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Abstract. In this paper we give a further study on fully prime submodules. For

any fully prime submodules we define a product called ∗M -product. The further

investigation of fully prime submodules in this work, i.e. the fully m-system and

fully prime radicals, is related to this product. We show that the fully prime radical

of any submodules can be characterized by the fully m-system. As a special case,

the fully prime radical of a module M is the intersection of all minimal fully prime

submodules of M .
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Abstrak. Pada tulisan ini disajikan hasil penelitian terkait submodul prima penuh.

Didefinisikan operasi perkalian-∗M untuk setiap submodul prima penuh. Penelitian

lebih lanjut terkait submodul prima penuh, yaitu sistem-m penuh dan radikal prima

penuh, dapat dihubungkan dengan operasi perkalian-∗M ini. Lebih lanjut, dapat

ditunjukkan bahwa radikal prima penuh dari sebarang submodul dapat dibentuk

dari sistem-m penuh. Lebih lanjut, diperoleh bahwa radikal prima penuh dari suatu

modul M merupakan irisan dari semua submodul prima penuh minimal di M .

Kata kunci: Submodul invarian penuh, submodul prima penuh, sistem-m penuh,
radikal prima penuh.

1. Introduction

Along with the process of generalization of rings to modules, some previous
authors defined prime submodules as the generalization of prime ideals. By using
some different approaches, there are some kinds of definition of prime submodules.
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The definition of prime submodules introduced by Dauns [2] has been referred
by many authors for their study of primeness in module theory. Investigations of
prime radicals and localization of modules by Wisbauer [11] are also based on this
definition.

In this work we refer to the definition of primeness of submodules based on
the paper of Wijayanti and Wisbauer [8], in which they defined prime (sub)module
using the ∗M -product and called it fully prime submodules. This ∗M -product was
introduced earlier by Raggi et al. in their paper [7] and recently gives a possibility
in a module to have such a ”multiplication”, such that we can adopt the definition
of prime ideal to the module theory easier. The further study of the fully prime
submodules started in paper Wijayanti [9]. The aim of this work is to complete
the investigation of fully prime submodules, especially related to the m-system and
radical.

Some previous authors also studied the prime submodules and prime radical
submodules, for example Sanh [6], Lam [4] and Azizi [1]. We refer to Lam for
defining fully m-systems and Sanh [6] for some properties of fully prime radicals of
submodules.

In the next section we present some necessary and sufficient conditions of
fully prime submodules in Proposition 2.2 and Proposition 2.5. Moreover, we show
that there is a fully prime submodule which is not a prime submodule by giving a
counter example in Example 2.3. To give some ideas of the fully primeness among
another primeness, i.e. primeness in the sense of Dauns [2] and Sanh [5], we prove in
Proposition 2.7, Proposition 2.9 and Lemma 2.10 that they not necessary coincide.
Then we define a fully m-system and show that it is a complement of the fully
prime submodule (see Proposition 2.13).

In the last section we define fully prime radicals and give some results. In
Proposition 3.1 we characterize the fully prime radical of a submodule using the
fully m-system. Moreover, in Proposition 3.9 we show that if the module is self-
projective, then the fully prime radical of factor module modulo its fully prime
radical is equal to zero.

Throughout R denotes an associative ring with unit and the module should be
a unital left module over the related ring. For our purpose, we write the homomor-
phism on the right side. A fully invariant submodule K in M is a submodule which
satisfies (K)f ⊆ K for any endomorphism f of M . Naturally, for any R-module
M , it is also a right S-module, where S = EndR(M) and the scalar multiplication
is defined as µ : (m, f) 7→ (m)f .

2. Fully Prime Submodules

We begin this section by the definition of a product between two fully invari-
ant submodules as we refer to [7] and [8]. For any fully invariant submodules K,L
of M , consider the product

K ∗M L := KHomR(M,L). (1)
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We call the defined product in formulae (1) as the ∗M -product. Now we recall the
definition of fully prime submodules in [8].

Definition 2.1. A fully invariant submodule P of M is called a fully prime sub-
module in M if for any fully invariant submodules K,L of M ,

K ∗M L ⊆ P ⇒ K ⊆ P or L ⊆ P. (2)

A module M is called a fully prime module if its zero submodule is a fully prime
submodule.

