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Abstract. In this paper wavelet solutions of extended Sideways and non stan-

dard parabolic equations have been analyzed along with stabilization and errors

estimation.
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Abstrak. Di dalam paper ini dianalisa kestabilan dan estimasi kesalahan untuk

penyelesaian wavelet dari persamaan parabolik non standar yang diperluas satu sisi.
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1. Sideways Heat Equation: An Introduction

Ill-posed problems have always been in the focus of industrial applications.
An inverse ill-posed problem is one for which a small perturbation on the boundary
specification (g) can amount to a big alteration on its solution, if it exists. That
is, if the solution exists, it does not depend continuously on data (g). Meyer
multiresolution analysis plays a key role in the solution of parabolic heat conduction
problems.

Organization of paper is as follows. Wavelet regularized and Galerkin solu-
tions of Standard Sideways heat equation (SHE) along with stability and errors
estimation has been reviewed as first part. In the second part, wavelet regulariza-
tion of extended SHE has been obtained and errors have been estimated. Third
part introduces inequality based wavelet-Galerkin solution of extended SHE. In it
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numerical solution of non standard parabolic equations of extended SHE has been
subjected to stability consideration. Fourth part is devoted to test problem while
fifth part is the conclusion. At the end set of references are listed.

Consider the following one dimensional parabolic heat conduction problem in
quarter plane (x ≥ 0, t ≥ 0), assuming that body is large,





uxx = ut, x ≥ 0, t ≥ 0;
u(x, 0) = 0, x ≥ 0;
u(1, t) = g(t), t ≥ 0, u|x→∞ bounded.

(1)

Assumption u|x→∞ bounded guarantee the uniqueness of solution. A solution
u(x, t) ∈ L2(0,∞) for x ≥ 0 can be obtained from initial temperature data g.
This equation called Sideways heat equation, is an inverse ill posed problem. This
equation is a model of a situation where one wants to determine the surface heat
flux (temperature) on the both sides of a heat conducting body from measured
transient temperature at a fixed location inside the body. The simplest example
can of lacquer coating to be applied on one side of a particle board. The surface
under coating is inaccessible to measurement due to extreme heat condition. Inside
temperature gε is measured at x = 1 indirectly through a thermocouple inserted
into plate through other side. Based on internal measurements, surface (x = 0)
temperature is computed.

But even with precautions, measurement errors are bound to occur in g. Let
gε ∈ L2(R) be the perturbed data such that data error

‖g − gε‖ ≤ ε (2)

for some bound ε > 0. Impose a priori bound on the solution at x = 0, i.e.,

‖u(0, t)‖ ≤ M. (3)

The problem 1 can now be moduled as





uxx = ut, x ≥ 0, t ≥ 0;
u(x, 0) = 0, x ≥ 0;
‖u(1, t)− gε‖ ≤ ε

‖u(0, t)‖ ≤ M

(4)

The problem now becomes well posed, that is, stable in the sense that for any two
solutions u1 and u2

‖u1(x, t)− u2(x, t)‖ ≤ 2M1−xεx, 0 ≤ x < 1.

This was proved by Levine in 1983. The problem 4 was approximated for the
first time by [18] and [11] by multiscale analysis and wavelet techniques of measured
data. In frequency space, u(x, t), g(t), gε(t) extended to whole of t-axis by defining
u(x, t), g(t), f(t) = u(0, t) ∈ L2(R) to be zero for t < 0.
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Although we intend to recover x > 0 for 0 ≤ x < 1, the problem specification
includes the heat equation for x > 1 together with boundedness at infinity. To
obtain u(x, t) for x > 1, ux(1, t) is determined also. Equation 4 together with
ux(1, t) is a Cauchy problem.

Mattos and Lopes [14] gave another version of 1





k(x)uxx(x, t) = ut(x, t), t ≥ 0, 0 ≤ x < 1 [0 < α ≤ k(x) < ∞]
u(0, t) = g(t)
ux(0, t) = 0

where k(x) is smooth. While Elden et al. [4, 3] gave yet another type:





(k(x)ux(x, t))x = ut(x, t), t ≥ 0, 0 ≤ x < 1 [0 < α ≤ k(x) < ∞];
u(0, t) = g(t)
ux(0, t) = 0

There are quite other methods available for solving various parabolic heat
conduction equations as difference approximation, optimal filtering, optimal ap-
proximation, method of lines, dual least square, singular value analysis and spectral
and Tikhonov regularizations. See, for details, [22], [13], [5, 6], [20], [8, 10] and [24].

