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THE COVARIATION FUNCTION FOR
SYMMETRIC a-STABLE
RANDOM VARIABLES
WITH FINITE FIRST MOMENTS

DEDI ROSADI

Abstract. In this paper, we discuss a generalized dependence measure which is designed
to measure dependence of two symmetric a-stable random variables with finite mean
(1 < a < 2) and contains the covariance function as the special case (when a=2). We
shortly discuss some basic properties of the function and consider several methods to
estimate the function and further investigate the numerical properties of the estimator
using the simulated data. We show how to apply this function to measure dependence of

some stock returns on the composite index LQ45 in Indonesia Stock Exchange.

1. INTRODUCTION

It has been known that many popular models in finance have been developed
under assumption that the returns distribution is multivariate normal. However,
from numerous empirical studies (see e.g., Rydberg [14]; Rachev and Mittnik, [10];
Rosadi, [13]), the normality assumption for many empirical asset returns data can
not be justified. It has been shown that many asset returns are typically leptokurtic
(heavy-tailed and peaked around the center). In other words, it is found empiri-
cally that the probability that extreme events can happen, larger than the normal
distribution can explain.

The class of stable distributions, of which the normal distribution is a special
case, represents a natural generalization of the Gaussian distribution, and provides
a popular alternative for modeling leptokurtic data. In many empirical studies
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(see e.g., Rachev and Mittnik, [10]; Rosadi, [13]), it has been shown that the non-
Gaussian stable distributions with parameter index of stability 1 < o < 2 are more
appropriate for modeling asset returns, while preserving the desirable properties
of the normal. When the index « is less than 2 (a < 2), the second moments of
the stable distribution are infinite, therefore, the dependence between two random
variables can not be described using covariance. When the second moments do
not exist, several dependence measures has been proposed in literature, such as
the covariation function, the codifference function and the dynamical function (see
Rosadi, [12]). In this paper, we focus our discussion on the covariation function.

The rest of this paper is organized as follows. In the next section we shortly
overview several concepts related to the stable distributions which will be necessary
for the continuation of this paper. In section three, we discuss the covariation func-
tion and the estimator for the covariation function. In last section, we investigate
the numerical properties of this estimator using the simulated data, and show the
practical application of the covariation function to measure dependence of some
stock returns on the composite index LQ45 in Indonesia Stock Exchange.

2. INTRODUCTION TO STABLE LAWS
2.1. UNIVARIATE STABLE DISTRIBUTIONS

The random variable X is said to be (univariate)-stable if for any positive
number a and b, there is a positive number ¢ and real number d such that

aX, +bXo 2 eX +d

. . d . .
where X; and X, denote independent copies of X, and = denotes equality in
distribution. The stable random variable X is often parameterized using their
characteristics function (for § € R)

D x(0) = E(exp(i6X)) = exp {—aa 161" (1 —if3sign(0) tan %) + iu@} , untuk o # 1
and
Dx(0) = exp {0 6] <1 + zﬂgsign(Q) In |9|) + i,ué)} ,untuk o =1
™

There are four parameters to describe the univariate laws: «, 3, 0 and u. Here «
(0 < a < 2) is the index of stability; 5(—1 < 8 < 1) is the skewness; (o > 0) is
the scale parameter and u € R is the location parameter. If o = 2, X is N(y,202)
distributed. When « is smaller, X is more leptokurtic. When o < 2, the absolute
moment of the order p if finite only for p < a. For financial data, only o > 1 is
found in practice, therefore in this paper, we assume o > 1. When = 0 and
p =0, X is called symmetric alpha-stable (SaS) where ®x(0) = exp(—o® |0]”).
Stable random variables have continuous probability density functions (Zolotarev,
[16]), however, except for a few cases, it cannot be written in an explicit form.
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2.2. MULTIVARIATE STABLE DISTRIBUTIONS

A random vector X = (X3, Xo, -+, X,,) is said to be a stable random vector
in R™ if for any positive numbers a and b, there is a positive number ¢ and a vector
d such that

aXy 4+ bXy Z X 4+ d

where X; and X are independent copies of X. Let X = (X3, X5, -+ ,X,) be a
stable random vector. Then any linear combination of the components of X of
the type Y = >"7'_, by X} is one dimensional a-stable with the same index « for
every b = (by1,ba, -+ ,b,). On the other hand, let X = (X31,Xs,---,X,) be a
random vector in R™ and suppose any linear combination Y = >~/'_, by X is one
dimensional stable. If o > 1 then X is stable random vector in R™.

