−1)β

λ− α
>

λα+1

Mα(λ− α)(α+ 1)α+1
,

so that (28) and (29) hold for the same λ. Applying Theorem 2.4, we fined (33) is

oscillatory for β >
(

α

α+ 1
)α+1

Mαγα(n−1)
. If

1
2
< γ ≤ 1, then σ(t) =

t

2
, use the same method

above, we can get (33) is oscillatory for β >
(

α

α+ 1
)α+1

Mα(
1
2

)α(n−1)

. However, the main

results of [2, 15] fail to apply to (33), since µ 6= 0.
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