Moreover, we give a characterization of fully prime submodules as we can
show in the following proposition.

Proposition 2.2. Let P be a fully invariant submodule of M . The following as-
sertions are equivalent:

a. P is a fully prime submodule;

b. For any m, k ∈ M and fully invariant cyclic submodules < m > and
< k > of M , if < m > ∗M < k >⊆ P , then m ∈ P or k ∈ P .

c. For any submodules K,L of M , if KS ∗M LS ⊆ P , then K ⊆ P or
L ⊆ P .

Proof. (a) ⇒ (b). Let m and k be elements in M where the fully invariant cyclic
submodules < m > ∗M < k >⊆ P . Since P is fully prime, it implies < m >=
mS ⊆ P or < k >= kS ⊆ P . Then m ∈ P or k ∈ P .
(b) ⇒ (c). Let K and L be R-submodules of M where KS ∗M LS ⊆ P . Take any
k ∈ K and l ∈ L, then kS ⊆ KS and lS ⊆ LS. Moreover we have

kS ∗M lS ⊆ KS ∗M LS ⊆ P,
and it implies k ∈ P or l ∈ P . Thus K ⊆ P or L ⊆ P .
(c) ⇒ (a). Let K,L be fully invariant submodules of M where K ∗M L ⊆ P . Since
KS ⊆ K and LS ⊆ L, then KS ∗M LS ⊆ K ∗M L ⊆ P . Thus we have K ⊆ P or
L ⊆ P . �

Example 2.3. Let us give an example of a submodule which is not prime but fully
prime. In Z-module Z12, we know that < 3 > is not a prime submodule. But
< 3 > is a fully prime submodule, since for any proper submodules N,K in Z12, if
N ∗Z12

K ⊆< 3 >, then N ⊆< 3 > or K ⊆< 3 >. �

Now we recall some more properties according to Proposition 18 of Raggi et
al. [7] which showed the relation between a fully prime submodule and the factor
module. If a submodule N is fully prime, then the factor module M/N is also fully
prime. But we need some property for the converse, as we can see below.

Proposition 2.4. Let N be a proper fully-invariant submodule of M .

(i) If N is fully prime in M , then M/N is a fully prime module.

(ii) If M is self-projective and M/N is fully prime, then N is a fully prime
submodule in M .
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Based on Proposition 2.4, if a module M is self-projective, then a submodule
P in M is fully prime if and only if M/P is fully prime. Let L and U be R-modules
and recall the following definition:

Rej(L,U) =
⋂
{Kerf | f ∈ HomR(L,U)}

An R-module L is called U -cogenerated if Rej(L,U) = 0. For detailed explanation
of reject and cogenerator, the readers are suggested to refer to Wisbauer’s book
[10]. Moreover, we modify the result in 3.1 of [8] for a more general case.

Proposition 2.5. Let P be a fully invariant submodule of a self-projective module
M . The following statements are equivalent:

a. P is a fully prime submodule;

b. Rej(M/P,K/P ) = 0 for any non-zero fully invariant submodules K/P
of M/P ;

c. K ∗M L 6⊆ P for any non-zero fully invariant submodules K/P and L/P
of M/P ;

d. Rej(−,M/P ) = Rej(−,K/P ) for any non-zero fully invariant submod-
ules K/P of M/P .

According to Proposition 2.5, if P is fully prime, then any M/P -cogenerated
module is also K/P -cogenerated and vice versa.

Consider R as a left R-module and let I, J be ideals of R. Then I ∗R J = IJ .
Since every ideal of R is a fully invariant R-submodule, we get the following special
case:

Proposition 2.6. [8] The following statements are equivalent for a two-sided ideal
I :

a. R/I is a prime ring.

b. I is a fully prime submodule in R.

c. I is a prime ideal.

A module M satisfies the (∗fi) condition if for any non-zero fully invari-
ant submodule K of M , AnnR(M/K) 6⊂ AnnR(M). A module M is called fi-
retractable if for any non-zero fully invariant submodule K of M , HomR(M,K) =
AnnS(M/K) 6= 0.

