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Abstract. Let (M, g) be a Finsler manifold and TM0 its slit tangent bundle with

the complete lift metric g̃. In this paper, we prove that every infinitesimal complete

lift projective transformation on (TM0, g̃), is an infinitesimal affine transformation.

Moreover, if (M, g) is a Landsberg manifold, then there is a one-to-one correspon-

dence between infinitesimal complete lift projective transformations on (TM0, g̃)

and infinitesimal affine transformations on (M, g).
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Infinitesimal projective transformation.

Abstrak. Misalkan (M, g) adalah manifold Finsler dan TM0 adalah bundel tan-

gen slit-nya dengan metrik lift lengkap g̃. Pada makalah ini, kami membuktikan

bahwa setiap transformasi projektif lift lengkap infinitesimal pada (TM0, g̃), adalah

transformasi afin infinitesimal. Lebih jauh, jika (M, g) adalah manifold Landsberg,

maka terdapat korespondensi satu-satu antara transformasi projektif lift lengkap

infinitesimal pada (TM0, g̃) dengan transformasi afin infinitesimal pada (M, g).

Kata kunci: Manifold Finsler, Metric lift lengkap, Tangent bundle, Infinitesimal
projective transformation.
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1. Introduction

Let (M, g) be a Riemannian manifold and φ a transformation on M . Then,
φ is called a projective transformation if it preserves the geodesics as point sets.
Also, an affine transformation may be characterized as a projective transformation
which preserves geodesics with the affine parameter.

Let V be a vector field on M and {φt} the local one-parameter group gener-
ated by V . Then, V is called an infinitesimal projective (affine) transformation on
M if every φt is a projective (affine) transformation.

Let φ̃ be a transformation of TM , the tangent bundle of M ; then, φ̃ is
called a fiber-preserving transformation if it preserves the fibers. A vector field X̃
on TM with the local one-parameter group {φ̃t} is called an infinitesimal fiber-

preserving transformation on TM if each φ̃t is a fiber-preserving transformation.
Infinitesimal fiber-preserving transformations is an important class of infinitesimal
transformations on TM which include infinitesimal complete lift transformations
as a special subclass(refer to subsection 2.2 or [4]).

It is well-known that there are some lift metrics on TM as follows: complete
lift metric or g2, diagonal lift metric or Sasaki metric or g1 + g3, lift metric I+II
or g1 + g2 and lift metic II+III or g2 + g3, where g1 := gijdx

idxj , g2 := 2gijdx
iδyj

and g3 := gijδy
iδyj are all bilinear differential forms defined globally on TM . For

more details one can refer to [17].

The problems of exsisting special infinitesimal transformations on the tan-
gent bundle of a Riemannian manifold with some lift metrics are considered by
several authors, e.g. [5, 6, 7, 8, 9] and [12, 13, 14, 15]. The study shows that the
special infinitesiaml transformations on TM might lead to some global results. For
example, in [7] and [15], it is proved that if TM with the complete lift metric or the
lift metric I+II admits an essential infinitesimal conformal1 transformation, then
M is isomorphic to the standard sphere. Also, it is proved in [12], that if TM with
the complete lift metric admits a non-affine infinitesimal projective transformation,
then M is locally flat. Therefore, it is meaningful to the study of the infinitesimal
transformations on the tangent bundle TM .

Yamauchi in [14], proved the following theorem:

Theorem A: Let M be a non-Euclidean complete n-dimensional Riemannian
manifold, and let TM be its tangent bundle with the complete lift metric. Then,
every infinitesimal fiber-preserving projective transformation on TM is an affine
one and it naturally induced an infinitesimal affine transformation on M .

Special infinitesimal transformations on the tangent bundle of a Finsler man-
ifold are considered by many authors, e.g. [1, 2, 4, 10].

1A vector field X̃ on (TM, g̃) is called an essential infinitesimal conformal transformation if there

exsits a scalar function Ω on TM such that Ω depends only yi with respect to the induced
coordinate (xi, yi) on TM and £X̃ g̃ = 2Ωg̃,[16].
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In this paper, the infinitesimal fiber-preserving projective transformations on
the tangent bundle of a Finsler manifold with the complete lift metric are consid-
ered. Then, as a special case, the infinitesimal complete lift projective transforma-
tions are studied and the following theorem is proved.

