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Abstract. A Smarandachely k-signed graph (Smarandachely k-marked graph) is an

ordered pair S = (G, σ) (S = (G,µ)) where G = (V,E) is a graph called underlying

graph of S and σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where

each ei ∈ {+,−}. Particularly, a Smarandachely 2-signed graph or Smarandachely

2-marked graph is abbreviated a signed graph or a marked graph. The common-

edge graph of a graph G = (V,E) is a graph CE(G) = (VE , EE), where VE =

{A ⊆ V ; |A| = 3, and A is a connected set} and two vertices in VE are adjacent if

they have an edge of G in common. Analogously, one can define the common-edge

signed graph of a signed graph S = (G, σ) as a signed graph CE(S) = (CE(G), σ′),

where CE(G) is the underlying graph of CE(S), where for any edge (e1e2, e2e3)

in CE(S), σ′(e1e2, e2e3) = σ(e1e2)σ(e2e3). It is shown that for any signed graph

S, its common-edge signed graph CE(S) is balanced. Further, we characterize

signed graphs S for which S ∼ CE(S), S ∼ L(S), S ∼ J(S), CE(S) ∼ L(S) and

CE(S) ∼ J(S), where L(S) and J(S) denotes line signed graph and jump signed

graph of S respectively.
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Abstrak. Sebuah graf bertanda-k Smarandachely (Smarandachely k-marked

graph) adalah sebuah pasangan terurut S = (G, σ) (S = (G,µ)) dimana G =

(V,E) adalah graf pokok (underlying graph) dari S dan σ : E → (e1, e2, ..., ek)

(µ : V → (e1, e2, ..., ek)) adalah sebuah fungsi, dimana tiap ei ∈ {+,−}. Kemu-

dian, sebuah graf bertanda-k Smarandachely disingkat dengan sebuah graf bertanda

marked graph. Graf sekutu-sisi dari sebuah graf G = (V,E) adalah sebuah graf

CE(G) = (VE , EE), dimana VE = {A ⊆ V ; |A| = 3, dan A adalah sebuah him-

punan terhubung} dan dua titik di VE bertetangga jika mereka mempunyai se-

buah sisi sekutu di G. Secara analog, kita dapat mendefinisikan graf bertanda

sekutu-sisi dari sebuah graf bertanda S = (G, σ) sebagai sebuah graf bertanda

CE(S) = (CE(G), σ′), dimana CE(G) adalah graf pokok dari CE(S), dimana untuk

suatu sisi (e1e2, e2e3) di CE(S), σ′(e1e2, e2e3) = σ(e1e2)σ(e2e3). Pada paper ini,

akan ditunjukkan bahwa untuk setiap graf bertanda S, graf bertanda sekutu-sisi

CE(S) adalah seimbang. Lebih jauh, kami mengkarakterisasi graf bertanda S un-

tuk S ∼ CE(S), S ∼ L(S), S ∼ J(S), CE(S) ∼ L(S) dan CE(S) ∼ J(S), dimana

L(S) dan J(S) masing-masing menyatakan graf bertanda garis dan graf bertanda

lompat dari S.

Kata kunci: Graf bertanda-k Smarandachely, seimbang, pertukaran, graf bertanda

sekutu-sisi, graf bertanda garis, graf bertanda lompat.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in
graph theory the reader is to refer to [7]. We consider only finite, simple graphs
free from self-loops.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an or-
dered pair S = (G, σ) (S = (G,µ)) where G = (V,E) is a graph called underlying
graph of S and σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where
each ei ∈ {+,−}. Particularly, a Smarandachely 2-signed graph or Smarandachely
2-marked graph is called abbreviated a signed graph or a marked graph. A signed
graph is an ordered pair S = (G, σ), where G = (V,E) is a graph called underlying
graph of S and σ : E → {+,−} is a function. A signed graph S = (G, σ) is balanced
if every cycle in S has an even number of negative edges (See [8]). Equivalently,
a signed graph is balanced if product of signs of the edges on every cycle of S is
positive.

