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Abstract. The aim of this work is to provide Green’s function for the Schrodinger
equation. The potential part in the Hamiltonian is piecewise continuous operator.
It is a zero operator on a disk of radius ”a” and a constant Vj outside this disk (in
two dimensions). We have used, to construct the Green’s function, the technique of
the integral equations. We have respected the boundary conditions of the problem.

The discrete spectra of the Hamiltonian operator have been also derived.

integral equations and Green Kernel and Bessel Transformation:

Abstrak. Tujuan utama dari penelitian ini adalah menyediakan fungsi Green untuk
persamaan Schrodinger. Bagian energi potensial dalam rumusan Hamiltoniannya
adalah operator yang piecewise continue. Operator tersebut merupakan suatu op-
erator nol pada cakram berjari-jari ”a” dan berjari-jari suatu konstanta Vg di luar
cakram terkait (dalam dimensi dua). Di dalam konsruksi fungsi Green, digunakan
teknik persamaan integral. Kondisi batas dari masalah juga diperhatikan. Spektra

diskrit dari operator Hamiltonian juga diberikan.

Kata kunci: Persamaan integral, Kernel Green, Transformasi Bessel
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1. INTRODUCTION

Green’s functions are very usefull in the studies of linear partial differential
equations and are widely studied from the point of view of fundamental solutions
of these equations. They provide a general method for solving the linear differ-
ential equations or equivalentely the integral equations. They are widely used in
quantum mechanics to discover the energy spectra of physical system. In math-
ematics the term Green’s functions is often given to solutions of an initial- or
boundary-value problem of a linear differential equation with a J-function as an
inhomogeneous term. Some times we encounter, in various fields of mathematics,
physics, applied physics, and engineering, the terms: propagator, resolvent, resol-
vent kernel, signal function, point response function, or transfer function. These
terms are nothing but the Green functions spelled differentely with respect of the
field. Strictely saying, the Green function serves to find the output for a given
input. For this reason, one can understand why Greens functions are very useful
in many fields: in electromagnetism, hydrodynamics, acoustics, elasticity, quan-
tum mechanics, elementary-particle physics, etc.... Their usefulness is still growing
ascendentely today, as various numerical techniques increase to develop the calcu-
lations of Greens functions. Recall that there are usually several Greens functions
associated with the same equation. These difference is related to the boundary
conditions. Therefore it is important, when we search the Green function of the
linear differential equation, to specify the boundary conditions.

Before giving the directive of our paper, it is necessary to mention some works
which are closely related to our investigation. In [1], the Green’s function has been
studied for the thin circular Kirchhoff Poisson-plate. The Green’s function has been
also studied by [2] in three dimensions for a piecewise continuous potential possess-
ing a spherical symmetry. In [3]-[4] the Green’s function has been analyzed for the
elliptic domain. The quantum problem relative to scattering in two dimensions
was also treated asymptotically in [5]. Using the approximative methods, [7]- [6]-
[8]- [9] have treated the Green’s function problem. In this work we shall present,
an explicit calculation of the Greens function, for a piecewise continuous potential
presenting a circular symmetry. The technique of the integral equations and their
solutions with the help of the Bessel’s transform are the main results of this work.
In our work, we address the problem of a time-independant Schroedinger equation
on a disk with a piecewise continuous potential presenting a circular symmetry. In
quantum mechanics, if the potential is constant in a disk and equal to zero out-
side (or vice versa) the solution of the time-independant Schroedinger equation is
continuous and its derivative is discontinuous on the boundary (the edge) of the
disk. Specify one more thing in our problem: the time-independant Schroedinger
equation takes two different forms depending on whether it is inside the disk or
outside. This kind of problem matches in quantum mechanics to the study of a
particle subject to a potential which is a piecewise continuous possessing a circular
symmetry.