In general prime modules in the sense of Dauns [2] need not to be fully prime.
Furthermore, in any self-projective module, if its submodule is prime, then it is not
necessary fully prime. For the following relationship we generalize Proposition 3.4
of [8] as follows.

Proposition 2.7. For a self-projective R-module M with (∗fi) and for any fully
invariant submodules K of M , the following statements are equivalent :

a. K is prime and M/K fi-retractable.

b. K is fully prime.
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Notice that for any ring R, EndR(R) ' R and as a left R-module, R satisfies
(∗fi) and is fi-retractable. If M = R, Corollary 3.5 and Proposition 3.4 of [8] show
that primeness and fully primeness of R coincide.

For any fully invariant submodule K of M we denote

(K : M) := {f ∈ S | Mf ⊆ K} = AnnS(M/K).

Now we recall the definition of prime submodule in the sense of Sanh et al.
[5], and we called it N-prime, as follows.

Definition 2.8. Let K be a fully invariant and proper submodule of M . The
submodule K is called an N-prime submodules in M if for any fully invariant sub-
modules L of M and for every ideal I of S, if I(L) ⊂ K, then I(M) ⊆ K or
L ⊂ K.

We refer to Theorem 1.2 of Sahn et. al. [5] to give a characterization of
an N-prime submodule and consider that the prime notion in the sense of Sanh
(N-prime) and endo-prime notion in the sense of Haghany-Vedadi [3] coinside. As
an immediate consequence we extend Corollary 1.6 of [3] as follows.

Proposition 2.9. Suppose RM is fi-retractable and satisfies the (∗fi) condition.
Then RM is prime if and only if RM is N-prime.

As a consequence of Proposition 2.7 and Proposition 2.9 we have the following
property.

Lemma 2.10. Suppose RM is fi-retractable, satisfies the (∗fi) condition and is
self-projective. If M is fully prime, then M is N-prime.

Lemma 2.10 gives a sufficient condition of a fully prime module to be N-prime.
Now we refer to Theorem 1.2 of Sahn et. al. [5] to prove the following property.

Proposition 2.11. Let M be an R-module, fi-retractable, satisfies the (∗fi) condi-
tion and self-projective. Let S = EndR(M). If P is a fully prime submodule, then
(P : M) is a prime ideal in S.

Proof. Take any f ∈ S, an ideal T of S where fT ⊆ (P : M). Then (M)fT ⊆ P .
Moreover we have (M)fST ⊆ (M)fT ⊆ P . According to Theorem 1.2 [5], since
P is fully prime, P is N -prime, i.e. (M)fS ⊆ P or MT ⊆ P . We show that
fS ⊆ (P : M) or T ⊆ (P : M). Thus (P : M) is a prime ideal of S. �

Related to fully prime submodules, we observe now the notion below.

Definition 2.12. Let X be a non empty subset of a module M where 0 6∈ X. X
is called a fully m-system if for any x, y ∈ X, < x > ∗M < y > ∩X 6= ∅.

As it is already known, there is a similar m-system notion in rings and it is a
complement set of a prime ideal (see for example Lam [4]). In modules, we prove
that the fully m-system is also a complement set of a fully prime submodule.

Proposition 2.13. Let P be a fully invariant submodule of M . P is fully prime
if and only if M \ P is a fully m-system.
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Proof. (⇒). Denote X = M \P . Take any x, y ∈ X, then x, y 6∈ P . By Proposition
2.2 (b), < x > ∗M < y >6⊆ P , hence < x > ∗M < y > ∩X 6= ∅. Hence X = M \ P
is a fully m-system.
(⇐). Take any x, y 6∈ P , then x, y ∈ M \ P and < x > ∗M < y > 6⊆ P . Hence P is
fully prime. �

Next we show that any maximal fully invariant submodule is also a fully
prime submodule.

Proposition 2.14. Let X be a fully m-system in M and P be a maximal fully
invariant submodule in M where P ∩X = ∅. Then P is a fully prime submodule
in M .