Taking Fourier transform (FT) on both sides of 1 w.r.t. t, the frequency space
solution û(x, ω) ∈ L2(R) is

û(x, ω) = e(1−x)
√

iω ĝ(ω) (5)

Also f̂(ω) = û(0, ω) = e
√

iω ĝ(ω). Since
√

iω tends to infinity as |ω| → ∞, the
problem thus is ill-posed. Further, the existence of the solution in L2(R) depends
on fast decay of ĝε at high frequencies. The solution u(x, t) to 1 is

u(x, t) =
∫ ∞

−∞
eiωte(1−x)

√
iω ĝ(ω)dω. (6)

By Parseval formula,

‖u(x, t)‖2 = ‖û(x, ω)‖2 =
∫ ∞

−∞
e(1−x)

√
2|ω||ĝ(ω)|2dω,

where
√
|ω|
2 is real part of

√
iω. This shows that ĝ(ω) has to decay rapidly as

ω →∞. If the initial data g is noisy, the ĝ(ω) will have high frequency components
and are to be cut by the Meyer multiresolution analysis.

Meyer wavelets have compact support in frequency domain (but not in time
domain) and decay very fast. Orthogonal projection on to Meyer scaling spaces
prevent high frequency noise from destroying the numerical solution i.e. perturba-
tion. Regularize the problem by eliminating higher frequencies from the solution 6
by taking only |ω| < ωmax. The regularized solution is
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ũ(x, t) =
∫ ∞

−∞
eiωte(1−x)

√
iω ĝε(ω)χmaxdω, (7)

where χmax is the characteristic function of the interval [−ωmax, ωmax].
Here we present some error estimates from [2].

Theorem 1.1. Suppose that we have two regularized solutions ũ1 and ũ2 defined
by 7 with data g1 and g2 satisfying ‖g1−g2‖ < ε. If we select ωmax = 2

(
log

(
M
ε

))2
,

then we get the error bound

‖ũ1(x, t)− ũ2(x, t)‖ < M1−xεx.

Theorem 1.2. Let u and ũ defined be the solutions of 6 and 7 with the same exact
data g and let ωmax = 2

(
log

(
M
ε

))2
. Then

‖u(x, t)− ũ(x, t)‖ < M1−xεx.

Theorem 1.3. Suppose that u is given by 6 with exact data g and that ũ given by
7 with measured data gε. Select ωmax = 2

(
log

(
M
ε

))2
, then we get the error bound

‖u(x, t)− ũ(x, t)‖ < 2M1−xεx.

Meyer Multiresolution Analysis and Wavelet Regularization (MRA)
Let αj = 2jα0, where α0 = 2

3π, j ∈ Z. The FT of Meyer scaling is given by
[1]

ϕ̂(ω) =





1, |ω| ≤ α0;

cos
[

π
2 ν

(
|ω|
2α − 1

)]
, α0 ≤ |ω| ≤ α1;

0, otherwise.

where ν is Ck differentiable function (0 ≤ k ≤ ∞) satisfying

ν(x) =

{
1, x ≤ 0;
0, x ≥ 0.

with additional condition ν(x) + ν(1− x) = 1.
Clearly ϕ̂ is a Ck function. Corresponding wavelet is given by

ψ̂(ω) =





eiω/2 sin
[

π
2 ν

(
|ω|
2α − 1

)]
, α0 ≤ |ω|;

eiω/2 cos
[

π
2 ν

(
|ω|
2α − 1

)]
, α0 ≤ |ω| ≤ α1;

0, otherwise.
suppϕ̂ = [−α1, α1]

suppψ̂ = [−α2,−α0] ∪ [α0, α2]

MRA {Vj}∈Z of Meyer wavelet is generated by
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Vj = {ϕj,k, k ∈ Z}; ϕj,k = 2j/2ϕ(2jx− k), j, k ∈ Z

ϕ̂j,k =
∫

R

ϕj,ke−ixωdx = 2−j/2e−ik2−jωϕ̂(2−jω).

Also ψj,k(x) = 2j/2ψ(2jx − k), j, k ∈ Z constitutes an orthonormal basis of Wj ∈
L2(R)(Vj+1 = Vj ⊕Wj).