In Section 2, we present a theoretical framework in which our work is focuced. In
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particular we show how the Schroedinger equation transforms to an integral equa-
tion and how the latter can be solved using the Bessel’s transform. In section 3, we
calculate Greens functions corresponding to the potential zero on a disk and equal
to positive constant outside of the disk. It arises that the Bessel’s transform is
adequate to solve this kind of problems. In section 4, using the Bessel’s transform,
we calculate Greens functions corresponding to the potential equal to a negative
constant in the disk equal to zero outside of the disk. At the end, we finish this
work by conclusions in Section 5.

2. THEORETICAL PRELIMINARIES

2.1. Schroedinger equation. At first we consider the almost fundamental equa-
tion in physics: the Schroedinger equation in one dimension (D=1):

ov
(A +2mV(2))¥(x,t) = Qmia (1)
This equation is annouced at the earlier of the development of modern physics
about one century ago. A is the Laplacian in one dimension. V(z) must be a
measurable, real-valued and locally bounded function to ensure the regularity of
¥(x,t) [10]. Its solution can be formally written as [11]:

+oo
\Ij(xat) - K(x7t : y,O)\If(y,O)dy (2)
—0o0

where U(y,0) is the solution of (1) at ¢ = 0 that is to say the initial condition of
the problem of Schroedinger equation. K(z,t : y,0) is the kernel of the problem
(2.1)(some theoretical physists name it the propagator or sometimes Green’s func-
tion, bien que la fonction de Green est la transforme de Fourrier de K par rapport
t). We need in the following, the free kernel Kq(x,t : y,0) coresponding to the free
Shroedinger equation —AWY(z,t) = 2mid¥/0t. The research of the solution of the
Schrodinger equation (1), turn out then to calculate the Green’s function satisfying
the following integral equation:

+oo

9(o.E 1) = go(a, B : ) — / oo, B OV(QaCE:y)] ()

—00

where g(x, E : y) and go(z, E : y) are Fourrier transforms of K(z,¢ : y,0) and
Ko(z,t : y,0) respectively:

+oo
gz, E:y) = K(x,t:y,0)exp(iEt)dt
—o0
—+oo
go(z, B y) = Ko(z,t:y,0)exp(iEt)dt

To solve the integral equation (3), we shall give, in the next step, some theoretical
tools.
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2.2. Hilbert’s problem. Let L be an infinite line whose equation is Re(s) = b.
Hilbert’s problem consists to find a piecewise analytic function ¢ piecewise analytic
with respect to the line L. We demand in further that this function has an incresing
behavior not great than polynomial at infinity and verifies the following equation:

D;(2) = A(2)P(2) + B(z), zel, (4)

where A(z) and B(z) are functions defined on the line L. Let ®;(s) and ®.(s) are
left and wright limits of ®(s) solution of homgeneous Hilbert problem (B = 0). We
assume, in addition, that A(z) have not zeros on the line L.

Hilbert’s Theorem
Consider A(z) a Holderian function on the line L whose equation is Re(z) = b, such
that A(z) not vanishes and verifies

C
[A(z) —1] < B v>0,  zeL, (5)
and consider B(z) a second Holderian function on L such that

C
|B(z) — B(c0)| < EE v >0, zeL. (6)
z
then the only piecewise analytic solutions on the line L of Hilbert’s problem (4) are
given by:
b+i00

o) = 2iC) yf <I>i(£((§)— SO +PERE),  a¢l (7)

b—ioco

where ® is the solution of the homogeneous Hilbert problem and ®; is given (for
any zeL) by

log[(= — B)",()] = S lox(A) (L)
o ;{ og(As) Sy 8 (8)
271, S —« S —z
b—i00

P(z) is some polynomial, and «, 8 are complexe numbers such that Re(a) > b and
Re(B) < b [12]

3. TWO-DIMENSIONS PROBLEMS

Consider the problem relative to the Schrodinger equation where the potentiel
term is a piecewise continuous: constant (zero) on a disk of radius ”a” and equal
to a constant Vg outside the disk. Let the following integral equation

gi(r,r") = go(r,r") — Vo/Cgo(ﬂ Qai(¢,r")d¢ )
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In view to solve the last integral equation, define new pair functions glJr (p,r) and
g, (p,r) such that