The vector random stable X = (X1, Xo, -+, X,,) with dimension n is a sym-
metric a-stable random variable (jointly Sa.S), and has the characteristic function
(for o > 1)

Bx(6) = B((0. ) = E(exp(i 3 X)) = exp { = [ [(6,9)]" P(ds)

Sn

where T' is unique symmetric finite measure (called spectral measure) which is
defined on a unit sphere S, = {s = (s1, 82, -+ ,8,)|||s|| = 1}. If X is a symmetric
random variable, then the spectral measure is symmetric and we obtain

Ox(0) = exp /\Hs I'(ds)

The scale parameter of the linear combination of the components of vector X is
given as

ve((0, X)) /\es T'(ds)

More information on stable laws can be found in e.g., Samorodnitsky and Taqqu

([15]).

3. THE COVARIATION FUNCTION

It has been known that the covariance function can completely describe the
dependence structure from vector random normally distributed. However, when
«a <2, the covariance function is not defined. In the following, we described the
covariation function as a generalization of the covariance function for SaS process
with 1< a <2.
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Definition 4.1. (Samorodnitsky and Taqqu, [15]) Let X; and Xy be jointly
SaS with « > 1 and let T' be the spectral measure of the random vector(X;, Xz).
The covariation of X1 on Xs is the real number

(X1, X2, :/3152@‘_1>F(ds)

Sa
where a<*~> = |a|*"" sign(a).

An alternative definition for the covariation function is given in Samorodnit-
sky and Taqqu ([15]), Definition 2.7.3. The properties of the covariation function
can be listed below (see Samorodnitsky and Taqqu, [15] for complete proofs):

o (X1, X5], = %C’ov(Xl,Xg)

In general, the covariation function is not symmetric in its argument, [ X1, Xo| , #
[X27 Xl]a

[aX1,bX5], = ab<*"1> [X1, X,],,, for all a,b € R

The covariation function is additive in the first argument. Let (X7, X5, X3)
be jointly SaS. Then for a,b € R

[(LLXl + bXQ, X3]o¢ =a [Xl, X3]a =+ b [XQ, X3]a
However, in general it is not linear in the second argument,

(X1, Xo + X3, # [ X1, X, + [X1, X3,

If X; and X, are jointly SaS and independent, then [X;, X5], =0

Furthermore, let X; and X5 are jointly SaS with 1 < o < 2, we can define
the covariation coefficient X; on X5 (see also Nikias and Shao, [7])

X, X,

X1, X
A= or)\:[ 1, Yo,

[X2, Xo], (Xl

We also have that for X; and X3 are jointly SaS with 1 < a < 2)E(X; |X3) = AX>
(Samorodnitsky and Taqqu, [15], Theorem 4.1.2.)

The above definition of the covariation function depends on the spectral mea-
sure, therefore, it makes the function less practical application. However, we can
describe its relation with Fractional Lower Order Moment (FLOM) as follows (Cam-
banis and Miller, [3]): given X; and X, are jointly SaS and 1 < o < 2. Let us
denote the dispersion of X5 as 0%, = [X»];, = [Xa, X2],,, therefore

E(X,X5"7)

X =
MK = TR

1< p<a
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and <p—1>
E(X1X5P7)
X1, X0l = —F 5 0%, 1 Sp<a
[ ]a E(|X2|p) Xo
Furthermore, if we consider U;,7 = 1,2, ...,n is a sequence of independent random
variabels SaS with dispersion ¢;. For any real numbers aq,--- ,a, and by,--- , by,

where not all b; is equal to zero, define X = a1Uy +--- + a,U, and Y = b U; +
-+ 4+ byU,. We obtain (see e.g., Nikias and Shao, [7])

[X17X2]a = 01a1b1<a71> 4+t Unanb,fo‘_b

and cols
o1a1b7 7 -+ opa b

g1 |bl|a +"'+0n|bn|a

)‘X17X2 =

4. THE ESTIMATOR OF COVARIATION FUNCTION

Several estimator for covariation function have been considered in the lit-
erature, such as Best Linear Unbiased Estimator/BLUE (Blattberg and Sargent,
[2]), Least Square method (Kanter and Steiger, [6]), Fractional Lower Order Mo-
ments/FLOM estimator (see e.g., Nikias and Shao, [7]), Cheng-Rachev’s method
(Cheng and Rachev, [5]) and Screened Ratio estimator (Kanter and Steiger, [6]).
Below we only describe the FLOM method, Screened Ratio and Least Square esti-
mator.

