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ON THE OPTIMAL CONTROL

COMPUTATION OF LINEAR SYSTEMS

H. Tjahjana, I. Pranoto, H. Muhammad and J. Naiborhu

Abstract. In this paper, we consider a numerical method for designing optimal control

on Linear Quadratic Regulator (LQR) problem. In the optimal control design process

through Pontryagin Maximum Principle (PMP), we obtain a system of differential equa-

tions in state and costate variables. This system lacks of initial condition on the adjoint

variables, and this situation creates classic difficulty for solving optimal control problems.

This paper proposes a constructive method to approximate the initial condition of the

adjoint system.

1. INTRODUCTION

Let a linear control system be ẋ = Ax + Bu. We want to drive the state x
from a given initial condition to a given final condition in a finite time and minimize
a cost functional. In solving this optimal control problem, Pontryagin’s Maximum
Principle is applied. This approach converses the optimal control problem into
solving a Hamiltonian system consisting of a pair of linear differential equations.
For solving this system of equations, one must solve a two point boundary value
problem of the first equation. On the other hand, the second equation lacks of
the initial condition. This is a classic problem in the optimal control design. In
order to overcome this, we propose a constructive method to approximate the initial
condition of the adjoint variable. This method is quite general in the sense that it
can be applied to any kind of linear control systems.

There have been several different methods proposed by other researchers for
overcoming the classical difficulty regarding the initial conditions of the adjoint
variables. Scheeres et al [4] use generating functions in their work. In Twigg et
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al [5], they use genetic algorithm for computing the optimal controls. Another
approach is proposed by Kelly et al [2]. In their paper, they use polynomial spirals.

2. LINEAR QUADRATIC REGULATOR PROBLEM

We consider a Linear Quadratic Regular (LQR) problem as follows

ẋ = Ax + Bu, (1)

where x ∈ Rn and u ∈ Rm. The initial and final conditions are

x(0) = m, x(T ) = s. (2)

The problem discussed here is to determine a control u driving the the state x from
m to s in time T . At the same time, the control u must minimize the quadratic
functional cost

J =
1
2

∫ T

0

δ‖u(t)‖2 dt,

where δ is some positive constant. The integrand represents the cost or energy of
the controls used. In (2), the symbol x(t) denotes the state at time t, the symbol
m denotes the initial state, and s denotes the final state.

In order to make the discussion simpler, we consider a slightly different func-
tional, namely it is the negative of the original J . So, we want to maximize a
functional

J ′ = −1
2

∫ T

0

δ‖u(t)‖2 dt.

Thus, instead of minimizing J , we will maximize J ′.
We assume that the control system is controllable. Because of the linearity

of the system, the controllability implies strong controllability. This means that
there exists a control u such that (2) is satisfied for however small the time T
is. Therefore, there is a u that makes J ′ finite. It implies that there exists a u
maximizing J ′.

The Hamiltonian function derived from the optimal control problem above is

H = pT (Ax + Bu)− 1
2

δ p0 ‖u‖2

Using the Hamiltonian function above, one can derive the following Hamiltonian
system

∂H

∂p
= ẋ = Ax + Bu (3)

∂H

∂x
= −ṗ = AT p (4)



On the Optimal Control Computation 15

By the Pontryagin Maximum Principle, the extremal trajectory must satisfy

∂H

∂u
= 0 = BT p− δp0u (5)

and p0 must be a positive constant. One may consult Hocking [1], for more detailed
explanation. We assume p0 = 1. If one substitutes the control u from (5) into (3),
we obtain a system of differential equations as follows

ẋ = A x +
1

δp0
BBT p (6)

−ṗ = AT p (7)

Using (7), one obtains
p(t) = exp(−AT t)k

for some k.
The system consisting a pair of differential equations (6-7) must be solved

to find the optimal trajectory of x. The first equation (6) has initial and final
conditions that must be satisfied. However, the initial condition of the second
equation (7) is not known. This is a classic difficulty in the optimal control theory.

3. Steepest Descent Method

Because the initial condition of the second equation (7) is not known, we
create a method for constructing an approximation of the suitable initial condition.