+ _ ¢ alpr) r<a
g (p,r) ={ r>a (10)
_ 0 r<a
g, (pa 7’) = { _gl(p, r) r>a (11)
then the integral equation (9) transforms as
1) = 97 (1) = 90(rr) Vo [ Con(r Qg (€N (12)
0

Define Hankel’s transform of a function g;(r,7’) viewed as a function of the variable
71" by the following expression

o0

Cilp.r') = [ vt (r. ') (13)
0
The Hankel transform applied to the equation (12) gives

o0 o0
/rJl(pr)gl‘”'(r, r')dr — /rJl(pr)gl_(r, r)dr =
0 0
/7“][]77')90(?", Tl)dr+ VI)/?"JI(PT)dT/CQO(T» C)g;(C,T‘I)dC (14)
0 0 a
A integral representation of the kernel go(r,7’) is given by [13]
'r + 7' rr’ du
/exp " )+ ]11(40467)3 (15)
0

by substituting (15) in (12) we obtain

. A 7 2w du
Gl (p1') = Gy (01 = / expl-20e(") + 5]

u

= ! -9 2
/rJl pr) I ( 4aez)exp( acr )dr
u u

0
TV / expl-20e(%-) + 9] g (¢, r')d
0

/rJl(pr)Il(élae:f)exp(_2zer2)dr (16)
0
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Using formula 6.633.4 [14], it is straighforward that

G;L(pv TI) - G;(p, T/) =

7 162 €2 r? p? du

-2 —2a€)— + — (1 — =—)]Jy(pr')—
/exp[ e Sae o) U + 2( 4ae)] (e )4(16
0

T T 16a2€? ¢ o p
+V0/CdC/exp[—2ae( Soe 20&6); + 5(1 - —)]
0 0

du
Jl(pC)gl_(Cvrl)E

or equivalently

G (p,r') = Gy (p,r') =

oo

= ettt = 228 o) 4 %6 [ atpor (¢4
0

dae doe
0

25

(17)

(18)

2
Under the condition 1 — £— < 0, the first integral in the last equation converges

and gives

2

Gl o) =G0 ) = g

ipr') + Vo / CI(pC)gr (¢, r')dC]
0

then the integral equation (12) transforms under Hankel’s transform as

o 2Jl(p7"l) 2V0
Cp?2 —dae  p? —4doe

Al n o 2Qi(pr')
G ') = )

é;—(p’ T/) - él_(pv TJ) él_(p7 7"/)

or
2V

G (p,r') — 1+ 02— dae
By using the abbreviations
e=FE, 2a=m, wehave 4dae=2mFE =k’ ,u2 = k% -2V,
the equation (21) writes as
Gi ) ~ =167 (') = 2505) = by
Now, consider the decomposition [15]

- (ptu)p—p)
=k (p+k)(p—k)

and put

(19)

(24)
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4 P ., _ptk
and = —
( P X~ (p) P

The Hilbert’s theorem asserts that the functions @;‘ and (All_ are determinated by

X" (p) = (25)

the case ' > a:

A + T)dT
Gf(p,r') = Xzif) / . (bi)();lp)’ where L is a closed contour (26)
L
 2(p—p) Ji(rr')dr
- 2mi(p — k) L/( — k2)(Z=£) (7 — p) (27)
_ 2p—p) Ji(rr’)dT
= 2mi(p — k) L/ T+ R - —p) (28)

By using the residue theorem and apply it at the points 7 = —k and 7 = p inside
the contour, we obtain

Sy = 2Bk a)(p — ) Jikr) 2(p — ) ipr’)
SR e PRI 5T iy s S oy oy Y sy B e
2J1(pr") 2B(k, pi,a)(p — p) Ji(kr') (30)

=Rtk -k (ut+k)(p+k)
The inverse Hankel’s transform applied to the last equation for ' > r > a gives