Theorem 1.1. Let (M, g) be a C∞ connected Finsler manifold and TM0 its slit
tangent bundle with the complete lift metric g̃. Then, every infinitesimal complete
lift projective transformation on (TM0, g̃) is affine and it naturally induced an in-
finitesimal affine transformation on (M, g).

Thus, Theorem A is true for the Finsler manifold and the infinitesimal com-
plete lift transformations. From Theorem 1.1, the following corollary can be imme-
diately found.

Corollary 1.2. The Lie algebra of complete lift projective vector field on (TM0, g̃)
is reduced to an affine one.

The Landsberg manifolds form an important class of the Finsler manifolds
which include the Berwald manifolds. In the next theorem, it is shown that the
inverse of Theorem 1.1 is true for the Landsberg manifolds.

Theorem 1.3. Let (M, g) be an n-dimensional Landsberg manifold and TM0 its
slit tangent bundle with a complete lift metric g̃. Then, every infinitesimal complete
lift transformation V c on (TM0, g̃) is projective if and only if V is an infinitesimal
affine transformation on (M, g).

2. Preliminaries

Let M be a real n-dimensional C∞ manifold and TM its tangent bundle.
The elements of TM are denoted by (x, y) with y ∈ TxM . Also TM0 = TM \ {0}
be the slit tangent bundle of M . The natural projection π : TM0 → M is given
by π(x, y) := x. A Finsler structure on M is a function of F : TM → [0,∞) with
the following properties; (i) F is C∞ on TM0, (ii) F is positively 1-homogeneous
on the fibers of tangent bundle TM and (iii) the Hessian g of F 2 with elements
gij(x, y) := 1

2 [F 2(x, y)]yiyj is positive-definite. In the sequel of this paper, a Finsler
manifold with a Finsler structure F will be denoted by (M, g) instead of (M,F ).

Let VvTM := kerπv
∗ be the set of the vectors tangent to the fiber through v ∈

TM0. Then, the vertical vector bundle onM is defined by V TM :=
⋃

v∈TM0
VvTM .

A non-linear connection or a horizontal distribution on TM0 is a complementary
distribution HTM for V TM on TTM0. Therefore, by using a non-linear connec-
tion, the following decomposition is resulted:

TTM0 = V TM ⊕HTM, (1)

where HTM is a vector bundle completely determined by the non-linear differ-
entiable functions N i

j(x, y) on TM , which is called coefficients of the non-linear
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connection HTM . The pair (HTM,∇) is called a Finsler connection on the man-
ifold M , where ∇ a linear connection to V TM . Indeed, a Finsler connection is
a triple (N i

j , F
i
jk, C

i
jk) where N i

j are the coefficients of a nonlinear connection,

F i
jk and Ci

jk are the horizontal part and the vertical part of this connection,

respectively[3].

Using the local coordinates (xi, yi) on TM we have the local field of frames
field {Xi, Xī} on TTM . It is well known that a local field of frames {Xi, Xī} can
be chosen so that it is adapted to the decomposition (1) i.e. Xi ∈ Γ(HTM) and
Xī ∈ Γ(V TM) set of vector fields on HTM and V TM , where

Xi :=
∂

∂xi
−N j

i

∂

∂yj
, Xī :=

∂

∂yi
,

where the indices i, j, . . . and ī, j̄, . . . run over the range 1, . . . , n.

Analogous to Riemannian geometry, the following lemma in Finsler geometry
was obtained by straightforward calculations.

Lemma 2.1. [14] The Lie brackets of the adapted frame of TM satisfy the following

(1) [Xi, Xj ] = Rh
ijXh̄,

(2) [Xi, Xj̄ ] = Xj̄(N
h
i)Xh̄,

(3) [Xī, Xj̄ ] = 0,

where Rh
ij = Xj(N

h
i)−Xi(N

h
j).