ψ̂j,k = 2−j/2e−ik2−jωψ̂(2−jω)

suppϕ̂j,k = [−αj+1, αj+1], k ∈ Z

suppψ̂j,k = [−αj+2,−αj ] ∪ [αj , αj+2], k ∈ Z

Let Πj and Pj (fixed j ∈ N) be the orthogonal projections of L2(R) onto Vj

and Wj respectively. Then for h,w ∈ L2(R)

h = Πjh(t) =
∑

k∈Z

〈h, ϕlk〉ϕlk(t), l ≤ j

w = Pjw(t) =
∑

k∈Z

〈h, ψlk〉ψlk(t), l ≤ j

The corresponding orthogonal projections in frequency space follow as:

Π̂j : L2(R) → V̂j = span{ϕ̂jk}k∈Z

P̂j : L2(R) → Ŵj = span{ψ̂jk}k∈Z

According to 5, for any function g ∈ L2(R) such that its FT ĝ belongs to Vj ,
there exists a solution û with boundary condition û(1, ω) = ĝ(ω)(ĝ(ω) = ĥ(ω)). The
whole mechanism suggests for a Fourier regularization process involving a family
of problems in the frequency space parameterized by j ∈ Z defined by

{
ûxx(x, ω) = iωû(x, ω), ω ∈ R, 0 ≤ x < ∞;
û(1, ω) = Πj ĝε(ω), t ≥ 0, û|x→∞ bounded. (8)

This has a unique solution since support of Πj ĝε is compact. The solution is

û(x, ω) = e(1−x)
√

iωΠj ĝε(ω). (9)

For wavelet regularization,

{
ûxx(x, ω) = iωû(x, ω), ω ∈ R, 0 ≤ x < ∞;
û(1, ω) = Pj ĝε(ω), t ≥ 0, û|x→∞ bounded. (10)

The unique solution û does not have any high frequency components as support of
Pj ĝε is compact. The solution in this case is
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û(x, ω) = e(1−x)
√

ωPj ĝε(ω). (11)

Notice that

ĝ = Π̂j ĝ + (1− Π̂j)ĝ = Π̂j ĝ + P̂j ĝ =
∑

k∈Z

〈ĝ, ϕ̂lk〉ϕ̂lk +
∑

l≥j

∑

k∈Z

〈ĝ, ψ̂lk〉ψ̂lk

This implies

Π̂j ĝ = ĝ for |ω| ≤ αj or |ω| ≥ αj+2 since ψ̂j,k(ω) = 0 ∀l ≤ j

P̂j ĝ = ĝ for |ω| ≥ αj+1

P̂j ĝ = 0 for l > j and |ω| ≤ αj+1

Pj can be considered as a low pass filter as frequencies higher than αj+1 are filtered
away.

Theorem 1.4. [18] Let gε be the measured data satisfying 2. Let uεj(x, t) denote
the inverse Fourier transform of the solution of 8 with g = gε. If j = j(ε) is such
that

εe
√

αj+1 ≤ M and j(ε) →∞ when ε → 0,

then for 0 ≤ x ≤ 1

‖u(x, t)− uεj(x, t)‖ → 0 when ε → 0,

and, moreover,

‖uεj(x, t)− u(x, t)‖2 ≤ M2(1−x)
[
ε2x + ε2x

j

]
, where εj = Me−

√
αj+1 (12)

Theorem 1.5. [18] Let gε be the measured data satisfying 2. Let vεj(x, t) denote
the inverse Fourier transform of the solution of 12 with g = gε. If j = j(ε) is such
that

εe
√

αj+1 ≤ M and j(ε) →∞ when ε → 0,

then for x >
√

2−1√
2

‖vεj(x, t)− v(x, t)‖ → 0 when ε → 0,

and, the following inequality holds:

‖u(x, t)− vεj(x, t)‖2 ≤ 2M2(1−x)
[
2ε2x + ε2x

j

]
+ 2CjM

2(1−√2/2−x)ε
2(x+

√
2/2−1)

j ,

where εj = Me−
√

αj+1 and {Cj} is a certain sequence converging to 0 as j →∞.

Theorem 1.6. [18] Let gε be the measured data satisfying 2. Let {xk} be the
decreasing sequence of knots that holds:

1 > x0 >
(
1− 2−

1
2

)
x1 > · · · > xk−1 > xk >

(
1− 2−

k+1
2

)
xk−1, k = 1, 2, · · ·

Let vεj(x, t) be defined by the recurrence relation
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v̂εj(x, ω) =

{
e(1−x)

√
iωPj ĝε(ω), x ∈ [x0, 1);

e(xk−1−x)
√

iωPj−kv̂εj(xk−1, ω), x ∈ [xk, xk−1), k = 1, 2, · · · .
Then for any x ∈ (0, 1)

‖vεj(x, t)− u(x, t)‖ → 0 when ε → 0.