+oo
Ji(pr)Ji(pr’)dp
FE ) = 2 / bJi
g ) &R+ h)
/ oo
Bk, p, a) Ji(kr') / p(p — p)Ji(pr)dp (31)
(n+k) (p* — k?)
_ / 2B(kvﬂaa)Jl(kT/)Jl(kr)
= —nJi(kr"YY(kr) + PETS (32)
the same technique used for the case 7’ < a gives:
Ay X (p) / b(r)dr -
G (p,r') = i e e where L is a closed contour  (33)
L
_ 2(p+ k) / Ji(rr!)dr (34)
2mip+p) ) (r+R)( = p)(r =)

Respecting the residue theorem for the points 7 = g and 7 = p inside the contour,
we find
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A 2 ! 2A !
p+wp+k)p—n  (P+u)le+k)(p—mp)
_ 24A(k, p,a)(p + k)i (pr') 2Ji(pr')
p+wp+k)p—p)  +u)p—p
The inverse Hankel’s transform applied to the last equation for r < r’ < a gives:

(36)

+oo
o 2A(k, p,a) Ji(pr’ p(p + k)Ji(pr)dp
g (nr') = ( k( )/( 2),2) +
(b +Fk) P —n
o) Rpr)d
9 / P l(lﬂ;)iz(ﬁ;) P (37)
s p o
2A(k, p, a) Jy(pr’) Ji (pr) /
= — 7, Y, 38
eSS RA( i) (39)
the continuity of Green’s function at r = a allows to write:
9" " (a,r") =g, (a, ") (39)

implies

2B(k, p, a)Jy(kr")Ji (kr) _

(1 +k)

— i (pr')Y (pa) (40)

—Jy(kr')Y;(kr) +

2A(k, i, a) Jy(pr’)Jy (pr)
(1 +Fk)

the derivability gives
(8gl+’+(a, )
ar

k(=mJi(kr")Y,/ (kr) +

Yoo = (%%M)r:a

2B(k, p, a)Jy(kr")J] (kr) )
(1 +Fk)

_ pu(2AE R ?ﬂ(ng’(m) = mh ()Y (na)) (41)

Using the symmetry properties of the Green’s function, we take A, B two functions
depending on a, we obtain the following system at r =1’ = a

9/ (a,a) = g; ~(a,a) (42)
dg; " (r,a) dg, ~(r,a)
( L )T:a =( : Jr=a (43)
dr dr
that transformed as a system of two coupled equations, the first one is
—7(pu + k)Ji(ka)Y;(ka) + 2B(k, u, a)J;(ka)J; (ka)

= 2A(k, p, a)Ji(pa) Ji(pa) — w(p + k) Ji(pa)Yi(pa)

(44)
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and the second is

—7k(p + k)Y (ka)Ji(ka) + 2kB(k, u, a)J] (ka)J;(ka)
= 2pA(k, p, @) Ji(pa)Jj (pa) — pr(p + k)Y/ (pa) Ji(pa)

performing some calculus we find

A(ka Hy a) = (,u + k)Zl(kvﬂ" Cl)

where
2ok, j.a) = —2Ji(ka) + mad;(pa)(kJ] (ka)Y;(pa) — pdi(ka)Y/ (na))
1 20 (ua) e T/ (ka) () — i) T ()]
and
B(k,p,a) = (p+ k) Za(k, p, a)
where
Zo(k, ) = —2Ji(pa) + waJi(ka)(ui(pa)Yi(ka) — kJi(pa)Y/ (ka))
2% 2a.J,(ka) [T, (ka) J! (na) — kJ! (ka)J,(jua)]
then
gl+’Jr(7“7 ') = -z J(kr")Y;(kr) — %Jl(kr’)Jl(kr) ]
and

G (") = L Yilur) = 228 ') )]

Mixing cases:
The case ' < a < r: ' inside the disk and r outside the disk
Following (28) we consider the pole 7 = y and we obtain