For a Finsler connection (N i
j , F

i
jk, C

i
jk), the curvature tensor has three com-

ponent R, P and S, that are called hh-curvature, hv-curvature and vv-curvature,
respectively. They are defined as follows:

R h
k ij := Xi(F

h
kj)−Xj(F

h
ki) + Fm

kjF
h
mi − Fm

kiF
h
mj +Rm

ijC
h
jm,

P h
k ij := Xk̄(Fh

ij)−Xj(C
h
ik) + Fm

kiC
h
mj − Cm

kjF
h
mi +Xj̄(N

m
i )Ch

jm,

S h
k ij := Xj̄(C

h
ki)−Xī(C

h
kj) + Cm

kiC
h
mj − Cm

kjC
h
mi.

Let (M, g) be a Finsler manifold, the geodesic of g satisfy the following system of
differential equations

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0,

where Gi = Gi(x, y) are called the geodesic coefficients, which are given by

Gi =
1

4
gil
{

[F 2]xmylym − [F 2]xl

}
.

The differentiable functions Gi
j := Xj̄(G

i) determine a non-linear connection
which is called the canonical nonlinear connection of Finsler manifold (M, g). In
what follows, the canonical nonlinear connection Gi

j will be used.

There are several Finsler connections on a Finsler manifold, which we present
some of them. The Berwald connection of a Finsler manifold (M, g) is defined by
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triple (Gi
j , G

i
jk, 0), where Gi

jk := Xk̄(Gi
j). The hh-curvature H h

k ij and hv-

curvature G h
k ij of the Berwald connection are obtained as follows:

H h
k ij = Xi(G

h
kj)−Xj(G

h
ki) +Gm

kjG
h
mi −Gm

kiG
h
mj ,

G h
k ij = Xk̄(Gh

ij),

respectively. It is obvious that Rh
ij = ykH h

k ij .

Also, the Cartan connection of a Finsler manifold (M, g) is defined by triple
(Gi

j , F
i
jk, C

i
jk), where F i

jk := 1
2g

ih{Xj(gkh) + Xk(gjh) − Xh(gjk)} and Ci
jk :=

1
2g

ihXk̄(gjh).

A Finsler manifold (M, g) is called a Berwald manifold, if the geodesic spray
coefficient Gi’s are quadratic functions of y-coordinates in each tangent space, i.e.

Xl̄Xk̄Xj̄(G
i) = 0, ∀j, k, l.

In the other words, the Finsler manifold (M, g) is a Berwald metric if the hv-
curvature tensor field of the Berwald connection vanishes.

A Finsler manifold (M, g) is called Landsberg manifold, if the geodesic spary
coefficient Gi’s satisfy the following equations [11]

ymgimXl̄Xk̄Xj̄(G
i) = 0, ∀j, k, l.

It is obvious that every Brwald manifold is a Landsberg manifold.

By defining the tensor field P i
jk := Gi

jk − F i
jk, one can see that, a Finsler

manifold (M, g) is a Landsberg manifold if and only if P i
jk = 0. For more details,

one can refer to [3]. In the following, all manifolds are supposed to be connected.

2.1. Infinitesimal fiber-preserving transformations. Let X̃ be a vector field
on TM and {φ̃t} the local one-parameter group of local transformations of TM

generated by X̃. Then, X̃ is called a fiber-preserving vector field on TM if each
φ̃t is a fiber-preserving transformation of TM . From [13], we have the following
lemma.

Lemma 2.2. Let X̃ be a vector field on TM with components (vh, vh̄) with respect

to the adapted frame {Xh, Xh̄}. Then X̃ is a fiber-preserving vector field on TM
if and only if vh are functions on M

Therefore, every fiber-preserving vector field X̃ on TM induces a vector field
V = vh∂h on M , where ∂i := ∂

∂xi .

Let {dxi, δyi} be the dual basis of {Xh, Xh̄}, where δyi = dyi − Gi
hdx

h.
Using a straight forward calculation similar to [14], one can obtain the following
lemma.

Lemma 2.3. Let X̃ be a fiber-preserving vector field of TM with the components
(vh, vh̄). Then, the Lie derivatives of the adapted frame and the dual basis are given
as follows:

(1) £X̃Xh = −∂hvmXm + {vbRm
bh − vb̄Gm

bh −Xh(vh̄)}Xm̄,

(2) £X̃Xh̄ = {vbGm
bh −Xh̄(vm̄)}Xm̄,
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(3) £X̃dx
h = ∂mv

hdxm,

(4) £X̃δy
h = −{vbRh

bm− vb̄Gh
bm−Xm(vh̄)}dxm−{vbGh

bm−Xm̄(vh̄)}δym.