Proof. Suppose x 6∈ P and y 6∈ P , but < x > ∗M < y >⊆ P . Then there exist
x1, x2 ∈ X such that x1 ∈ P+ < x > and x2 ∈ P+ < y >. Consider that

< x1 > ∗M < x2 > ⊆ (P+ < x >) ∗M (P+ < y >)

⊆ P + (< x > ∗M < y >) ⊆ P.
This is a contradiction with the fact that X is a fully m-system. �

Moreover, we also show that any fully prime submodule contains a minimal
fully prime submodule.

Definition 2.15. A fully invariant submodule N in M is called minimal fully
prime if N is minimal in the set of all fully prime submodules in M .

Proposition 2.16. Let P be a fully prime submodule in M . Then P contains a
minimal fully prime submodule.

Proof. Let P be a fully prime submodule in M . We form the following set

J = {U | U fully prime submodule in M where U ⊆ P}.
It is clear that J 6= ∅, since P ∈ J. By Zorn’s Lemma, J has a minimal element or
equivalently, every nonempty chain in J has a lower bound in J.
Consider a nonempty chain G ⊆ J. We construct a set Q =

⋂
K∈G

K. It is clear that

Q is a fully invariant submodule in M and Q ⊆ P . We want to show that Q is a
fully prime submodule in M . Take any two fully invariant submodules X and Y in
M where X ∗M Y ⊆ Q but Y * Q. We prove that X ⊆ Q. Take any y ∈ Y \Q.
Then there exists K ′ ∈ G such that y 6∈ K ′. Since K ′ is a fully prime submodule
in M , from X ∗M Y ⊆ Q ⊆ K ′ implies X ⊆ K ′.
Then take any L ∈ G. Since G is a chain in J, K ′ ⊆ L or L ⊆ K ′. If K ′ ⊆ L, then
X ⊆ K ′ ⊆ L. If L ⊆ K ′, then y 6∈ L. From X ∗M Y ⊆ Q ⊆ L implies X ⊆ L.
Thus X ⊆ L for all L ∈ G. Then X ⊆ Q, and we prove that Q is a fully prime
submodule in M .
Since Q ⊆ P , Q ∈ J and is a lower bound of G. It is proved that any nonempty
chain in J has a lower bound in J. Based on Zorn’s Lemma there exists a fully
prime submodule P ∗ ∈ J which is minimal in J. Thus the fully prime submodule
P contains the minimal fully prime submodule P ∗. �
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Let N and K be fully invariant submodules of M where K ⊆ N . We consider
then the sets HomR(M,K) and HomR(N,K). For any f ∈ HomR(M,K), it induces

a homomorphism f̃ = f |N ∈ HomR(N,K). It is understood that there exists
an injective function from HomR(M,K) to HomR(N,K) which maps any f ∈
HomR(M,K) to f̃ = f |N ∈ HomR(N,K). Hence, HomR(M,K) ⊆ HomR(N,K).

Proposition 2.17. Let N and P be a fully invariant submodules of M . If P is
fully prime, then N ∩ P is a fully prime submodule in N .

Proof. Take any two fully invariant submodules K and L in N , where L ∗N K ⊆
N ∩ P . Then L ∗N K ⊆ P and LHomR(N,K) ⊆ P . Since HomR(M,K) ⊆
HomR(N,K), LHomR(M,K) ⊆ LHomR(N,K). Moreover L ∗M K ⊆ L ∗N K and
hence L ∗M K ⊆ P . Then L ⊆ P or K ⊆ P because P is fully prime. But K ⊆ N
and L ⊆ N , so we have K ⊆ N ∩ P or L ⊆ N ∩ P as well. �

We recall Lemma 17 of Raggi et al. [7] below.

Lemma 2.18. Let M and N be R-module and f ∈ HomR(M,N) an epimorphism.

(i) If Kerf is a fully invariant submodule in M and L is a fully invariant sub-
module in N , then (L)f−1 is a fully invariant submodule in M .

(ii) If M is a quasi-projective module and U is a fully invariant submodule in M ,
then (U)f is a fully invariant submodule in N .

As a consequence, we have the following property.

Corollary 2.19. Let M be R-module and K, U submodules of M where K ⊂ U
and K fully invariant in M . If U/K is a proper fully invariant submodule in M/K,
then U is a proper fully invariant submodule in M .