Gr ) = i) B i+ DD,
_(p—m)(ptk) _ (=) (u+k)
where  f(p) = == o and b)) = a0 T

The inverse Hankel’s transform applied to the equation (53) gives

g (rr) = Tiur YWk, p,a,r)

where
- wandy 2 ot (er)dp
Wk o) = ROk ) [ PO [ 2
0 0

then after residue integration, we obtain

g (r,") = wy(ur') [ Yi(kr) + C(k, p, a)Jy (kr)]

]
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Using the continuity of Green’s function at point r = a
9" (a,a) = g " (a,a) (57)
we have
274
Ji(na)[=Yi(ka) + C(k, p, a)Ji(ka)] = [-Yi(ka) + —= Ji(ka)]/i(ka) (58)
from which we extract the constant C
~ Yilka) 4
Ji(ka) ~ maludi(ka)J{(ua) — k7 (ha) ()

Finally we obtain the Green’s function for the case r inside the disk and r’ outside
the disk:

C(k,p,a)

(59)

9" (rr") = —n[Yilkr) Ji(pr') — C(k, i, @) Ji(kr) Ty ()] (60)

The case r < a < r': r inside the disk and 1’ outside the disk
Following the formula (34) at the pole 7 = —k

G (.1 =~ [ 2D r gy g o)
_k=p)utk) o (D) Tt k)
where T(p) = - d n(p) = (o — 1) (62)
The inverse Hankel’s transform applied to the last equation gives
+oo _ . +oo 41 .
0 (") = A 2D (k) [ PRI 2 o [ A
0 0 (63)
— (e[~ Yir) + D, 1y )i (ar)] (64)
Respecting the continuity of the Green’s function at » = a we obtain
gl_’+(a, a)=g9," (a,a) then (65)
Ji(ka)[Yi(pa) — D(k, p, a)Ji(pa)] = Ji(pa)Y;(pa)—
—2Ji(ka) + mwad;(pa)(kJ] (ka)Y;(pa) — pdi(ka)Y/ (na)) u
ralkJ}(ka) J (ua) — pi(ka) T ()] Hlua) — (60)
_ Yi(pa)  Yi(pa)
Dot 0) = 5 ) ~ Tulha) o
—2Ji(ka) + waJi(pa)(kJ|(ka)Yi(pa) — pJi(ka)Y/ (pa)) (68)
rady ko) [k} (ka) i (5a) — i (ka) Jf (ua)]
D(k,p,a) = Yipa) - 4 (69)

 Ji(pa)  malkJ](ka)Ji(pa) — pdi(ka)J(pa)]
then
g (") = =x[ Ji(kr')Yi(ur) — D(k, g, a)Jy(kr') Jy(pr) | (70)
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4. TWO-DIMENSIONAL WELL POTENTIAL

This problem consists to consider in the Schrodinger equation, the potential
V(r) takes a negative value (—Vp) inside the disk of radius a and takes zero outside

the disk. To this problem, corresponds the following integral equation
(") = go(r1”) + Vo [ Conlr (¢, ).
0

Define as before two auxilliary functions g*(r) and g~ (r) as it follows

g7 (r)=A{ g(()r) TT>§&“
_ 0 r<a
g-(r) ={ —g(r) r>a

after what, the equation (71) becomes as

gt () — g (r ") = go(r ') + Vo / Coo(r, O)git (¢, 7)dC.

Now define Hankel’s transformation of a function g; as

o0

Gi(p, ) = | rJi(pr)gi(r,r")dr
/

and apply Hankel’s transformation to the equation (74)

oo

/rJl(pr)gf(r, 7")dr—/rJl(pr)gf(r7 r’)dr
0

oo

/ JzPTQOTT)dT‘F/TJz prdr/Cgorogl (¢ )
0

0
Using the same method as above, we obtain

. ~2Ji(pr') 2Vo

G;’(p, ') = Gp(p,r) = — k2 p2— k2 GlJr(P, )
2 2 /
A p” - A 2Ji(pr
e r/)[]f:;] Gy (pry = 2 kﬁ = B(p), 13 = ¥* + 2V}
the fractional decomposition gives
2 2 +
op _F + p— p+k
= == where F7(p) = d F~
PR P where (p) p—k’ an (p) = pryry