For more details in infinitesimal transformations, one can refer to [8].

2.2. Complete Lift Vector Fields and Lie Derivative. Let V = vi∂i be a
vector field on M . Then, V induces an infinitesimal point transformation on M .
This is naturally extended to a point transformation of the tangent bundle TM
which is called extended point transformation. If {ϕt} is the local 1-parameter
group of M generated by V and ϕ̃t the extended point transformation of ϕt, then
{ϕ̃t} induces a vector field V c on TM which is called the complete lift of V , (c.f.
[4]).

The complete lift vector field V c of V can be written as V c = viXi +
yj(F i

jav
a + ∂jv

i)Xī. From the Lemma 2.2, it concluded that, the class of com-
plete lift vector fields is a subclass of fiber-preserving vector fields.

Let V be a vector field on M and {ϕt} the local one parameter group of local
transformations of M generated by V . Take any tensor field S on M . Then, the
Lie derivative £V S of S with respect to V is a tensor field on M , defined by

£V S =
∂

∂t
ϕ∗t (S)|t=0 = lim

t→0

ϕ∗t (S)− S
t

,

on the domain of ϕt, where ϕ∗t (S) denotes the pull back of S by ϕt.

In local coordinates the Lie derivative of an arbitrary tensor, T k
i, is given

locally by[16];

£V T
k
i = va∂aT

k
i + ya∂av

bXb̄(T
k
i)− T a

i ∂av
k + T k

a∂iv
a.

Therefore

£V y
i = 0.

For the Lie derivatives of the adapted frame and the dual basis with respect to
complete lift vector field V c, the following lemma can be presented.

Lemma 2.4. [4] Let (M, g) be a Finsler manifold, V a vector field on M and V c

its complete lift, then

(1) £V cXi = −∂ivhXh −£VG
h
iXh̄,

(2) £V cXī = −∂ivhXh̄,

(3) £V cdxh = ∂mv
hdxm,

(4) £V cδyh = £VG
h
mdx

m + ∂mv
hδym.

2.3. Infinitesimal projective transformations. Let M be a Riemannian mani-
fold. A vector field X on M is said to be an infinitesimal projective transformation,
if there exists a 1-form θ on M such that

(£X∇)(Y, Z) = θ(Y )Z + θ(Z)Y,

or equivalently

£X(∇Y Z)−∇Y (£XZ)−∇[X,Y ]Z = θ(Y )Z + θ(Z)Y. (2)
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where ∇ is the Riemannian connection of M and Y , Z ∈ Γ(M) the set of vector
fields on M .

In Finsler geometry, a vector field V on (M, g) is called an infinitesimal projec-
tive transformation if there exists a function Ψ(x, y) on TM such that £VG

i = Ψyi

[2]. Accordingly, the following relations can be resulted.

£VG
i
j = Ψδij + Ψjy

i,

£VG
i
jk = Ψkδ

i
j + Ψjδ

i
k + Ψjky

i,

£VG
i
jkl = Ψklδ

i
j + Ψjlδ

i
k + Ψjkδ

i
l + Ψjkly

i,

where Ψj := Xj̄(Ψ), Ψjk := Xk̄(Ψj) and Ψjkl := Xl̄(Ψjk). If Ψ = 0, then it can be
said that V is an infinitesimal affine transformation.

3. Riemannian Connection of TM0 With the Complete Lift Metric

Let g = (gij(x, y)) be a Finsler metric on M . As we said that, there are
several Riemannian or pseudo-Riemannian metrics on TM0 which can be defined
from g. They are called the lift metric of g. A one of such metrics is g̃ = 2gijdx

iδyj ,
which is called the complete lift metric, (c.f. [17]). Thus (TM0, g̃) is a Riemannian
manifold.