Remarks. According to [9] interval (0,1) is to be replaced by (e∗, 1), where
e∗ = limk→∞ ek, ek =

(
1− 2−

1
2

) (
1− 2−

2
2

)
· · ·

(
1− 2−

k
2

)
and 0.037513 < e∗ <

0.037514.
Galerkin Solution of 1 in Scaling Spaces Vj

Approximating solution of 1 in scaling spaces

〈uxx − ut, ϕjk〉 = 0,

〈u(0, t), ϕjk〉 = 〈Pjg, ϕjk〉, (13)
〈ux(0, t), ϕjk〉 = 〈0, ϕjk〉, k ∈ Z.

where ϕjk is the orthonormal basis of Vj given by the scaling function ϕ. Letting
the approximate solution uj(x, t) ∈ Vj be in the form of variable separable

uj(x, t) =
∑

l∈Z

Wl(x)ϕjl(t).

The equation 13 reduces to infinite dimensional differential equation ??

d2W

dx2
= Dj(x)W with W (1) = γ,W ′(1) = ν, (14)

where γ = Pjg =
∑

l∈Z γlϕjl =
∑

l∈Z〈g, ϕjl〉ϕjl. ν = Pjh =
∑

l∈Z νlϕjl =
∑

l∈Z〈ν, ϕjl〉ϕjl. Here ‖Dj(x)‖ ≤ π2−j . Solution W = γe((1−x)
√

Dj) for exact
data γ.

Theorem 1.7. [19] Let uj and ũj be solutions in Vj of the approximating problem
1 with g = Pjg for the boundary specifications g and g̃ respectively. If ‖g − g̃‖ < ε,
then

‖uj(x, t)− ũj(x, t)‖ ≤ e

(
(1−x)

√
1
22−jπ

)
.

For j = j(ε) such that 2−j ≤ 2
π

(
log M

ε

)
, we have

‖uj(x, t)− ũj(x, t)‖ ≤ εxM1−x.

Theorem 1.8. [19] If u is a solution of problem 1, then

‖u(x, t)− Pju(x, t)‖ ≤ Me

⌊
−x
√

1
3 π2−j

⌋
,

For j such that 2−j ≤ 3
π log ε−1, we have

‖u(x, t)− Pju(x, t)‖ ≤ Mε−x2
.
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2. Wavelet Regularization of Extended Sideways Heat Equation

Now we find wavelet regularization of the other version of sideways heat
conduction problem, the extended SHE. Consider the following heat conduction
problem [Mattos et al.]:





k(x)uxx(x, t) = ut(x, t), [0 < α ≤ k(x) < ∞];
u(0, t) = g(t),
ux(0, t) = 0,

(15)

where g ∈ L2(R) is such that the measured data gε satisfies ‖g − gε‖ < ε for some
constant ε > 0, and 0 < α ≤ k(x) < ∞, k continuous. To find u ∈ L2(R) subject
to a priori bound ‖F‖ = ‖u(1, t)‖ ≤ M , and u|x→∞ bounded.

Define u, g, F to the whole t-axis by defining them to be zero for t < 0.
Taking FT of 15 w.r.t. t,

k

∫ ∞

0

e−iωtuxxdt =
∫ ∞

0

e−iωtutdt or ûxx =
iω

k(x)
û.

This implies

û(x, ω) = Aex
√

iω/k + Be−x
√

iω/k (16)
But û(0, ω) = ĝ(ω), and so

ĝ(ω) = A + B (17)

Differentiating 16 w.r.t. x,

ûx(x, ω) =
iω

k

[
Aex

√
iω/k −Be−x

√
iω/k

]
. (18)

Using ûx(0, ω) = 0 in 18,
0 = A−B. (19)

From 17 and 19,

A = B =
1
2
ĝ(ω).