Proposition 2.20. Let M be a self-projective module and A, P fully invariant
submodules in M where A ⊂ P . The submodule P is a fully prime submodule in
M if and only if P/A is a fully prime submodule in M/A.

Proof. Let S = EndR(M/A).
(⇒). We want to prove that P/A is a fully prime submodule in M/A. Take any
fully invariant submodule K/A and L/A in M/A such that:

K/A ∗M/A L/A = K/A HomR(M/A,L/A) =
∑

f∈HomR(M/A,L/A)

(K/A)f ⊆ P/A.

Since K/A and L/A is fully invariant submodules in M/A, according to Corollary
2.19 we get K and L are fully invariant in M .
Now take any f ∈ HomR(M/A,L/A) ⊆ S. Since M is a self-projective module,
there exists a homomorphism g ∈ HomR(M,L) such that πf = gπ, where π is the
natural epimorphism π : M →M/A. Then

(K/A)f = K(νf) = K(gν) = (Kg)ν = (Kg +A)/A ⊆ P/A.
Thus we have Kg ⊆ P .
Hence for any f ∈ HomR(M/A,L/A) there exists g ∈ S such that Kg ⊆ P .
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Moreover,
∑
g∈S

Kg = KS ⊆ P . Since KHomR(M,L) = K ∗M L ⊆ KS ⊆ P , it

implies K ⊆ P or L ⊆ P . We obtain K/A ⊆ P/A or L/A ⊆ P/A, i.e. P/A is a
fully prime submodule in M/A.
(⇐). Let P/A be a fully prime submodule in M/A. Take any fully invariant
submodule K and L in M where:

K ∗M L ⊆ KHomR(M,L) ⊆
∑

f∈HomR(M,L)

Kf ⊆ P.

Based on Lemma 2.18 (ii), we obtain that (K + A)/A and (L + A)/A are fully
invariant submodules in M/A. Now take any f ∈ HomR(M,L) or equivalently
f ∈ S. Since A is a fully invariant submodule in M , we can construct the following
function:

h : M/A → M/A

m+A 7→ (m+A)h = mf +A , for any m+A ∈M/A.

Take any m+A,n+A ∈MA and r ∈ R, then:

((m+A) + (n+A))h = ((m+ n) +A)h

= (m+ n)f +A

= (mf + nf) +A

= (mf +A) + (nf +A)

= ((m+A)h) + ((n+A)h).

and

(r(m+A))h = (rm+A)h = (rm)f +A = r(mf +A) = r(m+A)h.

It is proved that h is a homomorphism, so we get h ∈ S̄. Now take any m ∈ M .
For any natural epimorphism ν : M →MA it yields

m(νh) = (mν)h = (m+A)h = mf +A = (mf)ν = m(fν).

It implies νh = fν.
Furthermore,

∑
f∈HomR(M,L)

Kf ⊆ P implies Kf ⊆ P . As a consequence, K(fν) =

(Kf)ν ⊆ Pν = P/A. We use the fact that νh = fν to obtain K(νh) ⊆ P/A. Then(
(K +A)A

)
h ⊆ P/A and

∑
h∈S̄

(
(K +A)A

)
h =

(
(K +A)A

)
S̄ ⊆ P/A.

Since

(K +A)/AHomR(M/A, (L+A)/A) ⊆ ((K +A)/A)S̄ ⊆ P/A,

we have ((K+A)/A)∗M/A((L+A)/A) ⊆ P/A. Since P/A is a fully prime submodule
in M/A, we get (K + A)/A ⊆ P/A or (K + A)/A ⊆ P/A. Hence K ⊆ P or
L ⊆ P . �
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3. Fully Prime Radicals

Now we collect all fully prime submodules in M in the spectrum of M below.

We denote the fully prime radical of L as RadfpM (L), where L is a fully invariant
submodule of M .

Specfp(M) := {K �M | K is fully prime submodule in M}
νfp(L) := {K ∈ Specfp(M) | L ⊆ K}

RadfpM (L) :=
⋂

K∈νfp(L)

K

In case a fully prime submodule which contains L does not exist, we define

RadfpM (L) = M . It is easy to understand that νfp(0) = Specfp(M) and νfp(M) = ∅.
For a special case, we have RadfpM (0) =

⋂
K∈νfp(0)K. If M contains fully

prime submodules, then

RadfpM (0) =
⋂

K∈Specfp
M (M)

K.