Respecting Hilbert’s theorem the functions G;r and éf are determinated by:

(71)

(72)

(73)

(75)
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for v <a
. F- B(r)d
Gl (p,r') = 271_(59) / 7 (T()T()T 7; )’ where L is a closed contour (81)
L
_ p+k / 2Ji(rr")dr (82)
2mi(p + p1) J (72 = k2) () (1 —p)
__ptk / 2J;(rr)dr (83)
2mi(p + pa) J (T +k)(T = pa)(7 —p)
apply the residue theorem at points ( 7 = p; and 7 = p inside the contour) we
e 280, b, 0)(p — B)uar’) | 2(or”)
A y K, @)D — r pr
G (pr) = =5 T+ (84)
(w1 + k) (p* — p1) p? — ui
The inverse Hankel’s transform applied to the last equation, for r <71’ < a, gives
“+oo +oo
gt () = 2Bl k)Ll / p(p — k‘)Jl(IQ”")dP 49 / pJi(pr') i (gr)dp
py+k (p* — pf) (p? — 1)
(85)
2B(k, p, @) Ji(par") Ji(par) /
= — Y, 86
el m (s Yi(yur) (56)
the same way for r’ > a
. Ft B(7)d
Gy (p,r') = 27r(lp) / o (7—()7—()7 7; >’ where L is a closed contour (87)
L
_ _p—m / 2J,(rr")dr (88)
2mi(p — k) J (7 4+ Fk)(7 = pa)(7 = p)
apply the residue theorem at points ( 7 = —k and 7 = p inside the contour) we
obtain
A 2 k — 1) Jy (kr' 2J,(pr’
G; (p’ ’f’/) — a(/’(‘h aa)(p /j/l) l( r ) l(pr ) (89)

(11 + k) (p? — k?) p*—k?
The inverse Hankel’s transform applied to the last equation, for the case r > r’ > a,
gives

+oo T
o 20(p, kya) (k) p(p — pa)Ji(pr)dp pJi(pr’)Ji(pr)dp
g ()= 1u1+k / (pQI*kQ) +2/W
(90)
_ 20k, @)kt ) hkr) ey (91)

(11 + k)
following the symmetry of the Green’s function, we take a, 5 as function of a, then
we obtain a sysem of two equations at r =1’ = a
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glJr+(a7 a) = glii(av a)
(dg," " (r,a)/dr)r=a = (dg; ~ (r,a)/dr)r=a (92)

that transforms as two coupled equations allowing to compute thereafter the coef-
ficients « and (3

—m(pur + k)Jy(ka)Yi(ka) + 2a(k, p1, a)Jy(ka)J,(ka)
= 2B(k, p1, a)Ji(pra) Ji(paa) — m(pa + k) Ji(p1a)Yi(paa) (93)

—7k(py + k)Y/ (ka)Jy(ka) + 2ka(k, u1, a)J] (ka)J;(ka)
= 2p1 B(k, p1, @) Ji(paa) Ji (pna) — pam(ps + k)Y, (p1a) Ji(pa) (94)
Solving the equations (93-94), we find

Bk, p,a) _ =2Ji(ka) + wati(ma)(kJ](ka)Yi(pma) = pa Ji(ka)Y/ (pna))

itk T 2radiua)pudi(ka) ] (ura) — k7] (ka) T (u1a)) (55)
and
all1.0) _ ~20i(ma) + radi(ha) 1T/ (1)Viko) — KA(ua)¥{(ka)) o
p 2 (ba) (b (ka) (116) — pr Jiha) ] (1)

by which we find the compact forms of g™+ (r,r") and g~ (r,7’) in the following
expressions

g+ ') = alilprilnr’) - S g a0
and ( )
- N o / ¢ kv Hi,a /
o) = —alYilkn) ) = S A (08)

We mention at this step, that the spectrum of the hamiltonian operator, is given by
the poles of g*+(r,7’). Then the spectrum is given by putting the denominator of
(95) equal zero. It is clearly that we have a transcendal equation to solve and then a
numerical method is required at this stage to find the spectrum of the Hamiltonian.
The cases 1’ < a <7 and r < a < 7' are also straightforward