A marking of S is a function µ : V (G)→ {+,−}; A signed graph S together
with a marking µ is denoted by Sµ.

The following characterization of balanced signed graphs is well known.
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Proposition 1.1. (E. Sampathkumar [10]) A signed graph S = (G, σ) is balan-
ced if and only if there exists a marking µ of its vertices such that each edge uv in
S satisfies σ(uv) = µ(u)µ(v).

The idea of switching a signed graph was introduced by Abelson and Rosen-
berg [1] in connection with structural analysis of marking µ of a signed graph S.
Switching S with respect to a marking µ is the operation of changing the sign of
every edge of S to its opposite whenever its end vertices are of opposite signs. The
signed graph obtained in this way is denoted by Sµ(S) and is called µ-switched
signed graph or just switched signed graph. Two signed graphs S1 = (G, σ) and
S2 = (G′, σ′) are said to be isomorphic, written as S1

∼= S2 if there exists a graph
isomorphism f : G → G′ (that is a bijection f : V (G) → V (G′) such that if uv
is an edge in G then f(u)f(v) is an edge in G′) such that for any edge e ∈ G,
σ(e) = σ′(f(e)). Further a signed graph S1 = (G, σ) switches to a signed graph
S2 = (G′, σ′) (or that S1 and S2 are switching equivalent) written S1 ∼ S2, when-
ever there exists a marking µ of S1 such that Sµ(S1) ∼= S2. Note that S1 ∼ S2

implies that G ∼= G′, since the definition of switching does not involve change of
adjacencies in the underlying graphs of the respective signed graphs.

Two signed graphs S1 = (G, σ) and S2 = (G′, σ′) are said to be weakly
isomorphic (see [17]) or cycle isomorphic (see [18]) if there exists an isomorphism
φ : G→ G′ such that the sign of every cycle Z in S1 equals to the sign of φ(Z) in
S2. The following result is well known (See [18]):

Proposition 1.2. (T. Zaslavasky [18]) Two signed graphs S1 and S2 with the
same underlying graph are switching equivalent if and only if they are cycle isomor-
phic.

2. Common-edge Signed Graph of a Signed Graph

In [4], the authors define path graphs Pk(G) of a given graph G = (V,E) for
any positive integer k as follows: Pk(G) has for its vertex set the set Pk(G) of all
distinct paths in G having k vertices, and two vertices in Pk(G) are adjacent if they
represent two paths P,Q ∈ Pk(G) whose union forms either a path Pk+1 or a cycle
Ck in G.

Much earlier, the same observation as above on the formation of a line graph
L(G) of a given graph G, Kulli [9] had defined the common-edge graph CE(G) of
G as the intersection graph of the family P3(G) of 2-paths (i.e., paths of length
two) each member of which is treated as a set of edges of corresponding 2-path; as
shown by him, it is not difficult to see that CE(G) ∼= L2(G), for any isolate-free
graph G, where L(G) := L1(G) and Lt(G) denotes the tth iterated line graph of G
for any integer t ≥ 2.
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In this paper, we extend the notion of CE(G) to realm of signed graphs: Given
a signed graph S = (G, σ) its common-edge signed graph CE(S) = (CE(G), σ′) is
that signed graph whose underlying graph is CE(G), the common-edge graph of G,
where for any edge (e1e2, e2e3) in CE(S) , σ′(e1e2, e2e3) = σ(e1e2)σ(e2e3). This
differs from the common-edge signed graph defined in [15].

Further a signed graph is a common-edge signed graph if there exists a signed
graph S′ such that S ∼= CE(S′).

Proposition 2.1. For any signed graph S = (G, σ), its common-edge signed graph
CE(S) is balanced.