Let ∇̃ be the Riemannian connection of TM0 with respect to the complete
lift metric g̃ and Γ̃A

BC the coefficients of ∇̃, that is,

∇̃Xi
Xj = Γ̃m

jiXm + Γ̃m̄
jiXm̄, ∇̃Xi

Xj̄ = Γ̃m
j̄iXm + Γ̃m̄

j̄iXm̄,

∇̃Xī
Xj = Γ̃m

j īXm + Γ̃m̄
jīXm̄, ∇̃Xī

Xj̄ = Γ̃m
j̄īXm + Γ̃m̄

j̄īXm̄, (3)

where the coefficients A,B,C, . . . run over the range 1, . . . , n, 1̄, . . . , n̄.

The following lemma is trivial.

Lemma 3.1. We have the following equations

(1) ∇̃Xi
dxh = −Γ̃h

midx
m − Γ̃h

m̄iδy
m,

(2) ∇̃Xi
δyh = −Γ̃h̄

midx
m − Γ̃h̄

m̄iδy
m,

(3) ∇̃Xī
dxh = −Γ̃h

mī
dxm − Γ̃h

m̄ī
δym,

(4) ∇̃Xī
δyh = −Γ̃h̄

mī
dxm − Γ̃h̄

m̄ī
δym.

Since the torsion tensor T (X,Y ) of ∇̃ defined by T (X,Y ) = ∇̃XY −∇̃YX −
[X,Y ] vanishes, the following relations can be given by means of Lemma 2.1 and
the relation (3)

Γ̃m
ji = Γ̃m

ij , Γ̃m̄
ji = Γ̃m̄

ij +Rm
ij ,

Γ̃m
j̄i = Γ̃m

ij̄ , Γ̃m̄
j̄i = Γ̃m̄

ij̄ +Gm
ji ,

Γ̃m
j̄ī = Γ̃m

īj̄ , Γ̃m̄
j̄ī = Γ̃m̄

īj̄ . (4)
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Lemma 3.2. The connection coefficients Γ̃A
BC of ∇̃ satisfy the following relations.

a) Γ̃h
ji = Fh

ji − Ph
ji, b) Γ̃h̄

ji = ghmRimj ,

c) Γ̃h
j̄i

= 0, d) Γ̃h
jī

= 0,

e) Γ̃h̄
j̄i

= Gh
ji, f) Γ̃h̄

jī
= 0,

g) Γ̃h
j̄ī

= 0, h) Γ̃h̄
j̄ī

= 2Ch
ji.

Proof. By means of Lemma 3.1 and metric compatibility of ∇̃, i.e., ∇̃g̃ = 0, we
have
0 = ∇̃Xm

g̃ = ∇̃Xm
(2gijdx

iδyj)

= −2giaΓ̃ā
jmdx

idxj +2{gaj(F a
im− Γ̃a

im)+gia(F a
jm− Γ̃ā

j̄m)}dxiδyj−2gajΓ̃
a
īmδy

iδyj .

and
0 = ∇̃Xm̄ g̃ = ∇̃Xm̄(2gijdx

iδyj)

= −2giaΓ̃ā
jm̄dx

idxj + 2{2Cijm − gajΓ̃a
im̄ − giaΓ̃ā

j̄m̄}dx
iδyj − 2gajΓ̃

a
īm̄δy

iδyj .

It follows that
giaΓ̃ā

jm + gjaΓ̃ā
im = 0, (5)

gaj(F
a
im − Γ̃a

im) + gia(F a
jm − Γ̃ā

j̄m) = 0, (6)

gajΓ̃
a
īm + gaiΓ̃

a
j̄m = 0, (7)

giaΓ̃ā
jm̄ + gjaΓ̃ā

im̄ = 0, (8)

2Cijm − gajΓ̃a
im̄ − giaΓ̃ā

j̄m̄ = 0, (9)

gajΓ̃
a
īm̄ + gaiΓ̃

a
j̄m̄ = 0. (10)

From (4) and (5), we have

giaΓ̃ā
jm = −gjaΓ̃ā

im = −gja(Γ̃ā
mi +Ra

mi) = −Rjmi − gjaΓ̃ā
mi

= −Rjmi + gma(Γ̃ā
ij +Ra

ij) = −Rjmi +Rmij + gmaΓ̃ā
ij

= −Rjmi +Rmij − giaΓ̃ā
mj = −Rjmi +Rmij − gia(Γ̃ā

jm +Ra
jm)

= −Rjmi +Rmij −Rijm − giaΓ̃ā
jm = −giaΓ̃ā

jm + 2Rmij ,

which show the relation b) in the lemma.