G (') = —aYilkr) (') + 7[Qu I (k) i) (99)
where
_ Yi(ka) 4
Q= TJyka) ~ malyn Ji(ka) T} ) — ko (ka) i (ar )] (100)
and

g ") = = Dy (k") Yi(par) + 7[Q2) i (kr') Ty (par) (101)
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where

Qo= ____ : : (102)

Ji(pra)  walkJ](ka)Ji(pra) — prJi(ka)J](pia)]

4.1. Infinite well problem. The following results are very required by physists
(quantum mechanics) and mechanists. The two-dimensional problems serve as
model to approach some realistic situation in differents problems encountred in
physics and mechanics. For instance, in quantum mechanics, the energy spectra is
the standard quantity to explore as it is very usefull to get all physical properties
of the system. Usually, the physists solve the differential equation, as eigenvalues
problem. Here we show the power tool of the integral equation in the demand of
the eigen values of the Hamiltonian operator. Let the following integral equation

+oo

Gilr1') = Galr) + [ CGalr OV QIGi(€.1")de (103)
0

+00
Gilr ') = Gorir') + Vo [ CGa(rOB(C ~ a)Galc.r)dc (104)
Gi(r,r") = Go(r,7") + aVoGo(r,a)Gi(a,r") (105)

for r = a, we have

Gi(a,r") = Gola,r") + aVpGo(a, a)Gy(a,r") (106)
Gi(a,r") = _ Golar) (107)

- 1—aVyGo(a,a)
by substituting the last equation in (105) we get
aVoGo(r,a)Go(a,r")

n o /
Gi(r,r") = Go(r,7") + 1= aVoGo(a,a) (108)
when Vj goes to infinity
Go(r,a)Go(a,r")
AN ! _
Gi(r,r") = Go(r, ') —Go(a, ) (109)
This result is well known in differents papers [16]
The case r <1’ < a:
Go(r,r') = Ji(kr)H® (k') (110)
therefore @
1 Ji(kr)Jy(kr"YH, ™ (ka)
Gir.") = ) 1 () — 2RI y
Y (k
Gi(r,r") = Ji(kr)HO (k') = Jy (k) Jy (ke )[1 + i i “)] (112)
Jl(k‘a)
Y,
Golrr) = i (k) i) — SLED) 5y (113)

Jl(ka)
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the case " <r<a:

Gi(r,r") = Ji(kr"YH® (kr) — Jy(kr)Jy (kr")[1 + ZEEZZ;] (114)
then
Gi(r,v') = idy(ker)[Yi(kr) — ?ZEZZ? Ji(kr)] (115)

We retrieve then the results (113) and (115) by the use of the integral equation
theory. These results agree with the well known ones in the litterature [17]. In this
case, the spectrum is given by the poles of (115) that is to say by the root of the
transcendal equation J;(ka) = 0, a result well known in quantum mechanics.

5. CONCLUSION

In this work we have calculated the Green’s function relative to the time-
independent Schroedinger equation. The potential part in the Hamiltonian is a
piecewise continuous operator obeying to a circular symmetry. We have used trans-
formed the Schroedinger equation to an integral equation. As the problem have a
circular symmetry, the polar coordinates are the adequate one tu use for this kind
of problems. To solve the resulted integral equation, we have used successfully the
Bessel’s transform. We have, with the help of this technique, to retrieve the Green’s
function of two problems: the irst one is related to a potential equal zero operator
on a disk of radius ”a” and a positive constant V; outside this disk. The second is
related to a potential equal a negative constant —V{, on the disk of radius ”a” and
equal zero outside this disk. For each problem, we have calculated explicitely the
Green’s function in different regions of the plan. We have respected the boundary
conditions of the problems. The particular case of an infinite well has been derived
as a limit case of the second problem. The discrete spectra of the Hamiltonian
operator have been also derived.
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