Given independent samples (X1,Y7), -+, (X, Ys). The FLOM estimator for
Axy is defined as (Nikias and Shao, [7]).

> X |ViP ™ sign(Y3)
i=1

5\FLOM(p) = zn: v
Y
i=1

for 1 < p < «a. This estimator is relatively simple, however it is known that the
optimal values of p is unknown.

The Screened Ratio Estimator is defined as

n n

Ascr = Z (XY, xw)/ Z (xv:)

i=1 i=1
where xy, = 1ifY; > 0 and O for the other case. The Least Square estimator is

n
obtained by minimizing the error > (X; — A\Y;)?. We obtain
i=1

s = D0 (6Y/ Y0 (v2)
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This estimator is inconsistent estimator in the infinite variance, and we consider it
here only for the comparative purpose.

5. SIMULATION STUDIES

In this section, we investigate the numerical properties of the estimator
of the covariation function. Using R version 2.7.2 (R Development Core Team,
[11]), we generate two independent random samples U; and U, using the algo-
rithm presented in Chambers, Mallow and Stuck ([4]) for several values of «
and sample size 5000 where the replication is taken to be 50 times. We fur-
ther define the random variable X = a1 U; + a2Us and Y = bU; + byUs. For
this simulation study, we use a; = 0.75, as = 0.25, by = 0.18 and by = 0.78,
therefore, we obtain the true covariation coefficient of X on Y is equal to A =
(0.75 % (0.18)*~1 +0.25 % (0.78)*71) /((0.18)* + (0.78)%). The covariation of X on
Y can be obtained by multiplying A with ((0.18)* 4 (0.78)*). The covariation co-
efficient is estimated using Least Square (LS) method, Screened Ratio Estimator
(SCR) and FLOM (we consider two cases, p =1 and p < a. Here, we use p = 1.05
when oo = 1.1 and p = 1.1 for the other as). The simulation results are summarized
in figure 1. The findings show that in general the FLOM estimator with p = 1 per-
form the best, it is an accurate estimator for the covariation coefficient when « is
getting closer to 2 (« >1.5) although it is become more volatile when « is closer to
1.

6. EMPIRICAL RESULTS

To illustrate the usability of the method discussed above, we use the stocks
chosen from L.Q45 index listed in Indonesia Stock Exchange. For this purpose, we
collect some daily closing price data from 6 stocks during the period Januari 1,
2003 until Desember 31, 2007. The data is transformed into daily returns using
5/;5 :lD(Xt+1/Xt),t: 1, ,N— 1.

For checking the possibility of using process with infinite second moment, we
use the diagnostic method as discussed in Rosadi ([13]). The examples of diagnostic
plot for daily and weekly data (as an average of five days data) for the Indosat
Thbk. ‘s stock returns are given in Figure 2 and 3. The converging variance plot
and the plot of ratios between the maximum and partial sum indicate that the
second moments of the process are infinite. Based on the density plot, the non-
normal stable distributions show a better shape to the data than compared to
the fitting result using the normal distribution (where the sample mean and the
sample variance are used as the estimated parameters). The similar results can
also be obtained for the other stocks considered in this study. We note that for
producing this figure, we estimate the parameter of stable distribution using the
numerical maximum likelihood method as described in Nolan ([8]), implemented in
package fBasics in Rmetrics.
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Figure 1: The accuracy of the estimator of covariation function for several values
of a. The straight lines denote the true values of the covariation function in each
cases.
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Figure 2: Diagnostic plot for daily Indosat Tbk. ‘s returns, sample size N=1121
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Although the second moments of the processes that generated the data might
be infinite, they are not necessary stable. To check the stability of data, one should
check the estimates of the index « for the data over different time horizons (e.g.,
over daily, weekly and monthly horizons. See for instance Paolella, [9]). This
verification can confirm that the (necessarily i.i.d.) data could have been generated
from a stable law, because this property truly characterizes the stability of the
sum of any finite number of i.i.d. stable random variables. If the true distribution
of the data is a stable law, the estimated tail indexes of summed non-overlapping
j- length segments of the data can be expected roughly constant as a function of
4,7 = 1,2,---, while for non stable data, the estimates should tend to increase
towards two as j increases.