If we let p(0) = q for some q ∈ Rn, we obtain

p(t) = exp(−AT t)q. (8)

Next, if we use (8) in (6), we obtain

ẋ = Ax +
1
δ
BBT exp(−AT t)q.

Therefore, the final state x(T ) with p(0) = q is

x(T ;q) = exp(A T )

(
x(0) +

1
δ

∫ T

0

exp(−A t)BBT exp(−AT t)dt q

)
.

Of course, the trajectory x in general will not end at s. In other words, in general
x(T ) 6= s.

To guess a suitable q that makes x start exactly from m and end exactly at s
in time T is not easy. Thus, we propose an algorithm for approximating a suitable
q.
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Instead of finding the precise q above, we want to find q that minimizes the
functional

F (q) = ‖x(T )− s‖2 (9)

where x(T ) is the evaluation of x at time T and (x,p) is the solution of differential
equation system (6)- (7) with initial conditions (x(0),p(0)) = (m,q). We minimize
the functional F by employing the Steepest Descent Method.

The algorithm can be described as follows. First, we pick any positive num-
bers ε, α and any vector q0 ∈ Rn. Using these and the initial condition x(0) = m,
one can solve the initial value problem

ẋ = A x +
1

δp0
B BT p

−ṗ = AT p,

where (x(0),p(0)) = (m,q0). In particular, one can compute the final state x(T )
for this particular q0. Moreover, using this x(T ), one can compute (9) to determine
the scalar value F (q0). Next, we want to find a new q1 that will make F (q1) smaller
than F (q0).

The partial derivatives of F (p1, p2, · · · , pn) with respect to pi at q0 is approx-
imated by

∂F

∂p1
(q0) ≈ D1 =

F (q0 + ε(1, 0, 0, · · · , 0, 0))− F (q0)
ε

∂F

∂p2
(q0) ≈ D2 =

F (q0 + ε(0, 1, 0, · · · , 0, 0))− F (q0)
ε

...
...

∂F

∂pn
(q0) ≈ Dn =

F (q0 + ε(0, 0, 0, · · · , 0, 1))− F (q0)
ε

.

Thus, the gradient of F at q0 is approximated by

∇F (q0) =
(

∂F

∂p1
(q0),

∂F

∂p2
(q0), · · · , ∂F

∂pn
(q0)

)
≈ (D1, D2, · · · , Dn) (10)

Next, we set

E1 = F
(
q0 − α(D1, D2, · · · , Dn)

)

E2 = F
(
q0 − (

α

2
)(D1, D2, · · · , Dn)

)
.

If E1 < E2, we let q1 = q0 − α(D1, D2, · · · , Dn). Otherwise, we let q1 = q0 −
α
2 (D1, D2, · · · , Dn) and replace ε as ε

2 and α as α
2 . We can start again using this q1

in place of q0 to determine q2. If we continue this process, we will obtain a vector
sequence {qm}∞m=0.
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The next task is to verify the convergence of the proposed algorithm. First,
we prove the following theorem

Theorem 3.1. The functional F defined in (9) is strictly convex as a function of
q.

Proof. Suppose r = exp(A T )x(0) and

Q = exp(A T )
1
δ

∫ T

0

exp(−A t)BBT exp(−AT t)dt.

So, the final state x(T ) with the initial condition of the adjoint variable equals q
is x(T ;q) = r + Qq. Thus, it is an affine function with respect to q.

Let q be λv + (1− λ)w, where v,w ∈ R2, v 6= w, and λ satisfies 0 < λ < 1.
Thus,

(F ◦ x)(λv + (1− λ)w) = F (x(λv + (1− λ)w))
= F (r + Q(λv + (1− λ)w))
= ‖r + Q(λv + (1− λ)w)− s‖2
= ‖r + Qλv + Q(1− λ)w)− s‖2
= ‖r + λQv + (1− λ)Qw)− s‖2
< λ‖r + Qv − s‖2 + (1− λ)‖r + Qw − s‖2
= λF (r + Qv) + (1− λ)F (r + Qw)
= λF (x(v)) + (1− λ)F (x(w))
= λF ◦ x(v) + (1− λ)F ◦ x(w)

Therefore,

(F ◦ x)(λv + (1− λ)w) < λF ◦ x(v) + (1− λ)F ◦ x(w)

and we conclude that F is strictly convex with respect to q.