Proof. Let σ
′

denote the signing of CE(S) and let the signing σ of S be treated
as a marking of the vertices of CE(S). Then by definition of CE(S) we see that
σ′(e1e2, e2e3) = σ(e1e2)σ(e2e3), for every edge (e1e2, e2e3) of CE(S) and hence, by
Proposition 1.1, the result follows. �

For any signed graph S = (G, σ), its common edge signed graph is balanced.
However the converse need not be true. The following result gives a sufficient
condition for a signed graph to be a common-edge signed graphs.

Theorem 2.2. A connected signed graph S = (G, σ) is a common-edge signed graph
if there exists a consistent marking µ of vertices of S such that for any edge uv,
σ(uv) = µ(u)µ(v) and its underlying graph G is a common-edge graph. Conversely
if S is a common edge signed graph, then S is balanced.

Proof. Suppose that there exists a consistent marking µ of vertices of S such that for
any edge uv, σ(uv) = µ(u)µ(v) and G is a common-edge graph. Then there exists
a graph H such that CE(H) ∼= G. Now consider the signed graph S′ = (L(H), σ′),
where for any edge e = (uv, vw) in L(H), σ′(e) is the marking of the corresponding
vertex uvw in CE(H) = G. Then S′ is balanced since the edges in any cycle C of
S′ which corresponds to a cycle in S and the marking µ is a consistent marking.
Thus S′ is a line signed graph. That is there exists a signed graph S′′ such that
S′′ ∼= L(S′). Then clearly CE(S) ∼= S′′.

Conversely, suppose that S = (G, σ) is a common edge signed graph. That
is there exists a signed graph S′ = (G′, σ′) such that CE(S) ∼= S′. Consider
L(S′) = (L(G′), σ′′) where σ′′(uv, vw) = σ(uv)σ(vw). Now consider the marking
µ : V (G) → {+,−} defined by µ(uvw) = σ′′(uv, vw). Then by definition for
any edgee = (uvw, vwx) in S, where uv, vw,wx ∈ E(G′), σ(e) = σ′(uv)σ′(wx) =
σ′(uv)σ′(vw)σ′(vw)σ′(wx) = σ′′(uv, vw)σ′′(vw,wx) = µ(uvw)µ(vwx). Hence by
Proposition 1.1, S is balanced. �

For any positive integer k, the kth iterated common-edge signed graph, CkE(S)
of S is defined as follows:

C0
E(S) = S, CkE(S) = CE(Ck−1

E (S))
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Corollary 2.3. For any signed graph S = (G, σ) and any positive integer k, CkE(S)
is balanced.

In [15], the author characterized those graphs that are isomorphic to their corres-
ponding common-edge graphs.

Proposition 2.4. (D. Sinha [15]) For a simple connected graph G = (V,E),
G ∼= CE(G) if and only if G is a cycle.

We now characterize those signed graphs that are switching equivalent to
their common-edge signed graphs.

Proposition 2.5. For any signed graph S = (G, σ), S ∼ CE(S) if and only if S
is a balanced signed graph which is 2-regular.

Proof. Suppose S ∼ CE(S). This implies, G ∼= CE(G) and hence by Proposition
2.4, we see that the graph G is 2-regular. Now, if S is any signed graph with under-
lying graph as 2-regular, Proposition 2.1 implies that CE(S) is balanced and hence
if S is unbalanced and its common-edge signed graph CE(S) being balanced can
not be switching equivalent to S in accordance with Proposition 1.2. Therefore, S
must be balanced.

Conversely, suppose that S balanced 2-regular signed graph. Then, since
CE(S) is balanced as per Proposition 2.1 and since G ∼= CE(G) by Proposition 2.4,
the result follows from Proposition 1.2 again. �

Corollary 2.6. For any signed graph S = (G, σ) and for any positive integer k,
S ∼ CkE(S) if and only if S is a balanced signed graph which is 2-regular.