According to (4) and (10):

gajΓ̃
a
īm̄ = −gaiΓ̃a

j̄m̄ = −gaiΓ̃a
m̄j̄ = gamΓ̃a

īj̄ = gamΓ̃a
j̄ī = −gajΓ̃a

m̄ī = −gajΓ̃a
īm̄,

thus, we get the relation g) in the lemma.

From (4) and (6), we have

gaj(F
a
im − Γ̃a

im) = −gia(F a
jm − Γ̃ā

j̄m) = −gia(Ga
jm − P a

jm − Γ̃ā
j̄m)

= −gia(−P a
jm − Γ̃ā

mj̄).

From above and (8), it can be said that

gaj(F
a
im − Γ̃a

im) + gaj(F
a
mi − Γ̃a

mi) = giaP
a
jm + gmaP

a
ji = 2Pjim,

this shows the relations a), e) and f).
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From (7) and (9), it can be said that

gaiΓ̃
a
j̄m = −gajΓ̃a

īm = −gajΓ̃a
mī = gmaΓ̃ā

j̄ī − 2Cmji. (11)

From (4), (9) and (11), the relations c), d) and h) can be obtained. This completes
the proof.

Remark 3.1. From Lemma 3.2 and the relation (3), the following equations can
be obtained.

∇̃XiXj =(Fh
ji − Ph

ji)Xh + ghmRimjXh̄, ∇̃XiXj̄ = Gh
jiXh̄,

∇̃Xī
Xj = 0, ∇̃Xī

Xj̄ = 2Ch
jiXh̄.

(12)

It would be mentioned that, when (M, g) is a Riemannian manifold, then the rela-
tions (12) are reduced to

∇̃Xi
Xj =Γh

jiXh + ghmRimjXh̄, ∇̃Xi
Xj̄ = Γh

jiXh̄,

∇̃Xī
Xj = 0, ∇̃Xī

Xj̄ = 0,
(13)

where Γh
ji are the coefficients of the Riemannian connection of M .

4. Main Results

Let (M, g) be a Finsler manifold and TM0 its slit tangent bundle with com-
plete lift metric g̃. Here, infinitesimal fiber-preserving projective transformations
on (TM0, g̃) are considered and the following proposition is proved.

Proposition 4.1. Let (M, g) be a n-dimensional Finsler manifold and TM0 its
slit tangent bundle with the complete lift metric g̃. Then, every infinitesimal fiber-
preserving projective transformation on (TM0, g̃) induces an infinitesimal projective
transformation on (M, g).

Proof. Let X̃ be an infinitesimal fiber-preserving projective transformation on
TM0. From (2), it can be concluded that there exists a 1-form Θ on TM0 such
that

£X̃∇̃Ỹ Z̃ − ∇̃Ỹ £X̃ Z̃ − ∇̃[X̃,Ỹ ]Z̃ = Θ(Ỹ )Z̃ + Θ(Z̃)Ỹ , (14)

where Ỹ and Z̃ ∈ Γ(TM). Let X̃ = vhXh + vh̄Xh̄ and Θ = θidx
i + θīδy

i. We
obtain the following.

£X̃∇̃Xī
Xj − ∇̃Xī

£X̃Xj − ∇̃[X̃,Xī]
Xj = Θ(Xī)Xj + Θ(Xj)Xī, (15)

£X̃∇̃Xī
Xj̄ − ∇̃Xī

£X̃Xj̄ − ∇̃[X̃,Xī]
Xj̄ = Θ(Xī)Xj̄ + Θ(Xj̄)Xī, (16)

£X̃∇̃Xi
Xj − ∇̃Xi

£X̃Xj − ∇̃[X̃,Xi]
Xj = Θ(Xi)Xj + Θ(Xj)Xi. (17)

By means of Lemma 2.1, Lemma 2.3, (12) and (15), the following relation is obtaind:

−
{
vbHh

i bj −Xī(v
b̄)Gh

bj − vb̄Gh
i bj −XīXj(v

h̄)