So, the frequency space solution û(x, ω) ∈ L2(R) is

û(x, ω) = cosh

√
iω

k
xĝ(ω) (20)

F̂ = û(1, ω) = cosh

√
iω

k
ĝ(ω)

Parseval’s formula yields

‖u‖2 = ‖û‖2 =
∫ ∞

−∞

∣∣∣∣∣cosh

√
iω

k
ĝ(ω)

∣∣∣∣∣

2

dω

showing the rapid decay of ĝ(ω) at high frequencies. Fourier regularized solution

û(x, ω) = cosh

√
iω

k
xΠ̂j ĝε(ω).
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Wavelet regularized solution of (22 is)

û(x, ω) = cosh

√
iω

k
xP̂j ĝε(ω).

Stability and Error Estimation
We state and approve the following theorems:

Theorem 2.1. Let g be the true data of the problem 15 and gε the noisy measured
data satisfying ‖g − gε‖ ≤ εfor some ε > 0. Let there exist a priory bound ‖F‖ =

‖ cosh
√

iω
k ĝ‖ ≤ M . Further, assume that j = j(ε) be such ε cosh

√
iαj+2

k ≥ M .
Then

‖ĝ − P̂jgε‖ = ‖g − Pjgε‖ ≤ M

cosh
√

iαj+2
k

+


Cj


ε2 +

M2

cosh
√

iαj+2
k







1
2

where Cj is a certain sequence converging to zero as j →∞.

Lemma 2.2. ‖ĝ −Πj ĝε‖2 ≤ M2

cosh2
√

iαj+2
k

Proof.

‖ĝ −Πj ĝε‖2 =
∫ ∞

−∞
|ĝ −Πj ĝε|2dω

=
∫

|ω|≤αj+2

|ĝ −Πj ĝε|2dω +
∫

|ω|≥αj+2

|ĝ −Πj ĝε|2dω

=
∫

|ω|≥αj+2

|ĝ|2dω =
∫

|ω|≥αj+2

|F̂ |2

cosh2
√

iω
k

dω ≤ M2

cosh2
√

iαj+2
k

.

¤

Lemma 2.3. ‖Πj ĝε − Pj ĝε‖2 ≤ Cj

(
ε2 + M2

cosh2
√

iαj+2
k

)
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Proof.

‖Πj ĝε − Pj ĝε‖2 =
∫ ∞

−∞
|(Πj − Pj)ĝε|2dω

=
∫ ∞

−∞

∣∣∣
∑

〈ĝε, ψ̂j+1,k〉Πjψ̂j+1,k

∣∣∣
2

dω

=
∫

|ω|≤αj+2

∣∣∣
∑

〈ĝε, ψ̂j+1,k〉Πjψ̂j+1,k

∣∣∣
2

dω

=
∫

|ω|≤αj+2

|(Pj+1 − Pj)ĝε|2 dω

≤
∫

αj+1≤|ω|≤αj+2

|(Pj+1 − Pj)(ĝε− ĝ)|2 dω +
∫

|ω|≤αj+2

|(Pj+1 − Pj)ĝ|2 dω

≤ ε2 +
∫
|Pj+1 − Pj |2 |F̂ |2

cosh2
√

iω
k

dω, |ω| ∈ [αj+1, αj+2]

≤ ε2 +
∫
|Pj+1 − Pj |2 |F̂ |2

cosh2
√

iαj+2
k

dω, Cj ∈ ‖Pj+1 − Pj‖2

= Cj


ε2 +

M2

cosh2
√

iαj+2
k


 .

¤

Main Proof:

‖ĝ − Pjgε‖ ≤ ‖ĝ −Πjgε‖+ ‖Πj ĝε − Pjgε‖

≤ M√
iαj+2

k

+


Cj


ε2 +

M2

cosh
√

iαj+2
k







1
2

,

using Lemma 2.2 and Lemma 2.3. 2

Theorem 2.4. Let g be the true data of the problem 15 and gε the noisy measured
data satisfying ‖g − gε‖ ≤ ε for some ε > 0. Let there exist a priory bound ‖F‖ =

‖ cosh
√

iω
k ĝ‖ ≤ M . Further, assume that j = j(ε) be such ε cosh

√
iαj+2

k ≥ M .
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Then for 0 ≤ x < 1

‖û− v̂εj‖ = ‖u− vεj‖

≤


ε2 cosh2

√
iαj+2x + M2


cosh2

√
iαj+2

k x

cosh2
√

iαj+2
k




2


1
2

+

cosh

√
iαj+2

k
x


Cj


ε2 +

M2

cosh2
√

iαj+2
k







1
2

where Cj is a certain sequence converging to zero as j →∞.