3. Line Signed Graphs

The line graph L(G) of graph G has the edges of G as the vertices and two
vertices of L(G) are adjacent if the corresponding edges of G are adjacent. The
line signed graph of a signed graph S = (G, σ) is a signed graph L(S) = (L(G), σ′),
where for any edge ee′ in L(S), σ′(ee′) = σ(e)σ(e′). This concept was introduced
by M. K. Gill [6] (See also E. Sampathkumar et al. [12, 13]).

Proposition 3.1. (M. Acharya [2]) For any signed graph S = (G, σ), its line
signed graph L(S) is balanced.

For any positive integer k, the kth iterated line signed graph, Lk(S) of S is
defined as follows:

L0(S) = S, Lk(S) = L(Lk−1(S))

Corollary 3.2. (P. Siva Kota Reddy & M. S. Subramanya [16]) For any
signed graph S = (G, σ) and for any positive integer k, Lk(S) is balanced.
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We now characterize those signed graphs that are switching equivalent to
their line signed graphs.

Proposition 3.3. For any signed graph S = (G, σ), S ∼ L(S) if and only if S is
a balanced signed graph which is 2-regular.

Proof. Suppose S ∼ L(S). This implies, G ∼= L(G) and hence G is 2-regular. Now,
if S is any signed graph with underlying graph as 2-regular, Proposition 3.1 implies
that L(S) is balanced and hence if S is unbalanced and its line signed graph L(S)
being balanced can not be switching equivalent to S in accordance with Proposition
1.2. Therefore, S must be balanced.

Conversely, suppose that S is balanced 2-regular signed graph. Then, since
L(S) is balanced as per Proposition 3.1 and since G ∼= L(G), the result follows
from Proposition 1.2 again. �

Corollary 3.4. For any signed graph S = (G, σ) and for any positive integer k,
S ∼ Lk(S) if and only if S is a balanced signed graph which is 2-regular.

Proposition 3.5. (D. Sinha [15])
For a connected graph G = (V,E), L(G) ∼= CE(G) if and only if G is cycle or K1,3.

Theorem 3.6. For any graph G, CE(G) ∼= Lk(G) for some k ≥ 3, if and only if
G is either a cycle or K1,3.

Proof. Suppose that CE(G) ∼= Lk(G) for some k ≥ 3. Since CE(G) ∼= L2(G), we ob-
serve that Lk(G) = Lk−2(L2(G)) = Lk−2(CE(G)) and so CE(G) ∼= Lk−2(CE(G)).
Hence, by Proposition 3.5, CE(G) must be a cycle. But for any graph G, L(G) is a
cycle if and only if G is either cycle or K1,3. Since K1,3 is a forbidden to line graph
and L(G) is a line graph, G 6= K1,3. Hence L(G) must be a cycle. Finally L(G) is
a cycle if and only if G is either a cycle or K1,3.

Conversely, if G is a cycle Cr , of length r, r ≥ 3 then for any k ≥ 2, Lk(G)
is a cycle and if G = K1,3 then for any k ≥ 2, Lk(G) = C3. Since CE(G) = L2(G),
CE(G) = Lk(G) for any k ≥ 3. This completes the proof. �

We now characterize those line signed graphs that are switching equivalent
to their common-edge signed graphs.

Proposition 3.7. For any signed graph S = (G, σ), L(S) ∼ CE(S) if and only if
G is a cycle or K1,3.

Proof. Suppose L(S) ∼ CE(S). This implies, L(G) ∼= CE(G) and hence by Propo-
sition 3.5, we see that the graph G must be isomorphic to either 2-regular or K1,3.

Conversely, suppose that G is a cycle or K1,3. Then L(G) ∼= CE(G) by
Proposition 3.5. Now, if S any signed graph on any of these graphs, By Proposi-
tions 2.1 and 3.1, CE(S) and L(S) are balanced and hence, the result follows from
Proposition 1.2. �
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Corollary 3.8. For any signed graph S = (G, σ) and for any integers k ≥ 3,
CE(S) ∼ Lk(S) if and only if G is 2-regular.