+
(
vbRm

bj − vb̄Gm
bj −Xj(v

m̄)
)
Ch

mi

}
Xh̄ = δhj θīXh + δhi θjXh̄.
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Thus, we obtain

θī = 0, (18)

and

vbHh
i bj −Xī(v

b̄)Gh
bj − vb̄Gh

i bj −XīXj(v
h̄)

+
(
vbRm

bj − vb̄Gm
bj −Xj(v

m̄)
)
Ch

mi = −δhi θj . (19)

By means of Lemma 2.1, Lemma 2.3, (12), (16) and (18), the following can be
presented:

X̃(Ch
ij) + Ca

ij(v
bGh

ba −Xā(vh̄))− (vbGh
i bj −XīXj̄(v

h̄))

−Ch
ia(vbGa

bj −Xj̄(v
ā))− Ch

aj(v
bGa

bi −Xī(v
ā)) = 0. (20)

By means of Lemma2.1, Lemma2.3, (12) and (17) we have

X̃(Fh
ji − Ph

ji)− ∂avh(F a
ji − P a

ji) + ∂i∂jv
h

+∂jv
a(Fh

ai − Ph
ai) + ∂iv

a(Fh
aj − Ph

aj) = δhi θj + δhj θi, (21)

and

(F a
ji − P a

ji)
[
vbRh

ba − vb̄Gh
ba −Xa(vh̄)

]
+X(ghtRitj)

+gatRitj

[
vbGh

ba −Xā(vh̄)
]

+ ∂jv
aghtRita −Xi

[
vbRh

bj − vb̄Gh
bj −Xj(v

h̄)
]

−
[
vbRa

bj − vb̄Ga
bj −Xj(v

ā)
]
Gh

ai + ∂iv
bghtRbtj = 0. (22)

From (21), it can be concluded that

£VG
h = θiy

iyh, (23)

i.e. V = vh∂h is an infinitesimal projective transformation on (M, g). This com-
pletes the proof.

Proof of Theorem 1.1. Infinitesimal complete lift transformations is a subclass
of infinitesimal fiber-preserving transformations. So, the similar method as in the
proof of Proposition 4.1 is used. By means of Lemma 2.1, Lemma 2.4, relations
(12), (15) and (18) the following can be given

£VG
h
ji + 2(£VG

t
j)C

h
it = δhi θj .

Contracting by yi

£VG
h
j = yhθj ,

thus

(£VG
t
j)C

h
it = 0,

and, we obtain

£VG
h
ji = δhi θj . (24)

By means of Lemma 2.1 and Lemma 2.4 with the relations (12), (16) and (18):

£V C
h
ji = 0. (25)

By taking in to account Lemma 2.1 and Lemma 2.4 with the relations (12) and
(17), we can obtain

£V (Fh
ji − Ph

ji) = δhi θj + δhj θi, (26)
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and

£VG
h
t (P t

ji − F t
ji) + ∂jv

aghtRita + ∂iv
bghtRbtj

+Xi(£VG
h
j ) +Gh

ti(£VG
h
j ) = 0.

Contracting (26) by yiyj and using (24) leads to obtain

£VG
h = 0,

thus, V = vi∂i is an infinitesimal affine transformation on (M, g) and

£VG
h
j = £VG

h
ji = 0. (27)

Substituting (27) in (24)

δhi θj = 0.

Thus, θi = 0, i.e. V c is an infinitesimal affine transformation on (TM, g̃). This
completes the proof.

Proof of Theorem 1.3. If V c is an infinitesimal projective transformation then
from Theorem 1.1, one can see that V is an affine. Let (M, g) be a Landsberg
manifold then

Fh
ji = Gh

ji. (28)

If V is an affine, then by use of (24), (26) and (28), it can be seen that V c is an
infinitesimal affine transformation on (TM0, g̃). This completes the proof.

From Theorem 1.3, we have immediately the following remark.

Remark 4.1. Let (M, g) be a Landsberg space, then, there is a one-to-one cor-
respondence between complete lift projective vector fields on (TM0, g̃) and affine
vector fields on (M, g).
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[2] Akbar-Zadeh, H., ”Sur les espaces de Finsler à courbures sectionells constantes”, Acad. Royale

Belgique. Bull. de Sci. 5ème Sèrie LXXIV (1988), 281-322.
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