Next, using any initial condition of F , we need the guarantee that the steep-
est descent sequence is convergent to the unique global minimizer of F . So, the
following lemma is needed.

Lemma 2.1. If F is a strictly convex, coercive function with continuous first partial
derivatives on Rn, then for any initial point x(0), the steepest descent sequence with
initial point x(0) converges to the unique global minimizer of F .

Interested readers may find the proof in [3].

Now, we are ready to state the main result of this paper in the next theorem.
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Theorem 3.2. The sequence {qm} converges to a suitable initial condition p that
makes the final state x(T ) equal s.
Proof.By Theorem 3.1, the functional F ◦ x is strictly convex with respect to q.
Obviously, F ◦ x is a coercive function, again with respect to q. By Lemma 3.1,
we conclude that the steepest descent sequence {qm} converges to the global mini-
mizer of F ◦x. This means that the sequence {x(T ;qm)} converges to s as m goes
to infinity. At the same time, the sequence {qm} converges to a suitable initial
condition of the adjoint variable that makes the state x reach s at time T .

In the next section, we give an example to validate the proposed method. It
shows that the numerical results obtained by the proposed method are close to the
theoretical solution.

4. AN EXAMPLE

Consider the following linear system(
ẏ1

ẏ2

)
=

( −1 1
0 −1

)(
y1

y2

)
+

(
2
3

)
v,

where the initial and final conditions are given as follows(
y1(0)
y2(0)

)
=

(
1
2

) (
y1(1)
y2(1)

)
=

(
3/e
2/e

)
≈

(
1.103638324
0.7357588824

)
. (11)

The cost functional that must be maximized is

J = −1
2

∫ 1

0

v2 dt.

When v ≡ 0, the final state at t = 1 is(
y1(1)
y2(1)

)
= e−1

(
3
2

)
.

Thus, v ≡ 0 must be the exact optimal control. The Hamiltonian function of the
above system is

H = p1(−y1 + y2 + 2v1) + p2(−y2 + 3v1)− 1
2
p0v

2

The Hamiltonian system is
∂H

∂p1
= ẏ1 = −y1 + y2 + 2v

∂H

∂p2
= ẏ2 = −y2 + 3v

∂H

∂y1
= −ṗ1 = −p1

∂H

∂y2
= −ṗ2 = p1 − p2
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By the Pontryagin Maximum Principle, a necessary condition that makes the sys-
tem optimal is

∂H

∂v
= 0 = 2p1 + 3p2 − p0v.

Thus, one obtains

v =
2p1 + 3p2

p0
.

So, now we have to solve the differential equation system as follows

ẏ1 = −y1 + y2 +
4p1 + 6p2

p0

ẏ2 = −y2 +
6p1 + 9p2

p0

−ṗ1 = −p1

−ṗ2 = p1 − p2

Since the exact optimal control of the above case is the zero control, it means that
the exact values of p1(0) and p2(0) must be zero. We show that the proposed
numerical method approaches these values as well.

We apply the proposed method to the above system. First, we let the error
tolerance be 10−3. If we set an initial guess

(
p1(0)
p2(0)

)
=

(
1
2

)

and ε = α = 1, after 1430 iterations, we obtain
(

p1(0)
p2(0)

)
=

(
0.061461356213579498597
−0.0028077374883373888168

)
.

Using this
(

p1(0)
p2(0)

)
, one obtains

(
y1(1)
y2(1)

)
=

(
1.1251491341904354839
0.71265956095991731193

)
.

This is close to the terminal condition in (11). Second, we use a smaller error
tolerance. Let the error tolerance be 10−6. Using the same initial guess, after 1736
iterations, we obtain

(
p1(0)
p2(0)

)
=

(
0.0019435296484999768101

−0.000088768635445718336227

)
.

If we plug this
(

p1(0)
p2(0)

)
into (12) one obtains

(
y1(1)
y2(1)

)
=

(
1.1043188037904674930
0.73502860475158591577

)
.
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This is closer to the terminal condition (11). Thus, we see that the smaller the

error tolerance, the closer the
(

p1(0)
p2(0)

)
to

(
0
0

)
. These results verify that the

proposed method and theory lead to the exact optimal control.
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