4. Jump Signed Graphs

The jump graph J(G) of a graph G = (V,E) is L(G), the complement of the
line graph L(G) of G (See [5] and [7]).The jump signed graph of a signed graph
S = (G, σ) is a signed graph J(S) = (J(G), σ′), where for any edge ee′ in J(S),
σ′(ee′) = σ(e)σ(e′). This concept was introduced by M. Acharya and D. Sinha [3]
(See also E. Sampathkumar et al. [11]).

Proposition 4.1. (M. Acharya and D.Sinha [3])
For any sigraph S = (G, σ), its jump sigraph J(S) is balanced.

For any positive integer k, the kth iterated jump signed graph, Jk(S) of S is
defined as follows:

J0(S) = S, Jk(S) = J(Jk−1(S))

Corollary 4.2. For any signed graph S = (G, σ) and for any positive integer k,
Jk(S) is balanced.

In the case of graphs the following result is due to Simic [14] (see also [5]) where
H ◦K denotes the corona of graphs H and K [7].

Proposition 4.3. (S. K. Simic [14])
The jump graph J(G) of a graph G is isomorphic with G if and only if G is either
C5 or K3 ◦K1.

Lemma 4.4. (Kulli [9])
For a graph G = (V,E) with n vertices and m edges, the number of vertices in

L2(S) is
∑
u∈V

(
deg(v)

2

)
Lemma 4.5. (D. Sinha [15])
For any simple connected graph G = (V,E) on n ≥ 2 vertices,

|E(G)| =
∑
v∈V

(
deg(v)

2

)
if and only if G is a cycle or a 3-spider.

Proposition 4.6. For a connected graph G = (V,E), J(G) ∼= CE(G) if and only
if G is C5.

Proof. Suppose that J(G) ∼= CE(G). Then the number of vertices in J(G) must be
equal to the number of vertices in CE(G). By Lemma 4.4, the number of vertices

in CE(G) is
∑
u∈V

(
deg(v)

2

)
. Now, since both J(G) and L(G) have same number of
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vertices whence by Lemma 4.5, G must either be a cycle or a 3-spider.
We note that L2(G) ∼= CE(G) and J(G) = L(G). Hence J(L(G)) ∼= L(G). By
Proposition 4.3, it follows that L(G) is either C5 or K3oK1. Now, L(G) 6= K1,3,
since K1,3 is not a line graph. Hence G ∼= C5. The converse is obvious.

�

We now characterize those jump signed graphs that are switching equivalent
to their common-edge signed graphs.

Proposition 4.7. For any signed graph S = (G, σ), J(S) ∼ CE(S) if and only if
G ∼= C5 .

Proof. Suppose J(S) ∼ CE(S). This implies, J(G) ∼= CE(G) and hence by Propo-
sition 4.6, we see that G ∼= C5.

Conversely, suppose G ∼= C5. Then J(G) ∼= CE(G) by Proposition 4.6.
Now, if S is a signed graph with underlying graph as C5, by Propositions 2.1 and
4.1, CE(S) and J(S) are balanced and hence, the result follows from Proposition
1.2. �

The following result is a stronger form of the above result.

Theorem 4.8. A connected graph satisfies J(S) ∼= CE(S) if and only if G is C5.

Proof. Clearly CE(C5) ∼= J(C5). Consider the map f : V (CE(G)) → V (J(G))
defined by f(u1u2u3, u2u3u4) = (u1u2, u3u4) is an isomorphism. Let σ be any
signing C5 . Let e = (v1v2v3, v2v3v4) be an edge in CE(C5). Then sign of the
edge e in CE(G) is the σ(u1u2)σ(u3u4) which is the sign of the edge (u1u2, u3u4)
in J(C5). Hence the map f is also a signed graph isomorphism between J(S) and
CE(S). �
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