For checking the summability property of the data, we estimate the parameter
of stable distribution using the Nolan’s numerical maximum likelihood method,
implemented in package fBasics in Rmetrics. The time horizons uses in the study
are j = 1,2,---,10, where for j > 1, we calculate the average of the data over non-
overlapping j-length segments of the data. Our choice of maximum time horizon
j = 10 days here is only restricted by the length of the data available in the study.
The fitting results using non-normal stable distribution for the stocks returns are
given in the following table.

Inspection of the estimated values of the characteristic exponent « ranges
from 1.45 to 1.95, with an average is approximately & = 1.7. This value is close
to the value found by several authors in different market (see e.g. Belkacem, Levy
and Vehel, [1]).

As an illustration for the application of the result presented in the previous
sections, in what follows, we calculate the covariation coefficient A\ between the
stocks and the index LQ45. It has been shown in Belkacem et. al. ([1]) that the the
covariation coefficient A between the stock and the market index can be interpreted
as the (; in the stable CAPM model. Under certain conditions, Belkacem et. al.
([1]) shows that the “stable” CAPM generalizes the Gaussian CAPM, it has the
following form

E(Ri) = Ry = B (E(Rm) — Ry)

where
[Ria Rm]a

ﬁi = (o]
1Bl

1)
The “stable” CAPM presents the generalized equilibrium relationship between risk
and return for a given security. The return over the risk free rate E(R;) — Ry is
called the risk premium for a security i. E(R,,) — Ry is the price of the risk. g
is “generalized beta coefficient” which measures the volatility of the security’s rate
of return relative to changes in the market’s rate of return, and can be interpreted
as the quantity of risk, in the similar way as in the classical case. The estimated
value of (; for daily returns using index LQ45 as the “proxy” of market portfolio
is summarized in Table 2. It shows that there are three responsive assets (INDF,
INTP, TLKM) and the others are less sensitive to the change of market portfolio.
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Table 1. Estimated of a-values for samples defined with respect to the time
intervals of different sizes. The averages denotes the mean and standard deviation
of & over all time frequencies considered here

Frequency 1 2 3 4 5 6 7 8 9 10
(days) Average
Sample Size | 1211 | 605 | 403 | 302 | 242 | 201 | 173 | 151 | 134 | 121
Stocks

Index LQ45 1.76 | 1.58 | 1.53 | 1.53 | 1.68 | 1.86 | 1.81 | 1.80 | 1.61 | 1.77 | 1.6940.12

IHSG Com- | 1.62 | 1.56 | 1.57 | 1.49 | 1.61 | 1.72 | 1.80 | 1.87 | 1.75 | 1.80 | 1.68%+ 0.13
posite Index

Indosat Tbk | 1.73 | 1.76 | 1.77 | 1.78 | 1.72 | 1.77 | 1.65 | 1.59 | 1.71 | 1.78 | 1.7340.06
(ISAT)

Bank Central | 1.83 | 1.85 | 1.80 | 1.75 | 1.62 | 1.56 | 1.90 | 1.91 | 1.69 | 1.72 | 1.76+£0.12
Asia (BBCA)

Astra Agro | 1.63 | 1.65 | 1.85 | 1.78 | 1.93 | 1.78 | 1.95 | 1.47 | 1.87 | 1.72 | 1.76%0.15
Lestari

(AALI)

Indofood Suk- | 1.74 | 1.78 | 1.70 | 1.68 | 1.80 | 1.64 | 1.73 | 1.77 | 1.68 | 1.70 | 1.72£0.05
ses (INDF)

Indocement 1.65 | 1.58 | 1.64 | 1.97 | 1.73 | 1.55 | 1.57 | 1.71 | 1.65 | 1.46 | 1.65+0.14
(INTP)

Telekomunikasi | 1.79 | 1.77 | 1.70 | 1.85 | 1.84 | 1.77 | 1.87 | 1.95 | 1.52 | 1.89 | 1.80+0.12
Indonesia
(TLKM)

Table 2. Estimated values of covariation coefficient between stocks and market

returns
Stocks X(Stock7 LQ45) =17
Indosat Tbk (ISAT) 0.80
Bank Central Asia (BBCA) 0.89
Astra Agro Lestari (AALI) 0.82
Indofood Sukses (INDF) 1.02
Indocement (INTP) 1.05
Telekomunikasi Indonesia (TLKM) | 1.23
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