Lemma 2.5.

‖û− ûεj‖2 ≤ ε2 cosh2

√
iαj+2

k
x + M2


cosh2

√
iω
k x

cosh2
√

iω
k




Proof.

‖û− ûεj‖2 =
∫
|ĝ −Πj ĝε|2

∣∣∣∣∣cosh

√
iω

k
x

∣∣∣∣∣

2

dω

=
∫

|ω|≤αj+2

|ĝ − ĝε|2 cosh2

√
iω

k
xdω +

∫

|ω|≥αj+2

|ĝ|2 cosh2

√
iω

k
xdω

≤ ε2 cosh2

√
iαj+2

k
x +

∫

|ω|≥αj+2

‖F̂‖ cosh2
√

iω
k x

cosh2
√

iω
k

dω

≤ ε2 cosh2

√
iαj+2

k
x + M2


cosh2

√
iαj+2

k x

cosh2
√

iαj+2
k




¤

Lemma 2.6.

‖ûεj − v̂εj‖2 ≤ cosh2

√
iαj+2

k
x


Cj


ε2 +

M2

cosh
√

iω
k







Proof.

‖ûεj − v̂εj‖2 =
∫

|ω|≤αj+2

cosh2

√
iω

k
x|(Πj − Pj)ĝε|2dω

≤ cosh2

√
iαj+2

k
x


Cj


ε2 +

M2

cosh
√

iω
k





 ,
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using Lemma 2.3 ¤

Main Proof:

‖û− v̂εj‖ = ‖û− ûεj‖+ ‖ûεj − v̂εj‖

≤


ε2 cosh2

√
iαj+2

k
x + M2


cosh2

√
iαj+2

k x

cosh2
√

iαj+2
k




2


1
2

+

cosh

√
iαj+2

k
x


Cj


ε2 +

M2

cosh2
√

iαj+2
k







1
2

.

2

Theorem 2.7. Let g be the true data of the problem 15 and gε the noisy measured
data satisfying ‖g − gε‖ ≤ ε for some ε > 0. Let there exist a priory bound ‖F‖ =

‖ cosh
√

iω
k ĝ‖ ≤ M . Further, assume that j = j(ε) be such ε cosh

√
iαj+1

k ≥ M .
Then

‖û− Pj û‖ ≤ ε cosh

√
iαj+1

k
x.

Proof.

‖û− ûεj‖2 ≤ ε2 cosh2

√
iαj+2

k
x + M2


cosh2

√
iω
k x

cosh2
√

iω
k




‖û− Pj û‖ =
∫
|(ĝ − Pj ĝε)|2 cosh2

√
iω

k
xdω

=
∫

|ω|≤αj+1

|ĝ − ĝε|2 cosh2

√
iω

k
xdω +

∫

|ω|≥αj+1

|ĝ|2 cosh2

√
iω

k
xdω

≤ ε2 cosh2

√
iαj+1

k
x.

¤

3. Inequality Based Wavelet-Galerkin Solutions

A. Wavelet-Galerkin Solution of Sideways Heat Equation
In wavelet Galerkin approach, heat equation can be solved efficiently and in

numerically stable way without introducing high frequency components. Data is
projected on to Meyer scaling spaces. Weak formulation of approximating problem
on scaling spaces Vj , where test function is also from Vj , converts the system in to
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infinite dimensional second order initial value ordinary differential equation with
variable coefficients.

Lemma 3.1. If {ϕjk}k∈Z is the orthogonal basis of scaling spaces Vj such that the
matrix

b(Dj)lk(x)cl,k∈Z =
⌊

1
k(x)

〈ϕ′jl, ϕjk〉
⌋

l,k∈Z

.

The matrix Dj is skew symmetric and equal along diagonals. Moreover, ‖Dj(x)‖ ≤
π2−j

k(x) .

Theorem 3.2. [14] Let u and v be positive continuous functions, x ≥ a and c > 0.
If

u(x) = c +
∫ x

a

∫ s

a

v(τ)u(τ)ds

then
u(x) ≤ ce

∫ x
a

∫ s
a

v(τ)u(τ)ds.

Solution of 15 in Frequency Domain



k(x)ûxx(x, ω) = iωû(x, ω), ω ∈ R, 0 ≤ x < 1;
û(0, ω) = ĝ(ω),
ûx(0, ω) = 0.