However, if there are no fully prime submodules in M , then RadfpM (0) = M . We

call the RadfpM (0) the fully prime radical of M .

The following proposition gives us a characterization of the fully prime radical
of L.

Proposition 3.1. Let L be a fully invariant submodule of M . Denote

R = {x ∈M | ∀ fully m− system X,x ∈ X ⇒ X ∩ L 6= ∅}.

Then we have RadfpM (L) = M or RadfpM (L) = R.

Proof. First, we show that RadfpM (L) ⊆ R. Take any y 6∈ R and prove that y 6∈
RadfpM (L). Since y 6∈ R, there is a fully m-system X ′ such that y ∈ X ′ but
X ′ ∩ L = ∅. Consider now

M = {N ⊆M | N is fully invariant L ⊆ N,N ∩X ′ = ∅},

and a chain C in M.
The set

⋃
N∈MN is an upper bound of C. Hence by Zorn’s Lemma, there is a

maximal element in M, say N ′. It is clear that N ′ is a maximal fully invariant
submodule of M and N ′∩X ′ = ∅. According to Proposition 2.14, N ′ is fully prime

and y 6∈ N ′. It implies y 6∈ RadfpM (L).

Conversely, we show that R ⊆ RadfpM (L). Take any x ∈ R and N ∈ νfp(L). Then
M \N is a fully m-system. Suppose x ∈ M \N or equivalently x 6∈ N . It implies
(M \N) ∩L 6= ∅. But L ⊆ N and N ∩L 6= ∅, a contradiction. Thus x 6∈M \N or
equivalently x ∈ N . �

Especially, if L is the zero submodule of M , then we have the following
property.
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Proposition 3.2. Let M be an R-module. Then RadfpM (0) = M or RadfpM (0) =⋂
P ′ where the P ′s are minimal fully prime submodules of M .

Proof. If RadfpM (0) 6= M , thenM contains a fully prime submodule and Specfp(M) 6=
∅. According to Proposition 2.16, we know that any fully prime submodule in M
contains a minimal fully prime submodule. Then for any P ∈ Specfp(M), there

exists a minimal fully prime submodule P ′ ∈ Specfp(M) and P ′ ⊆ P .
Now we form the following set:

J = {P ′ ∈ Specfp(M) | P ′ is a minimal fully prime submodule}.

We want to show RadfpM (0) =
⋂
P ′∈J

P ′. Since J ⊆ Specfp(M), RadfpM (0) ⊆
⋂
P ′∈J

P ′.

Conversely, take any a 6∈ RadfpM (0), then there exists a minimal fully prime sub-

module P ∈ Specfp(M) such that a 6∈ P . Consequently a 6∈
⋂
P ′∈J

P ′, and we prove

that
⋂
P ′∈J

P ′ ⊆ RadfpM (0). Thus RadfpM (0) is the intersection of all minimal fully

prime submodules in M . �

Proposition 3.3. Let {Lλ} be a family of fully invariant submodules in M . Then⋂
λ∈Λ

νfp(Lλ) = νfp(
∑
λ∈Λ

Lλ)

Proof. Take any X ∈
⋂
λ∈Λ ν

fp(Lλ) and then X ∈ νfp(Lλ) for all λ ∈ Λ. It implies
that X is a fully prime submodule which contains Lλ for all λ ∈ Λ. Hence X also
contains the sum

∑
λ∈Λ Lλ and X ∈ νfp(

∑
λ∈Λ Lλ).

Conversely, now take Y ∈ νfp(
∑
λ∈Λ Lλ). It means Y is a fully prime submodule

and
∑
λ∈Λ Lλ ⊆ Y . Then for all λ ∈ Λ we obtain L ∈ νfp(Lλ) since Lλ ⊆ Y .

Hence Y ∈ νfp(
∑
λ∈Λ Lλ). �

Proposition 3.4. Let M be a left R-modul, N and L fully invariant submodules
of M . Then νfp(N) ∪ νfp(L) ⊆ νfp(N ∩ L).