(21)

û(0, ω) = ĝ(ω) +
∫ x

0

∫ s

0

iω

k(τ)
û(τ, ω)dτds

Using Theorem 3.2,

|û(0, ω)| ≤ |ĝ|e|ω|
∫ x
0

∫ s
0

1
k(τ) dτds

Galerkin Solution of 15 in Scaling Spaces Vj

Approximating solution of 21 in scaling spaces

〈k(x)uxx − ut, ϕjk〉 = 0
〈u(0, t), ϕjk〉 = 〈Pjg, ϕjk〉, (22)
〈ux(0, t), ϕjk〉 = 〈0, ϕjk〉, k ∈ Z.

where ϕjk is the orthonormal basis of Vj given by the scaling function ϕ.
Letting the approximate solution uj(x, t) ∈ Vj be

uj(x, t) =
∑

l∈Z

Wl(x)ϕjl(t).

The equation 22 reduces to infinite dimensional differential equation [14]

d2W

dx2
= Dj(x)W with W (0) = γ,W ′(0) = 0, (23)

where γ = Pjg =
∑

z∈Z γzϕjz =
∑

z∈Z〈g, ϕjz〉ϕjz. Solution of 23 is analogous to
the solution of 22
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W (x) = γ +
∫ x

0

∫ s

0

Dj(τ)W (τ)dτds i.e., (24)

By Theorem 3.2,

‖W (x)‖ ≤ ‖γ‖ exp
(

2−jπ

∫ s

0

1
k(τ)

dτds

)

Theorem 3.3. [14] Let uj and ũj be solutions in Vj of the approximating problem
15 with g = Pjg for the boundary specifications g and g̃ respectively. If ‖g− g̃‖ < ε,
then

‖uj(x, t)− ũj(x, t)‖ ≤ ε exp
(

2−jπ

2α

)
x2,

For j = j(ε) such that 2−j ≤ 2α
π log ε−1, we have

‖uj(x, t)− ũj(x, t)‖ ≤ ε1−x2
.

Theorem 3.4. [14] If u is a solution of problem 15 in Vj with ‖g‖ ≤ M , then

‖u(x, t)− Pju(x, t)‖ ≤ Me(−
1
3

π
α 2−jπ(1−x2))

B. Wavelet-Galerkin Solution of Non Standard Parabolic Equation
We have stated and proved the following Theorem and found the solution of

27 in frequency domain as well as in scaling spaces. For details, refer to authors’
paper [16].

Theorem 3.5. Let W (x) be continuous function, x ≥ 0 and γ = W (0) > 0. k′(x)
is the derivative of k(x). If

W (x) = γ +
∫ x

0

∫ s

0

[
l

k(τ)
W (τ)− k′(τ)

k(τ)
W ′(τ)

]
dτds (25)

then

W (x) ≤ γe

∫ x
0

∫ s
0

[
l

k(τ)+
k′2(τ)
4k2(τ)

W ′(τ)

]
dτds

(26)

Consider the following heat conduction problem





k(x)uxx(x, t) + k′ux(x, t)− ut(x, t) = 0, t ≥ 0, 0 ≤ x < 1;
u(0, t) = g(t),
ux(0, t) = 0.

(27)

[0 < α ≤ k(x) ≤ β < ∞, 0 < δ ≤ k′(x) ≤ ϑ < ∞].
Solution of 27 in Frequency Domain

Using Theorem 3.5

|û(x, ω)| ≤ |ĝ(ω)|e
∫ x
0

∫ s
0

[
1

k(τ) |ω|+
k′2(τ)
4k2(τ)

]
dτds

(28)

Galerkin Solution of 27 in Scaling Spaces
By Theorem 3.5 and using Lemma 3.1,
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‖W (x)‖ ≤ ‖γ‖e
∫ x
0

∫ s
0

[
2−jπ
k(τ) +

k′2(τ)
4k2(τ)

]
dτds

(29)

Letting, the approximate solution, uj(x, t) ∈ Vj

uj(x, t) =
∑

l∈Z

Wl(x)ϕjl(t).

Stability of Wavelet-Galerkin Method
We prove the following convergence theorems.