Proof. Let P ∈ νfp(N) ∪ νfp(L). We have P ∈ νfp(N) or P ∈ νfp(L). As a
consequence we obtain N ⊆ P or L ⊆ P . Hence, N∩L ⊆ N ⊆ P or N∩L ⊆ L ⊆ P .
Thus we conclude that N ∩ L ⊆ P , or in other words P ∈ νfp(N ∩ L). �

Let I be an ideal in S. Then we denote

RadfpS (I) = ∩{J | I ⊆ J, J is a prime ideal in S}

Proposition 3.5. If L is a fully invariant submodule of M , then MRadfpS ((L :

M)) ⊆ RadfpM (L).

Proof. We have the following two cases. If Rad
fp
M (L) = M , since RadfpS ((L : M)) ⊆

S, then MRadfpS ((L : M)) ⊆M = RadfpM (L).

If Rad
fp
M (L) 6= M , then νfp(L) 6= ∅. Moreover Rad

fp
M (L) =

⋂
X∈νfp(L)

X. Take any
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X ∈ νfp(L), it means X a fully prime submodule in M where L ⊆ X. According
to Proposition 2.11 (X : M) is a prime ideal in S where (L : M) ⊆ (X : M). Then

RadfpS ((L : M)) ⊆ (X : M) and moreover

MRadfpS ((L : M)) ⊆M(X : M) ⊆ X.
We conclude then

MRadfpS ((L : M)) ⊆
⋂

X∈νfp(L)

X = Rad
fp
M (L).

�

Proposition 3.6. Let N be a fully invariant submodule of M . Then, Rad
fp
N (0) ⊆

RadfpM (0).

Proof. Take any fully prime submodule P ∈ Specfp(M). If N ⊆ P , then the
intersection of all fully prime submodule of N is contained in P . Moreover we have

RadfpN (0) ⊆ P . Now if N * P , then according to Proposition 2.17 we conclude

that N ∩ P is a fully prime submodule in N . Hence RadfpN (0) ⊆ N ∩ P ⊆ P . It is

proved that RadfpN (0) ⊆ RadfpM (0). �

Proposition 3.7. Let {Ni} be the family of fully invariant submodules of M . If
M =

⊕
i∈I

Ni, a direct sum of fully invariant submodules Nis in M , then⊕
i∈I

RadfpNi
(0) ⊆ RadfpM (0).

Proof. It is obvious. �

It is easy to prove the following property.

Proposition 3.8. Let M be an R-module and P1, P2 any fully prime submodules

in M . If P1/RadfpM (0) and P2/RadfpM (0) are submodules in M/RadfpM (0), then:

P1/RadfpM (0) ∩ P2/RadfpM (0) = (P1 ∩ P2)/RadfpM (0).

Proposition 3.9. If M is a self-projective module, then: RadfpM (M/RadfpM (M)) =
0̄.

Proof. If M does not contain a fully prime submodule, then based on Proposition

2.20 we get that M/RadfpM (0) also does not contain any fully prime submodule. So

RadfpM = M and:

RadfpM (M/RadfpM (0)) = RadfpM (M/M) = RadfpM (0̄) = 0̄.

Now assume M has a fully prime submodule. According to Proposition 2.20 we get

that M/RadfpM (0) also contains a fully prime submodule. Then we have :

RadfpM (M/RadfpM (0)) =
⋂

P̄∈Specfp(M/Radfp
M (0))

P̄ .
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We apply Proposition 3.8 to get the following:

RadfpM (M/RadfpM (0)) =
⋂

P̄∈Specfp(M/Radfp
M (0))

P̄

= (
⋂

P∈Specfp(M)

P )RadfpM (0)

= RadfpM (0)/RadfpM (0)

= 0̄

�

4. Concluding Remarks

Further work on the properties of fully prime radicals of submodules can
be carried out. For example, we can define a fully multiplication module and
then investigate the properties of fully prime radicals on the fully multiplication
module. Moreover, we can bring this work to define fully prime localizations and
then investigate the fully prime localization on fully multiplication modules.
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