Theorem 3.6. Let uj and ũj be solutions in Vj of the approximating problem 27
with g = Pjg for the boundary specifications g and g̃ respectively. If ‖g − g̃‖ < ε,
then

‖uj(x, t)− ũj(x, t)‖ ≤ ε exp
(

2−jπ

2α
+

ϑ2

8α2

)
x2,

For j = j(ε) such that 2−j ≤ 2α
π log ε−1, we have

‖uj(x, t)− ũj(x, t)‖ ≤ ε1−x2
exp

[
ϑ2

8α2
x2

)
. (30)

Proof. Let uj(x, t) =
∑

l∈Z Wl(x)ϕjl(t) and ũj(x, t) =
∑

l∈Z W̃l(x)ϕjl(t), where
W, W̃ are solution 27

‖uj(x, t)− ũj(x, t)‖ = ‖W (x)− W̃ (x)‖

≤ ‖γ − γ̃‖ exp
∫ x

0

∫ s

0

[
2−jπ

k(τ)
+

k′2(τ)
4k2(τ)

]
dτds (using 29)

≤ ε exp
∫ x

0

∫ s

0

[
2−jπ

k(τ)
+

k′2(τ)
4k2(τ)

]
dτds

= ε exp
(

2−jπ

2α
+

ϑ2

8α2

)
x2

If j = j(ε) is such that 2−j ≤ 2α
π log ε−1, then

‖uj(x, t)− ũj(x, t)‖ ≤ εelog ε−x2
+ ϑ2

8α2

= εelog ε−x2

e
ϑ2

8α2

= εe1−x2
e

ϑ2

8α2 x2
.

¤

Theorem 3.7. If u is a solution of problem 27. Define f̂ = ĝ exp
([

π
3α2−j + ϑ2

4α2

])
∈

L2(R). Then

‖u(x, t)− Pju(x, t)‖ ≤ Me
2−jπ
3α + ϑ2

4α2 x2

For j such that 2−j ≤ 3α
2π log ε−1, we have

‖u(x, t)− Pju(x, t)‖ ≤ Mε1−x2
e−

ϑ2

4α2 (1−x2) (31)
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Proof.

‖u(x, t)− Pju(x, t)‖ ≤ ‖χ+û(x, ω)‖ =

(∫

|ω|> 2
3 π2−j

|û(x, ω)|2dω

) 1
2

≤
(∫

|ω|> 2
3 π2−j

|ĝ(ω)|2e2e

∫ x
0

∫ s
0

[
2−jπ
k(τ) +

k′2(τ)
4k2(τ)

]
dτds

) 1
2

dω from 28

≤
(∫

|f̂ |2e2

(
−(1− x2)

[
2π

3α
2−j +

ϑ2

4α2

])) 1
2

dω

≤ Me
−(1−x2)

[
2π
3α 2−j+ ϑ2

4α2

]

¤

where f̂ = ĝe
π
3α 2−j+ ϑ2

4α2 , ‖f̂‖ ≤ M .
If j = j(ε) such that 2−j ≤ 3α

2π log ε−1, then

‖u(x, t)− Pju(x, t)‖ ≤ Melog ε1−x2

e−
ϑ2

4α2 (1−x2)

= Mε1−x2
e−

ϑ2

4α2 (1−x2)

4. Numerical Example

We consider the equation 27 with k(x) = (x + a)2. Here

α = min
0≤x<1

k(x) = a2

ϑ = max
0≤x<1

k′(x) < 2(1 + a)

ϑ

2α
<

1 + a

a2
=

1
a

(
1 +

1
a

)
.

For a ≥ 1, ϑ
2α < 2. Let E = ϑ

2α so that equation 30 equivalents to

‖uj(x, t)− ũj(x, t)‖ ≤ ε(1−x2)e
E2
2 x2

(32)

for j ≥ log[(π/2α)(1/ log ε−1)]
log 2 .
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Graph of norm error versus space axis is

Equation 31 yields

‖uj(x, t)− Pju(x, t)‖ ≤ Mε(1−x2)e−E2(1−x2) (33)

for j ≥ log[(2π/3α)(1/ log ε−1)]
log 2

Graph of norm error error versus space axis is

In authors paper [16], inequality based wavelet-Galerkin solution of 27 has
been found by taking k(x) equal to (x + a)2 and errors have been computed and
compared at various values of a.

5. Conclusion

Wavelet regularization and Galerkin are important techniques to find the
numerical solutions of partial differential parabolic equations. Gronwall based in-
equality approach to wavelet Galerkin method has additive advantage. Wavelet
regularization solution of extended Sideways parabolic equation 15 and inequality
based wavelet-Galerkin Solution of non standard parabolic equation 27 are stable.
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